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Abstract

Chronic myeloid leukemia (CML) is caused by the kinase activity of the BCR-Abl fusion protein. The Abl inhibitors imatinib,
nilotinib and dasatinib are currently used to treat CML, but resistance to these inhibitors is a significant clinical problem. The
kinase inhibitor bosutinib has shown efficacy in clinical trials for imatinib-resistant CML, but its binding mode is unknown.
We present the 2.4 Å structure of bosutinib bound to the kinase domain of Abl, which explains the inhibitor’s activity
against several imatinib-resistant mutants, and reveals that similar inhibitors that lack a nitrile moiety could be effective
against the common T315I mutant. We also report that two distinct chemical compounds are currently being sold under the
name ‘‘bosutinib’’, and report spectroscopic and structural characterizations of both. We show that the fluorescence
properties of these compounds allow inhibitor binding to be measured quantitatively, and that the infrared absorption of
the nitrile group reveals a different electrostatic environment in the conserved ATP-binding sites of Abl and Src kinases.
Exploiting such differences could lead to inhibitors with improved selectivity.
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Introduction

Chronic myeloid leukemia (CML) is the result of the constitutive

kinase activity of the tyrosine kinase BCR-Abl, the product of

the bcr-abl gene fusion present on the Philadelphia chromosomes

of patients with CML [1]. Imatinib is a selective inhibitor of

BCR-Abl, and the introduction of imatinib into the clinic

represented a dramatic improvement in CML therapy [2]. The

tyrosine kinases c-Kit and platelet derived growth factor receptor

(PDGFR) are also potently inhibited by imatinib, which is now

used to treat malignancies caused by dysregulated forms of these

proteins [3,4].

Despite the success of imatinib in treating CML, some patients

ultimately develop resistance to imatinib treatment and undergo

clinical relapse [5]. Although bcr-abl gene amplification has been

observed, resistance is most often caused by point mutations in the

kinase domain of BCR-Abl that abrogate the binding of imatinib

[5,6,7]. The emergence of imatinib resistance has led to a search

for additional inhibitors of BCR-Abl, and the second generation

inhibitors dasatinib and nilotinib were recently approved for use in

CML patients resistant to imatinib, as well as for front-line therapy

[8,9].

While dasatinib and nilotinib are active against most imatinib-

resistant BCR-Abl mutations, neither drug is effective against

BCR-Abl bearing the common T315I mutation. Patients that

initially respond to dasatinib therapy and subsequently relapse

have been shown to possess new BCR-Abl mutations, indicating

that clinical resistance to second-generation inhibitors can emerge

[10]. There is therefore continued interest in obtaining additional

Abl inhibitors, both to combat resistance and to broaden the

therapeutic options for CML patients.

Bosutinib is a second-generation dual Abl/Src inhibitor that

exhibits potent growth inhibition of CML cells in vitro, is active

against multiple imatinib-resistant BCR-Abl mutations and has

demonstrated efficacy in ongoing clinical trials for imatinib-

resistant CML [11,12,13]. Bosutinib is devoid of activity against

the receptor tyrosine kinases Kit and PDGFR, and, like other next

generation BCR-Abl inhibitors, is a more potent inhibitor of Abl

than imatinib [11,14]. Due to its activity against the Src kinases,

bosutinib has shown efficacy against several types of cancer in

which Src is implicated [15,16]. Bosutinib is a 4-anilinoquinoline-

3-carbonitrile inhibitor (see Fig. S2A for structure) that is similar in

structure to the drugs erlotinib and gefitinib, inhibitors of the

epidermal growth factor receptor (EGFR). Crystal structures of

other inhibitors of this class bound to kinases have been solved, but

the details of the interaction between bosutinib and Abl are

unknown. In the course of studies of electrostatic interactions in

the ATP-binding sites of several kinases, briefly outlined at the end

of this report, we determined the crystal structure of the kinase

domain of Abl bound to bosutinib at 2.4 angstrom resolution. The

structure explains the effects of imatinib resistance mutations on

bosutinib binding, and provides a basis for interpreting spectro-

scopic measurements that probe the environment of the ATP-

binding site of Abl and other kinases.
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Materials and Methods

Protein purification and crystallization
The kinase domains of wild-type human c-Abl (residues 229–

512) and wild-type and T338I human c-Src (residues 254–536)

were expressed in E.coli BL21 (DE3) (Invitrogen) and purified by

affinity, ion exchange and gel filtration chromatography as

previously described [17]. Extensive previous work has demon-

strated that Abl expressed in bacteria is correctly folded and

retains catalytic activity [17,18,19,20]. Samples of the Abl:bosu-

tinib and Abl:bosutinib isomer complexes were prepared by

mixing Abl kinase domain (in sample buffer: 50 mM Tris-HCl

pH 8.0, 150 mM NaCl, 2 mM DTT) with a three-fold excess of

bosutinib (Tocris Bioscience) or bosutinib isomer (LC Labs) in

DMSO and performing buffer exchange with sample buffer to

remove the DMSO and unbound drug. Sparse matrix screening

was used to identify conditions conducive to crystallization.

Crystals were obtained in 0.1 M Ammonium Acetate, 0.1 M

MES pH 5.5 and 11% PEG 10 K, and cryo-protected in the same

condition plus 30% glycerol.

Kinase assays
Kinase activity was measured using a coupled kinase assay in

which the production of ADP is linked to the oxidation of NADH

by pyruvate kinase and lactate dehydrogenase [17]. Assays were

performed in 75 ml reactions containing 100 mM Tris-HCl

pH 8.0, 10 mM MgCl2, 2 mM ATP (Sigma Aldrich), 0.5 mM

Abltide substrate peptide (Anaspec), 1 mM phosphoenolpyruvate

(Sigma Aldrich), 0.6 mg/ml NADH (Sigma Aldrich), 1 mM DTT,

and 50 nM Abl kinase. The measurements were corrected for

background activity in the absence of substrate peptide.

X-ray data collection and refinement
X-ray diffraction data were collected at the Stanford Linear

Accelerator Center on beamlines 12-2 and 7-1. Data were

processed with mosflm [21] and CCP4 [22]. The structure of

Abl bound to the bosutinib isomer was solved by molecular

replacement in Phenix [23] using the structure of Abl bound to

VX-680 [24](pdb code 2F4J) as a search model. Model rebuilding

was performed with Coot [25] and refinement with Phenix. For

the structure of Abl bound to authentic bosutinib, the R-free flags

used in refinement were copied from the bosutinib isomer dataset,

and the refined model of Abl bound to the bosutinib isomer was

used with only limited refinement. To confirm the positions of the

chlorine atoms on the aniline ring of bosutinib we exploited the

anomalous scattering of chlorine. While the chlorine K absorption

edge is near that of sulfur at ,2800 eV (4.4 Å), chlorine and sulfur

both retain significant anomalous scattering at shorter wavelengths

[26]. Using synchrotron radiation at a wavelength of 1.76

angstroms, the longest wavelength accessible on beamline 7-1 at

the Stanford Synchrotron Radiation Laboratory, we collected a

highly redundant dataset to a resolution of 2.9 angstroms on a

crystal of the Abl:bosutinib complex (Table 1). Anomalous

difference maps calculated from this data using the phases from

the refined 2.4 angstrom structure showed strong peaks (,5

standard deviations above the mean) for many of the sulfur atoms

in the protein, as well as the four chlorine atoms of the two

bosutinib molecules in the asymmetric unit.

Fluorescence binding assays
Abl and Src kinase domain (5 nM) were mixed with different

concentrations of bosutinib in 20 mM Tris-HCl pH 8.0, and the

fluorescence emission was monitored at 480 nm, with excitation at

either 280 nm or 350 nm. For the T338I mutant of Src the

fluorescence emission intensity was plotted as a function of the

bosutinib concentration and fit to a single binding site model

(Graphpad Prism) to obtain the equilibrium dissociation constant.

For wildtype Abl and Src the binding is too tight to determine in

this manner. Instead, the titrations were fit directly to the

analytical solution to the one-to-one binding equilibrium using

Mathematica (Wolfram Research).

Like bosutinib, vandetanib exhibits a strong increase in

fluorescence on binding to Src and Abl. Binding curves, where

the emission intensity at 440 nm (with excitation at 280 nm) was

plotted as a function of the total vandetinib concentration, were fit

to a single binding site model with Graphpad Prism.

To measure bosutinib binding to phosphorylated Abl, Abl

kinase domain (100 mM) was phosphorylated with Hck kinase

domain (5 mM), in 2 mM ATP, 10 mM MgCl2, 20 mM Tris-HCl

pH 8.0 and 10% glycerol, for 5 hours at room temperature, and

phosphorylation was verified by mass spectrometry. Experiments

were performed in parallel with the phosphorylated and unpho-

sphorylated samples.

Infrared spectroscopy
Samples of the kinase:inhibitor complexes were prepared by

mixing kinase in buffer (50 mM Tris-HCl pH 8.0, 150 mM NaCl,

2 mM DTT, 10% glycerol) and inhibitor stocks in DMSO to a

final DMSO concentration of 5% and concentrating the samples

to ,2 mM. Due to the very tight binding as well as the very low

aqueous solubility of the inhibitors, the concentration of free

ligand in these samples was negligible. Samples were loaded into a

sample cell with ,100 mm path length and infrared spectra were

measured using a Vertex FTIR spectrometer (Bruker).

The linear Stark tuning rate of the nitrile goup of bosutinib and

the bosutinib isomer were determined as described previously

[27]. Briefly, the compounds were dissolved in 1-propanol at

50 mM concentration and loaded into a custom sample cell

consisting of nickel-coated sapphire windows. Samples were flash-

frozen in a custom-built liquid nitrogen immersion cryostat [28],

and a high voltage power supply was used to apply an external

electric field across the sample. Stark spectra are the difference in

the absorbance spectra with the applied field on and off, which

were each determined from the average of 128 scans of the

interferometer mirror. The linear Stark tuning rate was deter-

mined from a numerical fit of the derivatives of the absorbance to

the Stark spectrum.

NMR spectroscopy
Samples of bosutinib (Tocris Bioscience) and the bosutinib

isomer (LC Labs) were dissolved in DMSO-d6 to a concentration

of 20 mM. 1-dimensional proton and carbon spectra and 2-

dimensional 1H-13C Heteronuclear Single Quantum Coherence

(HSQC) experiments were recorded on 500 and 600 MHz NMR

spectrometers.

Accession numbers
Structure factors and the coordinates of the Abl:bosutinib

structure have been deposited in the Protein Data Bank (http://

www.rcsb.org) with accession number 3UE4.

Results and Discussion

Identification of a reliable commercial source of
bosutinib

The kinase domain of human Abl was expressed in bacteria,

and purified to homogeneity. Kinase assays demonstrated that, as

previously reported, the bacterially expressed protein is catalyti-

Structure of Bosutinib Bound to Abl
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cally active (Figure S1) [17]. We co-crystallized Abl with a sample

of ‘‘bosutinib’’ obtained from the company LC Labs (also known

as PKC Pharmaceuticals), and solved the structure by molecular

replacement to 2.9 angstroms resolution (Table 1). During the

course of the refinement of this structure we noticed a peculiar lack

of electron density for the 2-chloro atom on the aniline ring of the

small molecule, which called into question the identity of the

compound (Figure 1A). A series of NMR experiments demon-

strated that two different isomers, that differ in the position of

substituents on the aniline ring, are being sold under the name

‘‘bosutinib’’ by different vendors, and that the compound initially

used was, in fact, an isomer of bosutinib. These experiments are

discussed in detail in the Supporting Information (Figure S2), and

a brief description is given below.

Mass spectrometry showed that the compounds from both

commercial sources had the expected mass of m/z 530.1 (M+1).

While the proton NMR spectra of the compound sold by Tocris

Bioscience precisely matches that reported for bosutinib by the

research group at Wyeth that developed the drug [29], the

spectrum of the compound sold by LC Labs is significantly

different in the aromatic region (Figure 1B). Multidimensional

NMR experiments on the LC Labs compound (Figure S2)

indicated the presence of C2 symmetry on the aniline ring, which

is incompatible with the chemical structure of bosutinib, and

suggested that the positions of the substituents on the aniline ring

(two chlorine atoms and a methoxy group) were what differed

between the two compounds.

Crystals of Abl kinase domain bound to the compound from

Tocris Bioscience were obtained in the same crystal form, and we

solved the structure to a resolution of 2.4 angstroms (Table 1). A

simulated annealing omit map shows excellent electron density for

the drug, with the aniline ring clearly resolved (Figure 1C).

However, because the chlorine atoms and methoxy group on the

aniline ring each possess 17 electrons, the x-ray scattering from

these groups is similar, and at the resolution of this structure they

cannot be distinguished from each other. To conclusively

demonstrate that these substituents were correctly positioned on

the aniline ring, we exploited the anomalous scattering of chlorine.

X-ray diffraction data were collected using a synchrotron x-ray

wavelength of 1.76 angstroms, where the anomalous scattering of

chlorine is significant (Table 1) [26]. Anomalous difference maps

calculated using the phases from the refined molecular model

show strong peaks (greater than 4 standard deviations above the

mean) for the chlorine atoms of the drug in the ortho and para

positions on the aniline ring, confirming the identity of the

compound (Figure 1C).

We refer to the correct compound as ‘‘bosutinib’’ and to the

incorrect one as the ‘‘bosutinib isomer’’. To date the protein

databank contains two entries for ‘‘bosutinib’’, bound to calcium

calmodulin regulated protein kinase II and to serine threonine

kinase 10. The title of the latter entry states that the compound

was modified by radiation damage, and the pdb coordinates (pdb

code 3ZZ2) show that the 2-chloro atom on the aniline ring is

missing, and a chlorine atom is instead located in the meta

position. Given the fact that the affected atom is the same one that

is missing in our bosutinib isomer, a likely possibility is that the

authors were afflicted by the same problem we have encountered.

Interestingly, the 1H NMR spectrum of our bosutinib isomer is

very similar to the NMR spectrum reported in a paper describing

an alternative synthesis for bosutinib [30]. These observations

raise the prospect that this problem is widespread, with multiple

vendors selling the incorrect isomer of bosutinib.

The structures of Abl bound to the two different compounds

are almost identical, although the bosutinib complex exhibits

considerably lower temperature factors, and the amino acid side

chains in contact with the small molecule are better resolved

in the bosutinib complex. All spectroscopic measurements

reported in this work were performed on both compounds. Below

we focus on the data obtained with authentic bosutinib; further

results with the incorrect isomer can be found in the supporting

information.

Table 1. Data collection and refinement statistics.

Data Collection Abl:bosutinib isomer Abl:bosutinib Abl:bosutinib (anomalous)

X-ray wavelength (Å) 0.98 0.98 1.76

Space group P22121 P22121 P22121

Unit cell dimensions (Å) 57.3,113.6,128.4 56.9,113.8,127.6 57.3,113.6,128.4

Resolution range (Å) 28-2.9 63-2.4 63-2.9

Rsym
a 0.144 (0.657) 0.112 (0.552) 0.128 (0.579)

Average I/s(I)a 8.8 (2.6) 13.5 (3.1) 15.7 (5.2)

Completenessa 97.4% (98.9%) 93.8 (94.8) 99.3 (98.5)

Redundency 4.1 5.9 13.7

Refinement

Number of reflections 18388 30158

Rwork/Rfree 0.178/0.260 0.188/0.249

# of protein atoms 4350 4306

# of ligand atoms 130 130

# of solvent atoms 79 152

RMSD Bond lengths (Å) 0.008 0.008

Bond angles (u) 1.112 1.059

avalues in parentheses are for the highest resolution shell.
doi:10.1371/journal.pone.0029828.t001
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Bosutinib becomes strongly fluorescent upon binding to
Abl or Src kinases

In the course of studying the interaction between bosutinib and

the kinases Src and Abl, we discovered that the inhibitor becomes

strongly fluorescent upon binding to these proteins, a property that

could be of general utility for measuring inhibitor binding. Both

bosutinib and the bosutinib isomer possess an absorption band at

350 nm, and excitation of the free ligand at 350 nm results in

weak fluorescence emission at 480 nm. Upon binding to Src or

Abl, the fluorescence intensity at 480 nm increases ,10 fold. In

the case of the bosutinib isomer the background fluorescence of

the free compound is even lower, and the relative increase in

fluorescence on binding is ,500 fold. Interestingly, for both

compounds, excitation of the protein:inhibitor sample at 280 nm

also results in strong fluorescence emission at 480 nm. A titration

of bosutinib with excitation at 280 nm results in quenching of

tryptophan fluorescence at 340 nm and a rise in emission at

480 nm, indicating that Förster resonance energy transfer (FRET)

occurs between the protein and bosutinib (Figure 1D).

The increase in inhibitor fluorescence upon binding affords a

convenient assay for quantifying inhibitor binding, which we used

to measure the binding constants of bosutinib for Src and Abl

kinases. Because the minimum concentration of fluorescent

protein:ligand complex that can be reliably measured on our

fluorimeter is ,1 nM, and the binding is considerably tighter than

this, the titration curves were fitted using a numerical fitting

procedure that accounts for ligand depletion (Figure 1D inset, see

Materials and Methods for the fitting procedure). The binding

constants for Src and Abl are both ,200 picomolar.

Interactions between bosutinib and Abl
The asymmetric unit of our structure contains two copies of the

Abl: bosutinib complex (labeled A and B in the molecular model),

which are almost identical, and only complex B will be discussed.

Bosutinib occupies the ATP-binding site of Abl, sandwiched

between the N-terminal and C-terminal lobes of the kinase. The

binding mode is very similar to that observed with the chemically

related inhibitors gefitinib and erlotinib bound to EGFR [31,32],

with the quinoline group of bosutinib oriented in almost identical

fashion to the quinazoline groups of the EGFR inhibitors, except

for a slight rotation of the quinoline plane to accommodate the

nitrile group, which would otherwise clash with the sidechain of

T315 (Figure 2A). The only hydrogen bond formed between

bosutinib and Abl is between the quinoline N1 nitrogen atom and

the backbone amide of M318 (a residue in the hinge region of the

kinase), a characteristic feature of the binding mode of this class of

inhibitors. The 2,4-dichloro-5-methoxy aniline fragment of

bosutinib is oriented at a ,65u angle to the plane of the quinoline

Figure 1. Identification of two different isomers of bosutinib. A) View of the ligand from our initial structure of Abl bound to the bosutinib
isomer. The ligand is shown as sticks, colored according to the temperature factors (B-factors) of the atoms, with blue indicating low B-factors and red
indicating high B-factors. The 2Fo-Fc electron density map, calculated with phases derived from a refined molecular model that included the 2-chloro
group of bosutinib, is shown as a blue mesh. B) 1H NMR spectra of bosutinib (Tocris Bioscience, blue) and the bosutinib isomer (LC Labs, red),
showing only the aromatic region. C) View of the ligand from our structure of Abl bound to authentic bosutinib. The coordinates of bosutinib are
shown as blue sticks. A simulated annealing omit map contoured at 0.8 standard deviations above the mean (0.8s) is shown as a blue mesh. An
anomalous difference map, contoured at 3.0s, is shown in red. D) Fluorescence emission spectra (excitation at 280 nm) of 50 nM Abl kinase domain
in the presence of varying concentrations of bosutinib (the spectra are colored according to bosutinib concentration, which was varied in 10 nM
increments from 0 nM shown in blue to 60 nM shown in red). The inset shows a binding curve measured for 5 nM Abl. The normalized fluorescence
intensity at 480 nm is plotted as a function of the total bosutinib concentration. The smooth line shows the numerical fit (see Materials and Methods).
doi:10.1371/journal.pone.0029828.g001

Structure of Bosutinib Bound to Abl
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heterocycle and fills a hydrophobic pocket formed by residues

projecting from the N-lobe into the ATP-binding site. The flexible

N-propoxy-N-methylpiperazine group is well ordered in our

structure and extends out of the ATP-binding site, where it makes

van der Waals contacts with the kinase hinge region.

Of the three BCR-Abl inhibitors currently approved for clinical

use, the interaction of bosutinib with Abl is most similar to that of

dasatinib [33], but in the deepest portion of the ATP-binding site

there are notable differences. In the dasatinib cocrystal structure

an amide group on dasatinib forms a hydrogen bond to the

Figure 2. Structure of authentic bosutinib bound to the Abl tyrosine kinase domain. A) Interaction of bosutinib (blue) with the hinge
region of Abl (yellow). For comparison, the binding modes of erlotinib (red) and gefitinib (pink) are also shown, and were obtained by aligning the
structures of these compounds bound to EGFR (pdb codes 1M17 and 2ITY for erlotinib and gefitinib, respectively) on the hinge region of Abl. B) The
interactions between bosutinib and T315 and V299 of Abl are shown. The residues T315 and V299 are shown as sticks and a yellow surface, and
bosutinib is shown as blue sticks, with the 2Fo-Fc electron density map shown as a blue mesh. The T315I mutation is modeled as thin black sticks, and
the resulting clash with bosutinib is shown as black dots. C) Binding curves for bosutinib binding to Src and the Src T338I mutant. The fluorescence
intensity measured at 480 nm is plotted as a function of the total bosutinib concentration. The inset shows an expanded view of the binding curve
for Src. The equilibrium dissociation constants were determined by a fitting procedure described in the Materials and Methods. D) Binding curves for
vandetanib binding to Abl, Src and the Src T338I mutant. The fluorescence emission intensity measured at 440 nm, with excitation at 280 nm, is
plotted as a function of the total vandetanib concentration. E) The conformation of the P-loop in our structure (shown in yellow, the two disordered
residues are indicated as a dashed yellow line), compared to that observed in the imatinib cocrystal structure (pdb code 1IEP, shown in gray), and a
substrate complex of Abl (pdb code 2G1T, shown in brown). The clash between Y253 and bosutinib that would result from the collapsed
conformation of the P-loop is shown as black dots.
doi:10.1371/journal.pone.0029828.g002
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sidechain hydroxyl of T315. The nitrile group of bosutinib

occupies the same space as the amide of dasatinib, but is at an

angle incompatible with a hydrogen bond and makes only van der

Waals contacts with T315. The aniline substituent of bosutinib is

bound in a similar orientation as the 2-chloro-6-methyl phenyl

group of dasatinib, but displaced ,2 angstroms further out of the

ATP-binding site towards the phosphate-binding loop. There is

thus a cavity where the 2-chloro-6-methyl phenyl ring of dasatinib

would reside, which is filled by an ordered water molecule in the

bosutinib complex.

Implications for the activity of bosutinib against imatinib-
resistant BCR-Abl mutants

The interactions between bosutinib and the ATP-binding site of

Abl explain the effect of several imatinib-resistance mutations on

bosutinib binding [34]. The sidechain of T315 is completely

enveloped by bosutinib, making extensive van der Waals contacts

with both the nitrile group and the 5-methoxy group of the aniline

ring (Figure 2B). The nitrile group is also in van der Waals contact

with the sidechain of V299. Both the T315I and V299L mutations

would result in steric clashes with bosutinib, explaining why these

mutations confer resistance to bosutinib [34]. We used our

fluorescence binding assay to measure the binding constant for the

gatekeeper mutant of Src (T338I), which, unlike the T315I mutant

of Abl, expresses well in bacteria, and found that the binding is

much weaker than for wildtype Src, with a KD value of ,250 nM

(Figure 2C).

Despite the extent of the contacts between T315 and bosutinib,

modeling indicates that the only clash that results between

bosutinib and the isoleucine residue of the T315I mutant is with

the nitrile group, suggesting that the drug could be accommodated

by this mutant if the nitrile group were missing (Figure 2B). Thus

the binding of 4-anilinoquinazolines, which are similar to

bosutinib but lack the nitrile group, should not be impeded by

the T315I mutation. Indeed, in a screen of inhibitors against a

large panel of kinases the 4-anilinoquinazolines erlotinib and CI-

1033 inhibited wildtype Abl and the T315I mutant with similar

KD values [35]. To further test this hypothesis, we used our

fluorescence binding assay to measure the binding of the 4-

anilinoquinazoline vandetanib, a drug that is used in the treatment

of medullary thyroid cancer, caused by dysregulated RET tyrosine

kinase [36]. Indeed, we found that vandetanib inhibits Abl, Src,

and the Src T338I mutant with very similar KD values of

,100 nM (Figure 2D).

While these 4-anilinoquinazolines inhibit Abl too poorly to be

effective in cells, where they must compete with high concentra-

tions of ATP for binding to the kinase, other 4-anilinoquinazolines

could prove effective against the T315I mutation. It is interesting

to note that, during the treatment of cancers caused by

dysregulated EGFR with 4-anilinoquinazoline inhibitors, clinical

resistance is caused by mutation of the gatekeeper threonine

residue to methionine [37], but that this mutation exerts its effect

not through steric hindrance, but through lowering the KM value

for ATP [38]. It appears that the inclusion of the nitrile group in

bosutinib, which improves the potency against wildtype Src kinase

relative to the corresponding quinazoline [39], inadvertently made

the inhibitor highly susceptible to resistance mediated by mutation

of the gatekeeper residue.

Our structure also explains the ability of bosutinib to override

imatinib resistance mutations that map to the phosphate-binding

loop (P-loop), a loop involved in binding the phosphates of ATP. It

has been argued that these P-loop mutations exert their effects by

destabilizing the conformation of the P-loop favored by imatinib,

in which the loop collapses to form a hydrophobic cage that

envelops the drug [6,40,41]. Structures of Abl bound to other

kinase inhibitors have shown similar collapsed P-loop conforma-

tions [24,42], suggesting that the P-loop of Abl is particularly

susceptible to conformational changes induced by the binding of

inhibitors. In our structure of Abl bound to bosutinib two residues

at the tip of the P-loop (Q252 and Y253) are poorly ordered, but

the remainder of the loop adopts an extended conformation

similar to the b-hairpin observed in a substrate complex of Abl

[43] and makes no contacts with bosutinib (Figure 2E). Aligning

the structure of Abl in complex with imatinib onto our structure

reveals that the collapsed conformation of the P-loop is

incompatible with bosutinib binding, as it would produce a clash

between the sidechain of Y253 and the 6-methoxy group of

bosutinib (Figure 2E). In an in vitro study of the effect of imatinib

resistance mutations on inhibition by dasatinib, nilotinib and

bosutinib, bosutinib was not affected by either the Q252H or

Y253F mutations [34], consistent with the lack of interactions

between bosutinib and the P-loop.

The DFG motif adopts an inactive conformation in our
structure

The kinase inhibitor imatinib binds to an inactive conformation

of Abl in which the aspartate and phenylalanine residues of the

catalytically important Aspartate-Phenylalanine-Glycine (DFG)

motif exchange positions (called the DFG-Out conformation, in

contrast to the active DFG-In conformation) [40,42]. In contrast,

several crystal structures, including structures of gefitinib and

erlotinib bound to EGFR, have demonstrated that 4-anilinoqui-

nazoline inhibitors usually bind to the active conformations of

protein kinases [31,32]. In our structure of Abl bound to bosutinib,

the DFG motif is in an inactive DFG-Out conformation, but this

conformation is distinct from the DFG-Out conformation

observed in complex with imatinib. In the structure of Abl bound

to imatinib, the activation loop undergoes a dramatic rearrange-

ment from the active conformation in which the C-terminal

portion of the loop blocks the active site, resulting in a ,4 Å shift

of the DFG motif nearer to the front of the active site. In our

structure the overall conformation of the activation loop is instead

similar to that observed in active kinases, except for the

conformation of the DFG motif itself, as well as a single-residue

shift in the register of the short b–sheet in the N-terminal portion

of the loop (residues 383–386). This conformation of the activation

loop has been observed previously in structures of Abl bound to

the kinase inhibitors PD16 and PD17 [42,43,44]. Bosutinib makes

only very limited contact with the activation loop in our structure,

and aligning the structure of Abl bound to dasatinib onto our

structure suggests that both conformations of the DFG motif are

equally well accommodated by bosutinib (Figure 3A). The

aspartate residue of the DFG motif is protonated in the DFG-

Out conformation, and low pH has been shown to stabilize the

DFG-Out conformation of Abl [45]. The fact that our crystals of

the Abl:bosutinib complex were obtained at pH 5.5, combined

with the absence of phosphorylation on the activation loop - a

posttranslational modification that stabilizes the activation loops of

many kinases in the active conformation [46,47] - likely explains

the DFG-Out conformation observed in our structure.

Phosphorylation on Tyr 393 in the activation loop of Abl

stabilizes the DFG-In conformation (Figure 3A), and severely

interferes with the binding of imatinib, which binds exclusively to

the DFG-Out conformation of Abl [40]. To test whether bosutinib

can bind to the active conformation of Abl, in addition to the

DFG-Out conformation observed in our structure, we measured

the binding of bosutinib to Abl that was phosphorylated on the

activation loop. Abl kinase domain was phosphorylated using
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catalytic amounts of the Src kinase Hck [40]. The binding

constant of bosutinib for phosphorylated Abl was indistinguishable

from unphosphorylated Abl (Figure 3B). This indicates that

bosutinib, unlike imatinib, can bind to the DFG-In conformation

of Abl as well as the DFG-Out conformation of Abl observed in

the structure. Apparently, like other next-generation BCR-Abl

inhibitors, bosutinib binds to the kinase domain of Abl with less

stringent conformational requirements than imatinib, an observa-

tion that has been used to explain the higher affinity of these

compounds.

The nitrile group of bosutinib affords a sensitive
vibrational probe of the local environment in the ATP-
binding site

While the kinase domains of Abl and Src share ,48% sequence

identity, the residues projecting into the ATP-binding site are

completely conserved between the two proteins. High sequence

conservation of the ATP-binding site is characteristic of protein

kinases and contributes to the difficulty of developing selective

kinase inhibitors [48].

We wondered how similar Src and Abl actually are in terms of

the physical environment of the ATP-binding site. The nitrile

group of bosutinib happens to possess favorable properties for

addressing this question, as its vibrational absorption occurs in a

region of the infrared spectrum that is uncluttered by contributions

from protein groups and is highly sensitive to the local electric field

through the vibrational Stark effect [27].

The vibrational Stark effect allows shifts in the absorbance of a

vibrational probe, D�nn, to be related to changes in the projection of

the local electric field along the probe axis, D~FFprotein, through the

relationship hcD�nn~{D~mmprobe
:D~FFprotein, where h is Planck’s

constant, c is the speed of light and D~mmprobe is the linear Stark

tuning rate of the vibrational probe. To calibrate the sensitivity of

the bosutinib nitrile to electric fields we performed vibrational

Stark spectroscopy measurements, where the linear Stark tuning

rate is determined by applying an external electric field across the

sample and measuring the effect on the vibrational absorption

(Figure 4A) [27]. The linear Stark tuning rate of bosutinib is

0.87 cm21/(MV/cm), which is similar to the value for other

aromatic nitriles [27,49]. Mutations in proteins have been shown

to result in changes in electric field as large as 10–20 MV/cm,

producing peak shifts of nitrile probes of up to 15 cm21, which can

be routinely measured [50,51].

We measured the vibrational absorption of bosutinib when

bound to the kinase domains of Abl, Src, and the Src T338I

mutant using fourier transform infrared (FTIR) spectroscopy

(Figure 4B). The nitrile stretching band of bosutinib is very similar

when bound to Abl and Src, although a shoulder in the Abl

spectrum complicates the determination of the precise peak

position. In contrast, the nitrile band is shifted ,7 cm21 to the red

in the case of the Src T338I mutant. This shift corresponds to a

difference in electric field of 8 MV/cm or 3 kT/eÅ, indicating

that the nitrile group experiences a completely different environ-

ment in this mutant. A possible explanation for this observation is

that the mutation of the gatekeeper removes a repulsive

electrostatic interaction between the nitrile group and the

sidechain hydroxyl group of the gatekeeper. A change in the

binding mode of the drug is also a possible explanation, although it

should be noted that while bosutinib binds the T338I mutant

much more weakly than wildtype Src, it still binds with nanomolar

affinity (see Figure 3B) and the binding mode is likely similar.

We also measured the nitrile vibrational frequency of the

bosutinib isomer, which possesses a similar linear Stark tuning rate

to bosutinib (Figure S3), bound to Abl and Src (Figure 4C). For

this compound both IR spectra display single peaks in the nitrile

stretch region, and the high quality of the spectra allows the peak

positions to be determined to within ,0.1 cm21. The nitrile bands

differ by 1.1 cm21, corresponding to a difference in electric field

experienced by the nitrile of 1.4 MV/cm or 0.6 kT/eÅ. This

difference in the field can be directly converted into a measure of

how favorable the electrostatic environment of the ATP-binding

site is for the nitrile group of the bosutinib isomer. Nitrile groups

possess a dipole moment of ,2–4 Debye or 0.4–0.8 eÅ, and the

difference in field of 0.6 kT/eÅ translates into a difference in

electrostatic energy of 0.25–0.5 kT for the nitrile group of

bosutinib in Src and Abl, indicating that the electrostatic

environment is slightly more favorable for the nitrile in Src than

in Abl.

While this difference is relatively small, it is nonetheless on a

scale that is energetically significant, which is remarkable given

that identical residues make up the ATP-binding sites of Src and

Abl (Figure 4D). Assuming such differences are representative of

Figure 3. Bosutinib binds to both DFG-In and DFG-Out Abl. A) Comparison of the conformation of the activation loop and DFG motif in our
structure (DFG-Out, yellow) and in the dasatinib cocrystal structure (DFG-In, gray). The sidechains of D381 in the dasatinib structure and F382 in our
structure, which occupy very similar positions, are shown as spheres. Bosutinib is shown as sticks and spheres. The position of the phosphate group
on the phosphorylated sidechain of Y393 in the dasatinib structure is shown as an orange sphere. B) Binding curves for bosutinib binding to Abl and
to Abl phosphorylated on the activation loop (Abl-pY393).
doi:10.1371/journal.pone.0029828.g003
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other locations in the ATP-binding site, one can conclude that an

inhibitor with optimal electrostatic properties could possess

significant selectivity between Src and Abl, despite the conserva-

tion of their ATP-binding sites. It will be interesting to see the

extent to which the environment of the ATP-binding site varies

across more distantly related protein kinases, and we are now

pursuing experiments to address this.

Conclusion
Clinical resistance to kinase inhibitors is currently the primary

problem facing the treatment of CML. Our structure explains the

activity of bosutinib against imatinib resistant mutants of Abl, and

should help to rationalize patterns of resistance that may yet

emerge from the use of bosutinib in the clinic. While bosutinib, like

the three currently approved inhibitors of BCR-Abl, is inactive

against the common T315I mutation, our results suggest that the

related 4-anilinoquinazolines are not affected by this mutation,

and might yield an effective remedy for this form of BCR-Abl.

The high degree of sequence conservation in the ATP-binding

sites of protein kinases hampers the development of selective

kinase inhibitors. We have shown that nitrile-bearing inhibitors

like bosutinib and the bosutinib isomer can be used to study

electrostatic differences in the ATP-binding sites of kinases. The

closely related kinases Src and Abl have identical ATP-binding site

sequences, but nonetheless display distinct electrostatics. More

distantly related kinases are likely to have much larger differences

in electrostatics, and a thorough understanding of such differences

might allow for the rational design of selective inhibitors whose

electrostatic properties are tailored to the electrostatics of the ATP-

binding site they are intended to bind.

Supporting Information

Figure S1 Activity of bacterially expressed Abl kinase
domain. Bacterially expressed Abl is catalytically active and

inhibited by imatinib. Kinase activity was measured using a

coupled kinase assay in which the production of ADP by the kinase

is linked to the oxidation of NADH by pyruvate kinase and lactate

dehydrogenase1.

(DOC)

Figure S2 NMR experiments on bosutinib and the
bosutinib isomer. A) The structure of bosutinib and a putative

structure for the bosutinib isomer are shown. The blue numbers

on the bosutinib structure represent the five aromatic proton-

carbon pairs. The numbers on the aniline ring of the bosutinib

isomer are 13C chemical shifts. B) NMR spectra. In the top left

panel, 1H-13C HSQC spectra of bosutinib and the bosutinib

isomer are shown. The thick black lines connect the peaks that

arise from the equivalent proton-carbon pairs in the two

compounds. The thin gray lines are intended to guide the eye to

the corresponding peaks in the 1-dimensional spectra. The peaks

for the five aromatic proton-carbon pairs in authentic bosutinib

are indicated with large blue numbers. These putative assignments

are based on 13C chemical shift predictions. The bottom panel

Figure 4. The nitrile group of bosutinib and the bosutinib isomer probe electrostatics in the ATP-binding site. A) Infrared absorbance
(top) and Stark (bottom) spectra of 50 mM bosutinib in 1-propanol, measured at 77 K. A numerical fit to the Stark spectrum, from which the linear
Stark tuning rate was derived, is shown in red. The numerical fit is a weighted sum of the derivatives of the absorption spectrum, and the individual fit
components are shown as thin lines. B) The nitrile stretch region of infrared absorbance spectra of bosutinib bound to the kinase domains of Abl
(black), Src (red) and the Src T338I mutant (blue). C) Infrared spectra of the bosutinib isomer bound to Abl (black) and Src (red). D) The residues that
comprise the ATP-binding site near the nitrile of bosutinib (black) are shown for our structure of Abl bound to bosutinib (yellow) and for that of Src
bound to dasatinib (pdb code 3G5D, dark red).
doi:10.1371/journal.pone.0029828.g004
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shows the 1H NMR spectra of both compounds. The peak located

at 7.34 ppm in the bosutinib isomer sample, which integrates to 2,

is indicated. The colored numbers directly next to the peaks are

the peak integrations. The panel on the upper right shows the

aromatic region of the 13C NMR spectrum of the bosutinib

isomer. The peak located at 123 ppm, which displays an

integrated intensity of 2, is indicated.

(DOC)

Figure S3 Vibrational absorption (top) and Stark (bot-
tom) spectra of 50 mM bosutinib isomer in 1-propanol
at 77 K. A numerical fit to the Stark spectrum, from which the

linear Stark tuning rate was derived, is shown in red. The

numerical fit is a weighted sum of the derivatives of the absorption

spectrum, and the individual fit components are shown as thin

lines. The value of the linear Stark tuning rate is 0.74 cm21/(MV/

cm).

(DOC)
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