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Tumor-associated hematopoietic stem and
progenitor cells positively linked to glioblastoma
progression
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Brain tumors are typically immunosuppressive and refractory to immunotherapies for reasons
that remain poorly understood. The unbiased profiling of immune cell types in the tumor
microenvironment may reveal immunologic networks affecting therapy and course of disease.
Here we identify and validate the presence of hematopoietic stem and progenitor cells
(HSPCs) within glioblastoma tissues. Furthermore, we demonstrate a positive link of tumor-
associated HSPCs with malignant and immunosuppressive phenotypes. Compared to the
medullary hematopoietic compartment, tumor-associated HSPCs contain a higher fraction of
immunophenotypically and transcriptomically immature, CD38- cells, such as hematopoietic
stem cells and multipotent progenitors, express genes related to glioblastoma progression
and display signatures of active cell cycle phases. When cultured ex vivo, tumor-associated
HSPCs form myeloid colonies, suggesting potential in situ myelopoiesis. In experimental
models, HSPCs promote tumor cell proliferation, expression of the immune checkpoint PD-L1
and secretion of tumor promoting cytokines such as IL-6, IL-8 and CCL2, indicating con-
comitant support of both malignancy and immunosuppression. In patients, the amount of
tumor-associated HSPCs in tumor tissues is prognostic for patient survival and correlates
with immunosuppressive phenotypes. These findings identify an important element in the
complex landscape of glioblastoma that may serve as a target for brain tumor
immunotherapies.
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lioblastoma is the most aggressive brain malignancy in

adults, lacking effective treatments and leading to death

within a median duration of 15-20 months after diag-
nosis, despite standard combination of surgery, radio- and
chemotherapy!-2. Cancer immunotherapy, which aims to prime
or boost the body’s immune system against cancer cells, may
improve the clinical course of glioblastoma. Targeting immune
checkpoints in advanced malignancies such as melanoma, kidney
and lung cancer, achieved impressive therapeutic effects, sparking
new hopes for the treatment of brain tumors>%. However, the
glioblastoma microenvironment is characteristically immuno-
suppressive compared to other malignancies, owing to, at least in
part, potent immunosuppressive cytokines such as TGF-f and IL-
10°, negative regulators of effector cell functions such as pro-
grammed death-ligand 1 (PD-L1), indoleamine 2,3-dioxygenase
(IDO) and oncometabolites such as (R)-2-hydroxyglutarate®”.
Accordingly, the use of anti-PD-1 antibodies in recurrent glio-
blastoma failed to prolong patient overall survival®. Transfusion
of a single dose of chimeric antigen receptor (CAR) T cells tar-
geting EGFRVIII led to adaptive immunosuppression and
therapy failure, indicating that the major barrier for immu-
notherapy of glioblastoma may lie on the inhibitory tumor
microenvironment®. Nevertheless, Brown and colleagues
observed sustained clinical response for 7.5 months in a patient
with highly aggressive recurrent glioblastoma, after application of
CAR T cells targeting interleukin-13 receptor alpha 2
(IL13Ra2)!0. Further, a preliminary report on a phase III clinical
trial of dendritic cell vaccine in glioblastoma patients reported a
median overall survival of 23.1 months, compared to the
15-20 months achieved with the current standard of care!! These
studies remarkably document the challenging endeavors of
immunotherapy in the treatment of glioblastoma.

The brain tumor immunosuppressive microenvironment is
marked by the presence of several immune cell types including
regulatory T cells and myeloid cells such as bone marrow-derived
macrophages lacking T cell co-stimulatory molecules®. Glioblastoma-
associated immune cells may not only create an immunosuppressive
microenvironment but also directly promote malignancy>2. For
example, tumor-infiltrating neutrophils facilitated cancer stem cell
accumulation through S100A4!3. Despite efforts in decoding the
complexity of the immune system’s modus operandi during brain
tumor progression, interactions between different cell types in glio-
blastoma are not yet fully understood. Moreover, knowledge aimed at
modulating the immune system therapeutically and in a patient-
specific setting is lacking. The systematic, discovery-driven screening
of immune cell types in glioblastoma may help to uncover important
immunologic targets and lead to the discovery of predictors of clinical
outcomes.

Recent studies point in this direction: For example, Gentles
et al.14 profiled the occurrence of 18 distinct immune cell types in
various cancer types, revealing unknown links of immune cell
types with clinical outcomes. In brain cancers, the relative leu-
kocyte composition was significantly different compared to non-
brain solid tumors as exemplified by a decrease in B cell subsets
and an increase of monocyte and neutrophil proportions. Fur-
thermore, this report highlighted the discovery of favorable and
adverse outcomes for various cell subsets in glioblastoma,
demonstrating the benefits of a discovery-driven screening
approach in the analysis of the tumor microenvironment.

Here, we have profiled the cellular landscape of brain cancers
using a computational approach for transcriptome analysis, separ-
ating the signals of 43 different cell types, including 26 distinct
immune cell types. We uncover and validate the presence of
hematopoietic stem and progenitor cells within brain tumor sam-
ples and demonstrate a positive association of this cell population
with glioblastoma malignancy and immunosuppression.

Results

Estimating the relative abundance of cell types using tran-
scriptomes. To infer the cellular landscape of brain tumor tissues
from transcriptome data, we established Syllogist, a reference-based
algorithm for cell type estimation (Fig. la, Methods). To this end,
we employed a validated gene expression matrix containing cell
type-specific transcriptomes!®. We next extracted data for 43 dif-
ferent cell types, including a selection of 26 immune cell types,
similarly to previous studies!®!7. For each cell type we determined a
signature of the top 80 specific genes by calculating specificity
indices based on a Shannon entropy-based statistic introduced by
Shug et al.!® (Supplementary Data 1). We next computed the
presence of each 80-gene signature in query transcriptomes and
compared them with a null model comprising 1000 simulations by
Fisher’s exact test. The resulting odds ratios were used as proxy for
the relative amount of a target cell type to be compared between
samples (intersample comparison). The algorithm was validated
using a set of previously published positive controls. Each positive
control produced specific signals in the corresponding reference
samples but not in cells from different ontogenies (Fig. 1b). We also
analyzed specific cell types that were not directly represented by our
references. For example, freshly isolated glioblastoma cells were
specifically assigned to the astrocytic references and neurons to the
neuronal lineages. Cancer-associated fibroblasts (CAFs) were dis-
tinct from normal fibroblasts and their signals associated with
mesenchymal stem cell signatures. Microglia-derived tran-
scriptomes associated with both monocyte and macrophage refer-
ences (Supplementary Fig. 1).

To test the performance of Syllogist and benchmark it with
reported computational methods, we investigated publicly avail-
able transcriptome datasets with available paired immunopheno-
typing datal®. To this end, we analyzed publicly available PBMC
transcriptomes with paired mass cytometry data of 24 immune
cell subsets that were previously used for the validation of a
similar cell type estimation method?. When correlating cell type
signals with immunophenotyping data, Syllogist performed
similarly to CIBERSORT?!, xCell?), QuanTIseq?*> and EPIC?3
on 8 commonly detected immune cell subsets (Fig. 1c). In
addition, Syllogist performed similarly to all tested methods in
estimating CD4 and CD8 T cell subsets in transcriptome data of
melanoma and lung cancer tissues paired with quantitative
immunofluorescence data?? (Fig. 1d). To benchmark Syllogist
with other established methods for the analysis of brain tissue
transcriptomes, we quantified common cell types for all methods
and compared the results using correlation matrices for each cell
type. This analysis showed that Syllogist was always in agreement
with at least two other methods (Fig. le).

To specifically interrogate intersample differences in brain
tissue cellular composition, we performed 2-sample paired
comparisons between 100 brain tissue transcriptomes2* with
and without in silico spike-in transcriptomes for various immune
cell types at various ratios (Fig. 1f). A selected number of cell
types could be detected at percentages down to 0.05%. For
example, brain samples with 0.05% in silico-spiked plasmacytoid
dendritic cell (pDC) or naive CD4 T cell transcriptomes were
significantly different from the same brain transcriptomes
without spiking. On the other hand, cell types such as naive B
cells could only be detected when spiked at frequencies above
0.8% (Fig. 1f).

These results indicate that Syllogist is able to estimate the
relative quantity of 43 distinct cell types from bulk RNA
sequencing data. Our algorithm performs similarly to known
deconvolution and gene enrichment methods20-23 in intersample
comparisons and it can detect the relative amount of cell types in
brain tissue transcriptomes with a limit of detection below 1%
when using 2-sample hypothesis testing.
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Fig. 1 Cell type estimation using transcriptomes. a Simplified workflow of Syllogist for detection and relative quantitation of cell types from bulk tissue transcriptomes.
b Heat map comparing the number of genes enriched for each published positive control sample (rows) and cell type (columns) over random enrichment. Each colored box
represents a normalized odds ratio of the respective Fisher's exact test ranging from O (blue) to 1 (yellow). ESC Embryonic stem cell, MSC Mesenchymal stem cell, HSCs
Hematopoietic stem cells, GMPs Granulocyte-monocyte progenitors, MEPs Megakaryocyte-erythroid progenitors, DC Dendritic cell. € Comparison of Syllogist with
CIBERSORT, xCell, QuanTlseq and EPIC. Bar plots represent the Pearson correlation coefficients calculated by comparing the Syllogist odds ratios, the CIBERSORT, xCell,
QuanTlseq, and EPIC scores with the quantitative data of PBMC fractions measured by CyTOF (SDY311 [https://www.immport.org/shared/study/SDY311], n = 61 patients
and SDY420 [https;//www.immport.org/shared/study/SDY420], n =104)"°. d same as (c), applying melanoma (n =32 samples) and lung cancer (n = 8) datasets with
paired quantitative data of CD4 and CD8 T cells by immunofluorescence?2. e Correlation matrices represent the agreement of Syllogist with four established computational
methods for the indicated immune cell types. Pearson correlation coefficients with p < 0.05 are shown as circles, with circle size and color matching Pearson correlation
coefficients from —1 (blue) to 1 (dark red). Empty squares represent correlation coefficients of p > 0.05). CB Cibersort; QS QuanTlseg, XC xCell, EP EPIC. p values
determined using a two-tailed Student's t-test. f Line chart represents —log10 (p values) obtained by comparing paired samples with and without spike-in for the indicated
cell types at various percent spike-in (n =200 brain tissue transcriptomes, two-tailed paired Student's t-test). pDC plasmacytoid dendritic cells, HSCs Hematopoietic stem
cells. The horizontal dashed line indicates the threshold considered for significance (p = 0.05). Source data of (¢), (d) and (f) are provided as a Source Data file.
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Fig. 2 HSPCs are enriched in glioblastoma and associate with tumor grade. a Heatmap represents Syllogist signals for each cell type (columns) and patient
samples (rows) for data derived from Gill et al.2%, including core, margin and normal brain tissue samples (n =91 samples). GBM Glioblastoma, HSPC
Hematopoietic stem and progenitor cell, ESC Embryonic stem cell, M@ Macrophages. b Association of brain sample locations with Syllogist normalized odds ratios
of eight selected cellular compartments. Dot plots represent the samples from normal brains (N, n =17 samples), glioblastoma margins (M, n = 36), and cores (C,
n=138). ¢ Heatmap represents Syllogist signals for each cell type (columns) and patient samples for the LGG-glioblastoma cohorts2930 (n =229 samples). d
Association of tumor grade with normalized odds ratios of eight main cellular compartments. Dot plots represent the samples from diffuse astrocytoma (WHO
grade I, n=19 samples), anaplastic astrocytoma (WHO grade Ill, n=67) and glioblastoma (WHO grade IV, n=143). p values were determined by 2-tailed,
unpaired Student's t-test with correction by the Benjamini-Hochberg procedure. *, p < 0.05; **, p < 0.07; ***, p < 0.001; ns not significant. For (b) and (d), the exact p
values are reported in Supplementary Data 2 and 3, respectively. Source data of (b) and (d) are provided as a Source Data file.

The cellular landscape of brain tumors. Residual tumor cells in
glioblastoma remain consistently scattered beyond the surgical
margin, facilitating rapid recurrence of disease?>. The study of
glioma cells and their microenvironment at the surgical margin is
therefore of utmost clinical relevance as this region represents the
target of post-surgical therapies, including immunotherapies. We
were therefore interested in profiling the cellular landscapes of
glioblastoma cores and their margins. To this end, we used the
dataset from Gill et al?®, which includes samples from both
tumor centers and margins, as well as normal brain samples. In
tumor cores (1 = 38 samples) and margins (n = 36) we observed
an increase in myeloid and lymphoid cell types compared to
normal brains (n = 17), matched by a decrease in neural and glial
cell proportions (Fig. 2a, b and Supplementary Data 2). Surpris-
ingly, we also detected increasing signals derived from hemato-
poietic stem and progenitor cells (HSPCs) in the tumor margins
and cores compared to normal brains (p =0.018 and p = 0.005,

respectively, Student’s t-test) indicating that HSPCs might reside
in glioblastoma cores and margins (Fig. 2b). For example, among
HSPC subsets, we observed an enrichment of hematopoietic stem
cells (HSC, p = 0.024), granulocyte-monocyte progenitors (GMP,
p=0.009), promyelocytes (p=0.009) and myelocytes (p=
1.46 x 107°) in the glioblastoma margins compared to normal
brains. Enrichment of HSPC subsets were also significant in the
glioblastoma cores compared to normal brains (HSC, p = 0.022,
GMP, p=0.001, promyelocytes (p =0.0006) and myelocytes, p
=4.83x107% (Supplementary Fig. 2a and Supplementary
Data 2). Based on these results we hypothesize that HSPCs
infiltrate glioblastoma and are enriched not only at the tumor
cores but also at their margins. These cells may, therefore, persist
in the postsurgical cavity after resection.

The pathology of lower grade isocitrate dehydrogenase (IDH)
wildtype astrocytoma is difficult to interpret, because IDH
wildtype diffuse or anaplastic astrocytomas (WHO grade II and
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III, respectively) may have clinical courses similar to glioblastoma
(WHO grade 1V)2728, We were therefore interested in profiling
the cellular landscape of these tumors by analyzing the cell type
content of the TCGA lower grade glioma (LGG) and glioblastoma
cohorts?*30, We identified 19 diffuse astrocytomas, 67 anaplastic
astrocytomas and 143 glioblastomas, all harboring IDHI1/2
wildtype genotypes. In this data, we detected several differences
in the cellular landscapes of astrocytomas between WHO grades
(Fig. 2¢, d and Supplementary Data 3) and once more, we
detected signals derived from various HSPC subsets. In
glioblastoma, HSPC signals were significantly higher compared
to grade IT and IIT astrocytomas (p = 2.14 x 1077, and p = 5.84 x
107, respectively) (Fig. 2d). In particular, we observed an
enrichment of HSCs (p =2.82x 10~7), GMPs (p =5.68 x 1077),
common myeloid progenitors (CMP, p = 2.34 x 10~°), promye-
locytes (p=2.49 x 107%), myelocytes (p=3.55x107°) and
megakaryocyte—erythroid progenitors (MEP, p =0.041) in glio-
blastoma compared to grade III tumors. Similar results were
obtained when comparing glioblastoma vs grade II tumors
(Supplementary Fig. 2b and Supplementary Data 3). A specific
subset of myeloid-derived suppressor cells characterized by a
phenotype of immature or “early stage” myeloid cells (eMDSCs,
Lin"THLA-DR~CD33%)3! may be responsible, at least in part, for
signals detected in the HSPC compartment by Syllogist. However,
eMDSCs associated uniquely with the CDI14" monocyte
references and not with progenitors of the hematopoietic lineages
(Supplementary Fig. 3).

Together, we profiled 43 different cell types in 217 glioblas-
tomas, 86 WHO grade II and III astrocytomas and 17 normal
brain tissue samples by gene enrichment analysis. Our results
indicate that several HSPC subsets, while expected to reside in the
bone marrow or the peripheral blood32, are detected in brain
tumors at their cores and margins. In addition, HSPC signals
positively associate with the presence and histological grade of
brain tumors.

HSPCs populate brain tumor tissues. The detection of endo-
genous hematopoietic progenitors in human brain tissues repre-
sents an intriguing finding which, to our knowledge, has not yet
been reported. To test if HSPCs can be identified in glioblastoma
tissues by classical immunofluorescence, we determined the status
of CD34 and CD45 in paraffin embedded formalin fixed glio-
blastoma tissues (n =4 patients). In all patients, we detected
CD45TCD34" double positive cells (Fig. 3a). To further study
HSPCs in brain tumors, we analyzed a set of 12 fresh surgical
tissue samples derived from 12 patients using flow cytometry (7
primary IDH wildtype glioblastoma tissues, 4 lower grade gliomas
and 1 non-small cell lung cancer brain metastasis, Supplementary
Data 4). We interrogated the presence of 7 HSPC subsets>? in cell
suspensions obtained from these tissues and compared them with
healthy bone marrow-derived mononuclear cells. All samples
stained positive for HSPCs as defined by lineage (Lin) negative
and CD34 positive events (Fig. 3b-d). In glioblastoma tissues, we
detected a median of 1813 Lin"CD34" HSPCs per million cells
analyzed (range n = 525-8882); In lower grade glioma samples,
1617 HSPCs per million (n = 47-2707) in the metastatic sample
we observed 296 HSPCs per million, compared to 7933 HSPCs
per million derived from a healthy donor bone marrow sample
(Fig. 3d). Interestingly, we observed a notable lineage bias of
HSPC subsets in glioblastoma compared to bone marrow-derived
mononuclear cells or lower grade gliomas. In glioblastoma sam-
ples we recorded an increase in hematopoietic stem cell propor-
tions (HSCs, Lin~CD34+tCD38~CD45RA~CD907) ranging from
43.0% to 67.5% of total HSPCs compared to 2.6-23.6 % in lower
grade gliomas (p=4.83 x 1074, two-tailed Student’s t-test) and

1.9% in the bone marrow sample (Fig. 3d). Multipotent pro-
genitors (MPPs), defined by the expression of Lin"CD34+tCD38"
CD45RA CD90" were also overrepresented in brain tumor tissues
compared to the healthy bone marrow sample. These results
indicated that immature HSPC subsets, in particular HSCs and
MPPs, were enriched in glioma tissue samples and a brain
metastasis sample (Fig. 3d). These data were also in line with the
detection limit of Syllogist for HSCs reported in Fig. 1f (~1200
cells/million). In addition, our results were not biased by con-
tamination from circulating HSPCs, as the proportion of HSCs in
glioblastoma tissue cell suspensions was 4-37.5 fold higher
compared to the known proportion of HSCs in the peripheral
blood mononuclear cells®. Analysis of circulating and tissue-
associated HSCs from paired samples confirmed this enrichment
(n=2 samples from one patient, Supplementary Fig. 4a). Also,
the presence of non-hematopoietic progenitors expressing
CD34 such as endothelial and tumor cells>>3® may have been
excluded from our analysis by lineage markers such as CD1437-38
or CD563%40, In this line, adding an endothelial-specific antibody
in our lineage cocktail (anti-CD144) did not change the flow
cytometric profiles of HSPCs in glioblastoma cell suspensions
(Supplementary Fig. 4b). Similarly, the preferential accumulation
of immature HSPC subsets in glioblastoma samples could also be
observed when gating for CD45 positive cells to exclude potential
contaminants of non-hematopoietic origin (Supplementary
Fig. 4c). We next asked if HSPCs could be detected in a publicly
available dataset of single cell RNA-Seq from glioblastoma
patients*l. In all samples analyzed, we annotated various HSPC
subsets, in particular HSCs and MEPs. Interestingly, in accor-
dance to the flow cytometric profiles, we also noted increased
proportions of immature progenitors compared to two healthy
bone marrow samples#? used as positive controls (Supplementary
Fig. 4d).

To test the proliferative capacity and lineage commitment of
tumor-associated HSPCs, we performed colony-forming cell
(CEC) assays using cell suspensions derived from 14 brain tumor
surgical specimens cultured in semi-solid media (eight glioblas-
tomas, four lower grade gliomas, and two brain metastases,
Supplementary Data 4). We observed hematopoietic colonies in
7/8 glioblastoma patient specimens (median, n=6.5 colonies/
sample, range, n = 0-13), whereas colonies derived from lower
grade gliomas or metastasis could be observed only in 1
ganglioglioma case (median n =0, range n =0-2) (Fig. 3e, f).
In glioblastoma-derived cultures we observed a spectrum of CFU-
GEMM, CFU-GM and BFU-E colonies, confirming that HSPCs
from brain tumor tissues can proliferate and differentiate into
myeloid lineages (including erythroid cells). This data supported
again our earlier observations consistently indicating the presence
of HSPCs in glioblastoma. Furthermore, the colony-forming
activity was significantly higher in glioblastoma compared to the
non-glioblastoma tumor entities (p = 0.025, Fisher’s exact test)
(Fig. 3f). Moreover, CFU-GEMM colonies, which derive from
more primitive HSPCs, were detected exclusively in glioblastoma-
derived cultures (Fig. 3f), indicating the presence of more
immature HSPC subsets in glioblastoma samples compared to
other brain tumor entities. These results were also in agreement
with the flow cytometry data reported in Fig. 3d, showing an
enrichment of immature hematopoietic progenitors within the
glioblastoma microenvironment.

To test if tumor-associated HSPCs displayed similar potency
between patients, we selected glioblastoma samples with similar
flow cytometric HSPC profiles (Fig. 3d, Patient 3, 8 and 14) and
compared their colony formation ex vivo (Fig. 3f). All three
patients produced distinct CFC profiles under identical condi-
tions, suggesting heterogeneous potency of tumor associated
HSPCs in vivo.
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The lineage fate and function of HSPCs in the bone marrow
depend on specialized factors such as the CXC chemokine ligand
(CXCL) 12, which signals through the CXCR4 receptor to induce
HSPC niche colonization, proliferation and differentiation*3. To
test if tumor-associated HSPCs reside in a similar microenviron-
ment, we examined CXCL12 expression in tissue sections from 7

6

Staining intensity
: A, 1 M2 M3
glioblastoma patients, in both the tumor core and the infiltration
zone by immunohistochemistry. We observed increased CXCL12
expression in 6/7 glioblastoma tumor cores compared to the
peripheral infiltration zone in the same section (Fig. 3g, h).
Specifically, CXCL12 was prominently detected in tumor cells
with uniform staining patterns within samples. Tumor cells may
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Fig. 3 Characterization of tumor-associated HSPCs in human glioblastoma tissues. a Representative immunofluorescence appearance of CD34% (red)/
CD457 (green) cells (arrows) in formalin-fixed, paraffin-embedded glioblastoma tissue sections from two patients (out of four analyzed, all with similar
results). Nuclei were counterstained with DAPI (blue). Scale bars =50 um (overview) and 10 um (insets). b Diagram describes the hierarchy of HSPC
subsets analyzed in this study by flow cytometry. HSC Hematopoietic stem cell, MPP Multipotent progenitor, MLP Multi-lymphoid progenitor, CMP-MEP
Common myeloid progenitor and megakaryocyte-erythroid progenitor, GMP Granulocyte-Monocyte Progenitor, B-NK B-NK progenitor. € Representative
flow cytometry profiles of human bone marrow and glioblastoma tissue, gated for seven HSPC subsets. Cellular frequencies are highlighted in red. d
Stacked barplot of seven HSPC subsets observed in glioblastoma (GBM, n = 7), non-glioblastoma tumor tissues (non-GBM, n =5, Supplementary Data 4)
and a healthy donor bone marrow sample by flow cytometry. e Representative colony morphologies from CFC assays of glioblastoma cell suspensions
derived from a total of eight patients, and from bone marrow-derived mononuclear cells. Scale bars =100 um. f Barplot indicating number and types of
colonies in CFC assays derived from bone marrow, glioblastoma (GBM, n = 8 patients) and non-glioblastoma (non-GBM, n = 6 patients) cell suspensions.
CFU Colony forming unit, -GEMM Granulocyte, erythrocyte, monocyte, megakaryocyte, -GM, Granulocyte, monocyte, -E, Erythroid. g CXCL12 staining of
the infiltration zone (upper panel) and the tumor (lower panel) of the same tissue section. Scale bars =200 um. One representative staining of eight
shown). h Barplot showing percent CXCL12 staining intensity (1= weakly positive, 2 = moderately positive, 3 = strongly positive) of tumor core and
infiltration zones from glioblastoma (n =16 samples from eight patients). Source data of (a), (d), (f), (g), and (h) are provided as a Source Data file.

therefore provide the necessary microenvironment for HSPC
colonization and multilineage differentiation in glioblastoma.

Tumor-associated HSPCs show distinct phenotypes compared
to bone marrow-derived and circulating HSPCs. To compare
the phenotype of tumor-associated HSPCs with canonical HSPC
subsets, we obtained single cell transcriptomes from magnetically
enriched CD34+CD45+ IDH wt glioblastoma cells (n =660
cells) derived from a fresh surgical specimen. For comparison, we
used transcriptomes derived from bone marrow (n = 549), blood
(n=283) and a fresh tumor-free brain sample (n=105) that
were processed with an identical protocol (Fig. 4a and Supple-
mentary Data 4). In the glioblastoma sample, Uniform Manifold
Approximation and Projection (UMAP) and graph-based clus-
tering unraveled 6 clusters (Fig. 4b). Cluster 3 significantly
overexpressed the HSPC gene SPINK2** compared to all other
clusters (Supplementary Fig. 5a). Independent annotation using a
published reference-based algorithm*> uncovered the same clus-
ter as containing HSPCs (Fig. 4c). The remaining clusters were
annotated as containing mainly myeloid cell types (monocytes,
macrophages) or non-immune cells (Fig. 4c). Expression of
known progenitor and myeloid markers confirmed our annota-
tion. In particular, the HSPC cluster contained cells expressing
PTPRC (CD45), cells exclusively expressing CD34 and hemato-
poietic progenitor markers SPINK2 and GATA2*:, but lacked
expression of myeloid lineage markers CD14, ITGAM (CD11b),
microglia-specific markers (TMEMI19) or myeloid markers
typically expressed by immature (lin-) myeloid-derived sup-
pressor cells (CD33) (Fig. 4d). The HSPC cluster also lacked
expression of markers specific for lymphoid, endothelial,
mesenchymal, astrocytic or neural populations (Supplementary
Fig. 5b), confirming the enrichment of our targeted population.
In the glioblastoma sample, we annotated a total of 126 tumor-
associated HSPC transcriptomes subdivided as follows: HSC (n =
15 transcriptomes), MPP (n=28), CMP (n=2), GMP (n=29),
CLP (n=14) and MEP (n = 38). Notably, in the sample derived
from a tumor-free brain region, we failed to detect HSPC-typic
transcriptomes, further substantiating a preferential accumulation
of HSPCs in tumor tissues. In cells enriched from a healthy bone
marrow and blood sample that were used as positive controls, we
annotated 500 and 174 HSPCs, respectively (Fig. 4e). We next
compared the transcriptomes of tumor-associated HSPCs with
our control samples. Comparison was conducted in a normalized,
combined dataset to interrogate proliferative states and to
determine differentially expressed genes in HSPC subsets between
glioblastoma and controls. UMAP plotting of HSPC tran-
scriptomes from glioblastoma, bone marrow and blood clustered
within a common region (Fig. 4f). In this topological repre-
sentation, expression of marker genes for bone marrow-derived

HSPC subsets*® and our annotated bone marrow sample matched
specific regions of the graph. This was mirrored by the same
subsets (except for CLP) annotated in the glioblastoma sample,
indicating, at least for the HSC, MPP, GMP and MEP subsets,
strong similarities between bone marrow and tumor-derived
HSPC subsets (Supplementary Fig. 5¢, d). Next, for these HSPC
subsets, we scored non-cycling or cycling cells using an estab-
lished algorithm#’. The proportion of cell cycle phases in HSPCs
from the bone marrow sample were in agreement with previously
reported data*®4%. However, we noted a significant increase of
cycling MPP in the glioblastoma sample when compared to
healthy bone marrow (Fig. 4g). In addition, the number of tumor
associated HSPCs with an active cycling profile were pro-
portionally higher compared to differentiated myeloid and lym-
phoid cells within the same glioblastoma sample (Supplementary
Fig. 5e, f). These data suggest that tumor-associated HSPC sub-
sets, in particular MPPs, GMPs and MEPs may proliferate in situ.
We next analyzed differential gene expression between HSPC
subsets in our combined dataset. We selected genes that were
consistently regulated between tumor-associated HSPCs and bone
marrow or blood-derived HSPCs (Fig. 4h and Supplementary
Data 5-8), for each subset with sufficient cells available. Inter-
estingly, among the top upregulated genes in tumor-associated
HSPCs, we noticed genes coding for proteins that were previously
shown to impact on hematopoietic stem cell maintenance and cell
cycle progression (e.g., HMGBI, SOX4 and STMN1, in both HSCs
and MPPs*032) or to mediate tumor progression such as
TMSB10%3. In conclusion, single cell RNA-Seq analysis of tumor-
associated HSPCs confirmed preferential enrichment of these
population within glioblastoma compared to normal brain.
Moreover, tumor-associated HSPC transcriptomes contained
signatures associated with active cell cycle phases and showed
enrichment of genes affecting hematopoietic progenitor main-
tenance and tumor progression, when comparing with healthy
bone marrow-derived and circulating HSPCs.

HSPCs promote a malignant and immunosuppressive pheno-
type in glioblastoma. To investigate if hematopoietic progenitors
can alter glioblastoma progression and/or immunosuppression,
we co-cultured bone marrow-derived HSPCs with three fluores-
cently labeled glioblastoma cell lines (T98G, LN229, U87) and
monitored their proliferation and PD-L1 expression by flow
cytometry. After 48 hours, we observed increased proliferation in
all three cell lines tested in the presence of HSPCs compared to
cultures without HSPCs (Fig. 5a—c). For example, 43.2% of T98G
cells underwent at least one cellular division in the presence of
HSPCs, compared to 23.4% in the control samples. Besides, we
noted a proportion of tumor cells exhibiting accelerated cell cycle
progression in the presence of HSPCs (Fig. 5b, d) as 16.7% of
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T98G underwent >2 division rounds within 48 h, compared to 0%
in the absence of HSPCs. In both T98G and U87 co-cultured with
HSPCs, we also observed an increase in cell-surface expression of
PD-L1 (Fig. 5¢), indicating that HSPCs may contribute to the
immunosuppressive environment in glioblastoma progression by
inducing the expression of immune checkpoint molecules on
glioma cells. To test if proliferation and PD-L1 upregulation in
tumor cells were caused by a soluble factor or by cell-cell contact,
we incubated T98G cells with HSPCs or their conditioned media.
The proliferation and PD-L1 expression were induced only in the

presence of HSPCs, indicating the requirement for direct cell-cell
contact (Fig. 5e). Interestingly, in the presence of HSPCs, PD-L1
expression was upregulated exclusively in the T98G cells that
underwent at least 2 divisions but not in the parental cells.
Neural stem cells (NSCs) carrying driver mutations have been
proposed as cells of origin for glioblastoma. NSCs has also been
showed to preferentially migrate and invade developing gliomas,
promoting malignant progression®>>. To test if HSPCs may
contribute to NSC recruitment in gliomas, we applied an invasion
assay using human hippocampal adult human neural progenitors
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Fig. 4 Comparing tumor-associated HSPCs with canonical hematopoietic progenitors by scRNA-Seq. a Enrichment protocol for derivation of single cell
suspensions from biosamples. b UMAP projection of CD45+CD34-+-enriched glioblastoma cells, color coded for graph-based clusters. ¢ Cell type
annotation by SingleR in the CD34+CD45+-enriched glioblastoma sample. HSPC Hematopoietic stem and progenitor cell. d Marker expression for
immune (PTPRC), HSPCs (CD34, SPINK2, GATA2), and myeloid lineages (CD14, ITGAM, TMEMT119, CD33) in the glioblastoma dataset. Dashed line indicates
the HSPC cluster defined in (c). e SingleR annotation of HSPC subsets in glioblastoma (GBM), tumor-free brain (TFB), bone marrow (BM), and blood
samples magnetically enriched by CD34+4-CD45+ are shown as UMAP projections. Stacked barplot indicates fractions of HSPC subsets as annotated in the
four datasets with absolute numbers shown within bars. p value determined by a two-tailed Fisher's exact test. HSC Hematopoietic stem cell, MPP
Multipotent progenitor, CMP Common myeloid progenitor, GMP Granulocyte-monocyte progenitor, CLP Common lymphoid progenitor, MEP
Megakaryocyte-erythroid progenitor. f The left panel shows UMAP projection of the integrated dataset used for cell cycle and differential gene expression
analysis. Cells derived from each sample are displayed by different color-coding. Right panel: singleR annotation of HSPC subsets in the integrated dataset
are highlighted on the UMAP plot by the the corresponding colors shown in the legend. NK cells Natural killer cells. g UMAP plot of cycling and non-cycling
cells computed by Seurat. Stacked barplots show the proportion of cycling and non-cycling HSPC subsets in the glioblastoma (GBM), bone marrow (BM),
and blood sample. p value determined by a two-tailed Fisher's exact test corrected by the Benjamini Hochberg procedure. h Heatmaps show a selection of
top differentially expressed genes between bone marrow-resident and circulating HSPC subsets vs tumor-associated HSPCs as computed by MAST. The

complete dataset is provided in the Supplementary Data 5-8. Source data are provided as a Source Data file.

(AHNPs)°%>7 cultured in the presence of HSPC-conditioned
or control media. In this model, AHNPs showed a preferential
migration towards HSPC conditioned media (p < 0.05), indicating
a potential effect of tumor-associated HSPCs on NSC migration
and recruitment in glioblastoma (Supplementary Fig. 6)

Patient-derived organoids are increasingly recognized as robust
preclinical models for the study of cancer and response to
therapy®®>, We cultured pure tumor cells from 3 primary
glioblastoma patients and grew 3D organoids in the presence or
absence of HSPCs, using a previously established protocol®. In
two cases, 3D organoids could be maintained for >3 weeks in
culture. As early as on day 4, we observed a significant increase in
colony-forming activity of glioma cells co-cultured with HSPCs
compared to controls (Fig. 5f, g). Furthermore, on day 10 after
seeding, colonies in the presence of HSPCs formed long
interconnections reminiscent of microtube networks reported
by Oswald et al.! (Fig. 5f). Organoids supplied with HSPCs grew
significantly larger when compared to cultures without HSPCs
(Fig. 5h). Interestingly, patient-derived glioblastoma cells could
stably maintain HSPC subsets for at least 20 days, in contrast to
HSPC cultures seeded in the absence of tumor cells (Fig. 5i).
These data suggest favorable conditions for the maintenance of
HSPCs in glioblastoma. In addition, we noticed an expansion of a
CD45+CD34— immune cell population within the organoid
cultures, indicating that a subset of HSPCs are differentiating in
the presence of patient-derived glioblastoma cells (Fig. 5i).
However, PD-L1 expression was not differentially regulated in
these experiments (Supplementary Fig. 7). To further characterize
the relationship of HSPCs and glioblastoma cells during organoid
expansion, we used a multiplex enzyme-linked immunosorbent
assay (ELISA) to investigate the conditioned media for 30
different cytokines and growth factors. Interestingly, after 20 days
of co-culture, we detected a significant increase of tumor-
promoting cytokines such as interleukin 6 (IL-6)%? and IL-8%3 (p
=7.5x 1077 and p = 0.0028, respectively), or positive regulators
of immunosuppression such as chemokine ligand 264 (CCL2, p =
0.035) when compared to cultures containing tumor cells or
HSPCs alone (Fig. 5j). In addition to these cytokines, we also
detected a significant increase of soluble tumor necrosis factor a
receptor 1 (STNF-R1) (p =0.004) and CCL4 (p = 0.006), after 9
and 20 days respectively. Other cytokines that were detected in
the supernatants by this assay did not display significant
changes between the different culture conditions (Supplementary
Fig. 8).

In summary, using three in vitro and two ex vivo models, we
observed consistent increase in tumor cell proliferation when cells
were co-cultured with HSPCs. In T98G and LN229 cells, we
detected a concurrent increase of PD-L1 expression on a

subpopulation of proliferating cells. HSPC-conditioned media
promoted migration of AHNPs in vitro and co-cultures
with patient-derived glioblastoma cells induced the secretion
of tumor-promoting cytokines such as IL-6 and IL-8 or the
immunosuppressive-related chemokine CCL2, indicating a
potential role of HSPCs in promoting both, immunosuppression
and malignancy phenotypes during glioblastoma progression.

Tissue-associated HSPCs predict patient’s survival, correlate
with hematopoietic niche factors and immunosuppressive
markers. Next, we applied Syllogist to test the association of
cellular composition with clinical outcome of 159 glioblastoma
patients with follow-up clinical data available (TCGA)3!. All
tumor tissues were derived from previously untreated, primary
glioblastoma patients undergoing standard surgery, radio- and
adjuvant temozolomide therapy. Variables known to be asso-
ciated with survival and therapy responses such as O°-Methyl-
guanine-DNA Methyltransferase (MGMT) promoter
methylation®, IDH mutation without 1p/19q codeletion®® and
biological subtypes®”-68 were also included in the analysis. By
applying the random forest classifier®, which can be employed to
select for the best predictive variables within our dataset, we
surprisingly identified three HSPC subsets, namely HSCs, CMPs,
and promyelocytes among the most important predictors for
overall survival of glioblastoma patients (Fig. 6a). The variable
importance of these HSPC subsets was comparable with the
above-mentioned positive controls.

Kaplan-Meier estimator of HSCPigh and HSClOW patients and
univariate Cox regression confirmed that HSC signals were
negatively associated with overall and progression-free survival
(Fig. 6b-d). To adjust for potential confounders such as age,
MGMT methylation and IDH mutations, we fitted a multivariable
Cox regression model of HSC signals for both, overall and
progression-free survival. This model showed again a significant
association of HSC with overall survival. In particular, our result
indicated that in the TCGA cohort, at a given instant in time, a
glioblastoma patient exhibiting an HSC signal >0.54 was 88% as
likely to die as someone showing an HSC signal <0.54, adjusting
for age, MGMT promoter methylation and IDH mutations
(Fig. 6e and Supplementary Fig. 9). In our analysis, Syllogist did
also detect a weak association of macrophages with overall
survival, but, this result was not significant after correction for
multiple testing (Supplementary Data 9).

In addition to survival, HSPC subsets significantly associated with
signals from differentiated myeloid and lymphoid cell types
(Supplementary Fig. 10). Interestingly, HSChigh glioblastoma samples
significantly associated as well with increased expression levels of
TGFBI and ILI0, two genes coding for classical immunosuppressive
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cytokines (p = 1.4 x 1077, and p = 9.7 x 10712 respectively, Student's  p =0.016), and PD-L2 (PDCDILG2, p = 0.003) (Fig. 6g). Moreover,
t-test), but not with expression of proinflammatory cytokine genes HSChigh glioblastoma samples also exhibited significantly higher
such as IL2, IFNG, IL12 or IL17. An exception to this were TNF and  expression of chemokines such as IL8, CCL2 and CCL4, in agreement
L6570, which positively associated with the HSChigh samples (Fig. 6f with our organoid co-culture experiments shown in Fig. 5j
and Supplementary Fig. 11a). Furthermore, HSChigh glioblastoma  (Supplementary Fig. 11b) or niche factors such as CXCL12, LEPR
samples associated with the expression of immune checkpoint (leptin receptor), and FNI (fibronectin) (Fig. 6h)32. These results
molecules, including PD-1 (PDCDI, p=2.7 x 1074), PD-L1 (CD274, demonstrated that, in a dataset of 159 patients, tumor-associated
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Fig. 5 HSPCs promote glioblastoma cell proliferation and PD-L1 expression. a Representative flow cytometry profiles of T98G cells in presence or
absence of Hematopoietic stem and progenitor cells (HSPCs) with CellTracker Green staining and gating strategy used to distinguish glioblastoma cells
from co-incubated HSPCs. b Representative histogram of tumor cell proliferation of T98G, LN229, and U87 glioblastoma cell lines, co-cultured with/
without bone marrow-derived HSPCs (ratio = 1:1) for 48 h. Tumor cell proliferation was assessed by CellTracker Green CMFDA dilution measured by flow
cytometry. € Comparison of the percentage of cells that underwent at least one cell division (% Divided), and comparison of the tumor surface PD-L1
expression determined by the fold-changes of Median fluorescence intensity (MFI) from Isotype Control (Ctrl). (n =3 cell lines, one representative
experiment of two shown. (d) Representative flow cytometry profiles (out of three experiments) using combined stain of CellTracker Green CMFDA and
PE-PD-L1 in T98G cells co-cultured with/without HSPCs. e PD-L1 expression in T98G cells co-cultured with HSPCs, HSPC conditioned media or control
media for the indicated cell divisions. Results are presented as mean * standard deviation (n = 3-6 technical replicates, one representative experiment of
two shown). Two-tailed unpaired Student's t-test. Inset: representative flow cytometric profile of CellTracker Green CMFDA staining for the three
conditions tested. f Representative images of organoids from patient 17 (Pat 17) cultured with and without HSPCs at day 10 and 21 post seeding, scale bar
=100 um. g Barplot represents number of colonies/organoid measured on day 4 (Pat 17) and day 14 (Pat 13) post seeding. h Barplot represents organoid
size measured on day 14 (Pat 17) and day 21 (Pat 13) after seeding. In (g) and (h), p values determined by two-tailed, unpaired Student's t-test. Results are
presented as mean * standard deviation (n = 5-8 organoids for each condition and time point). Three patients tested, one patient excluded from this
analysis as we did not achieve sustained growth. i Maintenance of HSPC phenotype in organoid culture alone or in co-culture with patient tumor cells (Pat
17 and 13), a representative experiment of two is shown. j Barplots represent cytokine concentration (pg/mL) measured in conditioned media of organoids
derived from patient 17 in the presence or absence of HSPCs, or in HSPCs cultured alone in 3D Matrigel. Conditioned media were collected after 9 and
20 days. Data are presented as mean * standard deviation, n =1-4 technical replicates from one representative experiment of two. p values determined
using unpaired, two-tailed Student's t-test corrected with the Benjamini-Hochberg procedure. IL-6, IL-8 Interleukin-6 and -8, CCL2, CCL4 CC-chemokine

ligand 2 and 4, TNF-R1 tumor necrosis factor receptor 1. Source data of (¢), (e), (g), (h), (i), and (j) are provided as a Source Data file.

HSPC subsets are predictive for clinical outcomes in glioblastoma,
associate with an immunosuppressive phenotype, with hematopoietic
niche factors and with specific cancer-promoting cytokines and
chemokines.

Discussion

Using Syllogist, we could determine the relative abundance of 43
different cell types in glioblastoma tissues using a gene enrich-
ment approach. While other methods may have superior preci-
sion in the quantification of cell type proportions within a
sample’! they are restricted to a limited number of cell types.
Syllogist can be useful in detecting multiple cell types, including
hematopoietic progenitors, leveraging on a robust and validated
reference transcriptome dataset!>.

Intending to characterize the cellular landscape of brain tumor
tissues using a systematic and unbiased computational method,
we identified HSPC transcriptomic signatures as markedly asso-
ciated with brain tumors compared to normal brains and sig-
nificantly enriched in glioblastoma when compared to lower
grade IDH wildtype astrocytomas. Through a series of bioinfor-
matic, flow cytometric, immunohistochemical and functional
assays, we validated our initial working hypothesis and deter-
mined that HSPCs are infiltrating brain tumor tissues for the
large proportion as immature progenitors. This is at first glance
surprising because the bone marrow is the primary site of
hematopoiesis in the adult. However, extramedullary hemato-
poiesis, especially in the liver and spleen, can sometimes be
detected as a conserved physiological mechanism to maintain
immunity under chronic anemias and myeloproliferative
disorders’2. Extramedullary HSPCs have also been detected
under physiological conditions in several murine organs’374. In
addition, intravenously-injected HSPCs efficiently migrate to and
infiltrate experimental rat’> and mouse’® gliomas, possibly by a
CXCL12-dependent mechanism. Collectively, these data, together
with our observations, may explain the enrichment of HSPCs in
glioblastoma

Our findings suggest that HSPC subsets in brain tumors are
positively associated with immunosuppressive and tumor-
promoting phenotypes and negatively associated with patient
survival. It is known that during cancer progression, bone
marrow-derived HSPCs commit preferentially towards immu-
nosuppressive lineages such as MDSCs induced by the tumor-
derived cytokines granulocyte-macrophage colony-stimulating

factor (GM-CSF) and granulocyte colony-stimulating factor (G-
CSF)77. Tumor-associated HSPCs may, therefore, be instructed
by malignant cells to differentiate towards immunosuppressive
myeloid cells. However, in murine models testing the effect of
intravenously injected HSPCs, these cells were shown to replace
local immunosuppressive myeloid cells with antigen-presenting
cells, resulting in cytotoxic anti-tumor responses and tumor
eradication’. In Flores et al.”%, ectopic injection of Lin"CCR2+
myeloid progenitors exhibited specific tropism to brain tumors
and differentiated into antigen-presenting cells, cross-presenting
to T cells in secondary lymphoid organs. These data indicate that
tumor-associated HSPCs display a remarkable impact on the
immunoregulation of the glioblastoma microenvironment: Con-
trary to observations in animal models that report favourable
outcomes of intravenously injected HSPCs, our data reveal rather
a cancer-promoting phenotype of the endogenous HSPCs that
populate the human glioblastoma microenvironment. Therefore,
remodeling of the lineage fate of tumor-associated HSPCs in
humans may represent a potential therapeutic strategy to over-
come immunosuppression and to provide the essential micro-
environment for targeted immunotherapies. For example,
blockade of the colony-stimulating factor (CSF) 1 - CSFR1 axis
interfered with the maturation of bone marrow-derived hema-
topoietic progenitors into immunosuppressive myeloid cells
and reduced the pool of immunosuppressive myeloid cells in the
brain®!. Further, combining CSFR1 inhibition with PD-1/PD-L1
blocking antibodies resulted in superior tumor control compared
to checkpoint inhibition alone in a mouse model of spontaneous
neuroblastomas2.

Our data suggest the requirement of cell-to-cell contact
between HSPCs and glioblastoma cells for increased tumor cell
proliferation and PD-L1 expression. Furthermore, patient-derived
organoids revealed that glioblastoma cells can maintain HSPCs
for extended periods of time in vitro, resulting in the secretion of
cytokines and chemokines previously shown to promote tumor
progression. These findings support the in vivo observations on
the association with patient outcomes and immunosuppressive
phenotypes.

However, our study presents with some limitations: Detailed
investigation is needed to further understand the molecular
mechanisms of our observations and to determine the role of the
subpopulations responsible for the monitored effects. It is con-
ceivable that some of the observed phenotypes are mediated by
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Fig. 6 HSPCs predict clinical outcomes in glioblastoma and associate with an immunosuppressive phenotype and stem cell niche factors. a Bar plot
representing the top 20 predictors of glioblastoma overall survival in decreasing order of importance computed by the random forest classifier. Red
triangles highlight HSPC subsets. Inset, Brier score indicates error rate of random forest classifier results as function of survival time (Brier score 0 =0 %
error, 1=100% error). MGMT O(6)-Methylguanine-DNA methyltransferase, G-CIMP Glioma CpG island methylator phenotype, IDH Isocitrate
dehydrogenase. Source data are provided as a Source Data file. b Mortality rate as a function of hematopoietic stem cell (HSC) odds ratios derived by
Syllogist and used to determine threshold separating HSChigh (n = 63) and HSC!®W (n = 76) patients. Red lines represent 95% Cl. ¢ Kaplan-Meier plot of
HSChigh and HSC!oW patients using the threshold T=0.54 selected from (b). Two-tailed logrank test. d Univariate Cox regression analysis of selected
variables for overall survival and progression-free survival data. e Multivariable Cox proportional hazards model of the HSC subset and potential
confounders (Age, MGMT methylation, and IDH mutations) for overall and progression-free survival. In (d) and (e), we used a two-tailed likelihood-ratio
test corrected by the Benjamini-Hochberg procedure. All variables satisfied the proportionality hazards assumption (Methods). CMP Common myeloid
progenitor, GMP Granulocyte-Monocyte progenitor, MEP Megakaryocyte-Erythroid progenitor. f Boxplots represent the expression of pro- and anti-
inflammatory cytokines in HSChigh (n = 73) and HSC!oW (n = 92) patient samples. TGFB1 Transforming growth factor beta 1, IL10, IL2 Interleukin 10 and 2,
INFG Interferon gamma, TNF Tumor necrosis factor, IL12A Interleukin 12 subunit alpha, IL17A Interleukin 17A. g Boxplots represent the expression of the
immune checkpoint markers PD-1(PDCDT), PD-L1(CD274), and PD-L2 (PDCDILG2) in HSChigh and HSC'oW samples. h Boxplots represent the expression of
hematopoietic stem cell niche factors C-X-C motif chemokine 12 (CXCL12), leptin receptor (LEPR), and fibronectin (FNT) in HSChigh and HSC!oW samples. In
(f-h), boxplots are drawn with boxes representing the interquartile range (IQR), a line across the box indicating the median, and whiskers indicating 1.5 x
IQR. Outliers are shown as closed dots. p values determined using a two-tailed Wilcoxon-Mann-Whitney U test corrected with the Benjamini-Hochberg
procedure.

immune cells differentiating from local tumor-associated HSPCs In conclusion, the presence of multipotent HSPCs within the
and not by HSPCs themselves. In addition, our single cell data, brain cancer microenvironment allows unconventional and
while confirming presence of HSPCs and providing insights on  straightforward access to an otherwise restricted immune com-
their transcriptional profiles, represents a pilot study requiring partment. Direct modulation of the lineage fate of tissue-
follow up studies with a larger cohort. associated HSPCs may represent a significant therapeutic
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strategy to overcome immunosuppression or glioblastoma pro-
gression and warrants further studies. Flow cytometry-based
analysis of hematopoietic progenitors in fresh tissue biopsies may
furthermore serve as a prognostic factor in future clinical trials.

Methods

Cell type estimation using transcriptomes. Cell type-specific signals were
determined similarly to Cima I et al.!°. First, we generated a map of specific genes
for each cell type of interest using the primary cell atlas!”, a gene expression matrix
containing information on # = 20969 gene transcripts. Technical replicates were
averaged. For each gene, g, in each cell type, or lineage’, J, a ‘specificity index’, S,
was calculated based on Shannon entropy and the Q statistics introduced by Schug
et al.l8,

N
Sug =~ 1§1 Pag) - 108, (Paig) — log, ()

where Pig) s the relative expression of gene g in lineage I. For each cell type, the

top 80 genes with the highest specificity index (‘specific genes’) were selected and
reported in Supplementary Data 1. This table represents the map of specific genes
for each cell type of interest in decreasing order of specificity index. Next, for each
RNA-Seq query sample, we predefined a threshold to define the set of expressed
genes. Next, in the query RNA-Seq list of expressed genes, we counted the
occurrences of the top 80 specific genes for each cell type present in our map of
specific genes. To determine if the number of enriched genes was different from
enrichment by chance, we generated 1,000 lists of 80 randomly selected genes from
a comprehensive list of human genes derived from our reference transcriptomes
and counted the average number of genes present by chance in each experimental
RNA-Seq profile for each cell type. Finally, for each cell type in each experimental
sample, a Fisher’s exact test was applied to determine whether the number of
enriched specific genes was equal to the number of randomly enriched genes. The
resulting odds ratios were used in intersample comparisons to generate hypotheses
on the differential content of cell types present in bulk tissues. In some experi-
ments, we benchmarked Syllogist with previously published algorithms using
TIMER 2.0 with default parametersS3.

Tissue collection. Biosamples were obtained from 29 patients after informed
consent at the Departments of Neurosurgery of the University Hospitals Bonn and
Essen. At each site, the local ethics committees approved the study (University
Bonn #182/08; University of Duisburg-Essen, #19_8706_BO). Human biological
samples and related data collected in Essen were provided by the Westdeutsche
Biobank Essen (WBE, University Hospital Essen, University of Duisburg-Essen,
Germany, approval 19_WBE_074). Baseline data for all patients are listed in
Supplementary Data 4.

Immunohistochemistry/immunofluorescence studies. CXCL12 immunobhis-
tochemistry was performed on formalin-fixed, paraffin-embedded glioblastoma
tissues obtained at the time of surgery. For antigen retrieval, slides with 2 um-thick
sections were pretreated boiling in sodium citrate buffer (pH = 6.0) for 30 min at
100 °C. Anti-CXCL12 antibody (Abcam ab9797, 1:600) was used to detect CXCL12
protein expression, and antibody-bound CXCL12 was then detected using the
chromogen 3,3’-diaminobenzidine (DAB). Staining intensity was scored using a
four-point scale from 0-3: 0 = no staining; 1 = cells weakly positive; 2 = cells
moderately positive; 3 = cells strongly positive.

CD34 / CD45 immunofluorescence analysis was performed on formalin-fixed,
paraffin-embedded glioblastoma tissues obtained at the time of surgery. 2 um FFPE
tissue sections were pretreated as described above. Anti-CD34 (Leica Biosystems,
NCL-L-END, 1:250) and anti-CD45 (Abcam, ab10559, 1:250) antibodies were
incubated for 1h at room temperature and slides washed three times before the
respective secondary antibodies (cross-adsorbed anti-rabbit Alexa 488 and anti-
mouse Alexa 555, 1:800, Life Technologies) were applied for 1h at room
temperature. Slides were mounted with Vectashield Antifade Mounting Medium
with DAPI (Vector Laboratories) before imaging on a ZEISS ApoTome.2
Microscope (Zeiss) with the Zeiss ZEN 2.3 Imaging Software.

Tissue dissociation. Fresh surgical tissue was placed in ice-cold Dulbecco’s
Modified Eagle Medium (DMEM)/F12-based transport medium in the operating
room and received on ice at the lab within 30 min thereafter. The tumor tissues
were subsequently cut into small pieces and homogenized in Iscove’s Modified
Dulbecco’s Medium (IMDM) with 0.11 DMC U/mL neutral protease (Nordmark
Biochemicals) at 37 °C for 1-2 hour in a shaker-incubator. The homogenized
tissues were centrifuged for 10 min at 300 g, resuspended in IMDM and filtered
through a 40 um cell strainer for the following FACS and CFC assays.

Flow cytometry. Tumor cell suspensions were incubated for 5 min with human Fec-
gamma receptor (FcR)-binding inhibitor (1:50; BioLegend) and assayed for Hemato-
poietic Stem Cells (HSC: 7AAD—Lin—CD34+CD38—CD45RA—CD90+), Multi-
Potent Progenitors (MPP: 7AAD—Lin—CD34+CD38—CD45RA—CD90—), Multi-

Lymphoid Progenitors (MLP: 7AAD—Lin—CD34+CD38+CD45RA+CD90—),
Common Myeloid Progenitors and Megakaryocyte-Erythroid Progenitors (CMP-
MEP: 7AAD—Lin—CD34+CD38+CD45RA—CD10—), Granulocyte—-Monocyte Pro-
genitors (GMP: 7AAD—Lin—CD34+CD38+CD45RA+CD10—), and B-NK Pro-
genitors (B-NK: 7AAD—Lin—CD34+CD38+CD45RA+CD10+). For exclusion
experiments of potential non-hematopoietic contaminants, tumor cell suspensions
were additionally assayed for CD45 (PE/Cy7, 1:50, BioLegend). The immuno-
fluorescent monoclonal antibodies BV421-CD10 (1:50), BV510-CD90 (1:50), BV711-
CD135 (1:50), BV785-CD45RA (1:50), PE-CD34 (1:25), FITC-CD144 (1:25) and anti-
Human Lineage Cocktail 1 (Lin 1, 1:25) were purchased from BD Biosciences. The
APC-CD38 antibody (1:50) and 7-AAD (1:20) were purchased from eBioscience. For
analysis of in vitro experiments, the tumor cell lines or cells from organoid experiments
were assayed for PE-PD-L1 (1:100, BioLegend), BV510-CD45 (1:20, BioLegend) and
BV786-CD56 (1:20, BD Biosciences) respectively, after co-culture with HSPCs. All the
samples were analyzed on a FACS Celesta flow cytometer (BD Biosciences) using the
FACS Diva v 8.0.1.1 software (BD Biosciences) and flow cytometry data were analyzed
using FlowJo software, version 10.6.0 (Tree Star).

Colony-forming cell (CFC) assay. To observe hematopoietic colony-forming unit
(CFU) formation, the cell suspension obtained from tumor tissue was seeded in
methylcellulose media: (MethoCult H4230 and MethoCult SF H4236, Stemcell
Technologies) according to manufacturer’s protocol. Both media were supple-
mented with IL-3 (20 ng/mL), IL-6 (20 ng/mL), G-CSF (20 ng/mL), GM-CSF (20
ng/mL), SCF (50 ng/mL) and erythropoietin (3 units/mL). After incubation for
14-16 days at 37 °C with 5 % CO,, the colonies were characterized and scored
according to their morphology on a ZEISS AX10 Inverted Microscope (Zeiss).

Single Cell RNA Sequencing and analysis. CD341 and CD457 cells from two
fresh glioblastoma tissues, one tumor-free region tissue, healthy bone marrow
monouclear cells (CD34+ Lonza, 2M-101A) and one healthy PBMC sample
(Lonza, 4W-270) were used for scRNA-Seq studies. Tissue samples were dis-
sociated as previously described. CD347/CD45% positive magnetic selection was
performed using the REAlease® CD45 (TIL) MicroBead Kit (Miltenyi Biotec, 130-
121-563) and, immediately after removal of the CD45 complex, using the CD34
MicroBead Kit UltraPure (Miltenyi Biotec, 130-100-453) on the CD45 positively-
selected samples, according to the manufacturer’s instructions. After isolation,
samples were stored at —80 °C in freezing medium (15% DMSO and 20% FBS in
IMDM) until further processing. Before library preparation, samples were
inspected for dead cells using trypan blue exclusion. At this stage, one glioblastoma
sample was excluded from further analysis because of the presence of multicellular
aggregates and 20% trypan blue positive cells. All other samples (Pat 24, Pat 25,
bone marrow and PBMC sample) contained >92% viable cells without doublets,
and were used for single cell sequencing. Next, library preparation was performed
with all samples using the Chromium Next GEM Single Cell 3’ Reagent Kits v3.1
(10x Genomics). Appropriate volume for the recovery of 770 cells was loaded onto
a chip and DNA libraries were prepared according to the manufacturers protocol.
Quality control of prepared libraries was performed using the Agilent 2100 Bioa-
nalyzer prior to sequencing. Paired-end sequencing of all libraries was performed
using the Illumina NovaSeq 6000 system on one flow cell lane. Illumina basecall (.
bcl) data were converted and demultiplexed to FASTQ files using the bcl2fastq
v2.20 software. Read alignment to the hg38 human reference genome, counts and
cell-calling were computed using the 10x Genomics Cell Ranger 4.0.0 pipeline® for
each sample with the “cellranger count” command and default parameters. Median
UMI counts per cell in all samples ranged from 14,188 to 19,610. Count data were
analyzed using Seurat8® (v4.0). First, we removed cells with low counts (nFea-
ture_RNA <200) and high% of mitochondrial genes (>15%). Data were subse-
quently log-normalized before further analyses. Clustering was computed using the
FindClusters function with parameter “resolution” set at 0.5. UMAP was computed
using the first 30 dimensions as input. Annotation of cell types was performed
using SingleR 1.4.1 with default parameters and the BlueprintEncodeData reference
obtained from the celldex 1.0 package. The glioblastoma, bone marrow and blood
samples were then integrated in one dataset for UMAP plotting, cell cycle and
differential gene expression analysis. To this end, we used the default Seurat
workflow on the log-normalized data and the IntegrateData function with the first
50 dimensions as input. Cell cycle analysis was performed using the CellCy-
cleScoring function and the default list of cell cycle genes provided by Seurat 4.0
(cc.genes). Differential gene expression (DGE) was performed on the integrated
dataset using the normalized and scaled data and the MAST®® algorithm provided
within the FindMarkers function with default parameters. For each HSPC subset,
we selected genes with adjusted p value <0.05 that were commonly regulated
between the glioblastoma-bone marrow and the glioblastoma-blood sample DGE
analyses. The complete DGE results are reported in Supplementary Data 5-8.

In vitro HSPCs and tumor cell co-culture. Tumor cell lines T98G, LN229, and
U87 (ATCC), were labeled with CellTracker Green CMFDA (5-chloromethyl-
fluorescein diacetate, Thermo Fisher Scientific) at a final concentration of 1 uM for
15 min at 37 °C in darkness. After two washes with DMEM supplemented with 10
% FBS, the labeled tumor cells were combined with enriched bone marrow-derived
HSPCs (Lonza Bioscience) in cell culture plates at 1:1 ratio or with the conditioned
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medium derived from HSPC culture. After 48 h of co-incubation, supernatants
were gently removed from the cell culture suspension and adherent tumor cells
were detached with 0.11 DMC U/mL neutral protease (Nordmark Biochemicals) at
37°C for 10 min and collected for immunofluorescent staining with PE-PD-LI.
Flow cytometry analysis was performed to distinguish tumor cells from HSPCs and
to monitor PD-L1 expression and proliferation in tumor cells by CMFDA dilution.

Patient-derived organoid co-culture. For organoid co-culture, patient-derived
glioblastoma tumor cells (P13, P16, P17) were treated with 0.11 DMC U/mL
neutral protease (Nordmark Biochemicals) at 37°C for 10 min, centrifuged for 5
min at 400 g, and resuspended in Neurobasal-A medium (Life Technologies). After
mixing with bone marrow-derived HSPCs at 1:1 ratio, cell suspensions were added
into 4 times volume of Matrigel (Corning) in a separate tube kept on ice, and
further transferred into a 96-well “droplet- forming plate” at a density of 2,000 cells
per 20 pL, similarly as described in®. Each droplet was then transferred into an
individual well of a 96-well plate and maintained in Neurobasal-A medium sup-
plemented with 1% or 10% FBS, 50 U/mL penicillin, 50 mg/mL streptomycin, 0.5
mM glutamine, 10 pg/mL FGF, 10 pg/mL EGF at 37 °C with 5 % CO,. Medium was
exchanged every 2 days.

Multiplex ELISA array. Conditioned media from patient-derived organoids were
assayed quantitatively for the following proteins: BDNF, CCL11, CCL17, CCL2,
CCL24, CCL26, CCL4, CCL5, CNTF, CSF2, CXCLS, EGF, FAS, GDNF, IENG,
IL10, IL18, IL1A, IL1B, IL4, IL6, LIF, MMP2, MMP3, NGF, TGFB1, TIMP1, TNF,
TNFRSF1A, VEGFA using a commercially available sandwich ELISA array kit
(Quantibody® Human Neuro Discovery Array Kit, RayBiotech, QAH-NEU-1)
according to the manufacturer’s instructions and analyzed using the Image] Soft-
ware v1.46r.

Invasion assay. To determine whether HSPCs recruit neural stem cells, a cell
invasion assay was performed using Cytoselect™ 24 well collagen 1 colorimetric
kit (Cell Biolabs). 250 pL cell suspension containing 0.5 x 10° cells/mL adult human
neural progenitor cells (AHNPs07) were added to the upper chamber. Lower
chambers were filled with 500 pL of CD34+ HSPC (Lonza) control or conditioned
media. The cells were incubated for 24 h, 48 h, and 72 h at standard cell culture
conditions (37°C, 5% CO,). Non-invasive cells were removed from the upper
chamber and invaded cells were stained and quantified by colorimetric measure-
ment as described in the manufacturer’s protocol.

Statistical analysis and random forest classifier. Statistical analyses were per-
formed in the R environment (version 3.6.1)37 or using the Prism software (v 8.4,
GraphPad). Paired (Fig. 1f) and unpaired samples were tested using two-tailed
Student’s ¢-test. p values were adjusted by the Benjamini-Hochberg procedure in the
case of multiple comparisons with control of the false discovery rate (FDR) at the 5
% level. Associations between categorical data were assessed using two-tailed
Fisher’s exact test. Correlations were described using Pearson’s r. Kaplan-Meier
estimators were compared using the log-rank test. In Fig. 6d, association of Syllogist
signals with survival data were assessed by comparing univariate Cox proportional
hazards models using the likelihood ratio test (p values corrected by the
Benjamini-Hochberg procedure). To this end, all continuous variables were binned
into two categories each using appropriate thresholds. This was necessary for the
proportional hazard assumption to be met for all variables included in the analysis.
This assumption was tested for each variable by the Schoenfeld individual test
before fitting the models. To adjust for potential confounders, we used Cox multiple
regression models. Box plots were drawn with boxes representing the interquartile
range (IQR), a line across the box indicating the median, and whiskers indicating
1.5 x IQR. The significance threshold was set at 0.05. For the random forest classifier
we used the rfsrc function of the random forest package randomForestSRC with the
following parameters: ntree = 1000, nsplit = 1, importance = “anti”. Variable
importance and estimation of the Brier score were reported in Fig. 6a.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

References to repositories for publicly available RNA-Seq datasets analyzed during the
current study are listed in Supplementary Data 10. Single cell RNA-Seq data generated in
this study (Fig. 4 and Supplementary Fig. 5) are available at the Gene Expression
Omnibus under the accession number GSE165238. The source data underlying Figs. 1-6
and Supplementary Figures 2 and 4-8 are provided as a Source Data file. All the other
data supporting the findings of this study are available within the article and its
supplementary information files and from the corresponding author upon reasonable
request. Source data are provided with this paper.

Code availability
R script and reference files used for transcriptome analyses are available at Zenodo with
the identifier https://doi.org/10.5281/zenodo.478228288.
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