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Abstract: This paper proposes a 3D object recognition method for non-coloured point clouds using
point features. The method is intended for application scenarios such as Inspection, Maintenance
and Repair (IMR) of industrial sub-sea structures composed of pipes and connecting objects (such
as valves, elbows and R-Tee connectors). The recognition algorithm uses a database of partial
views of the objects, stored as point clouds, which is available a priori. The recognition pipeline has
5 stages: (1) Plane segmentation, (2) Pipe detection, (3) Semantic Object-segmentation and detection,
(4) Feature based Object Recognition and (5) Bayesian estimation. To apply the Bayesian estimation,
an object tracking method based on a new Interdistance Joint Compatibility Branch and Bound
(IJCBB) algorithm is proposed. The paper studies the recognition performance depending on: (1) the
point feature descriptor used, (2) the use (or not) of Bayesian estimation and (3) the inclusion of
semantic information about the objects connections. The methods are tested using an experimental
dataset containing laser scans and Autonomous Underwater Vehicle (AUV) navigation data. The best
results are obtained using the Clustered Viewpoint Feature Histogram (CVFH) descriptor, achieving
recognition rates of 51.2%, 68.6% and 90%, respectively, clearly showing the advantages of using the
Bayesian estimation (18% increase) and the inclusion of semantic information (21% further increase).

Keywords: 3D object recognition; point clouds; global descriptors; semantic segmentation; semantic
information; Bayesian probabilities; laser scanner; underwater environment; pipeline detection;
inspection; maintenance and repair; AUV; autonomous manipulation; multi-object tracking; JCBB

1. Introduction

With the recent developments in the robotics industry there has been an increasing
use of vehicle-mounted sensors. These sensors seek to provide useful information to the
user, such as a clear perception of the environment, or provide more specific details such
as obstacles to be avoided or objects to interact with. The outputs of these different sensors
lead to different representations of the environment, depending on the sensor used and the
task to be accomplished.

Previous work on methods for collecting and interpreting spatial data for mobile
robotics could be broadly divided into into three main categories. The first focuses promi-
nently on data providing a 2D representation of the environment, such as images from
cameras. The second relies on 3D point cloud data from sensors like laser scanners or
acoustic ranging. The third uses hybrid data, either combining data from two different
sensors or using a composite sensor such as the Microsoft Kinect that provides both images
and point clouds. Over the last decade 3D point clouds have been widely used in computer
vision and mobile robotics applications, opening the door to important but challenging
tasks such as 3D object recognition [1–6] and semantic segmentation [7–9], which are core
steps for scene understanding.

Understanding scenes and being able to navigate while detecting objects of interest
is a fundamental task for self-driving vehicles and autonomous robots. To navigate an
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environment, the robot needs to build a representation of the content of the scene that
encapsulates the location of objects of interest within the environment.

In this line of research, the combined use of 3D object recognition and semantics
has contributed to the development of better approaches to scene understanding. In the
last decade various methods based on point clouds have been proposed, aiming to solve
semantic segmentation. Semantic segmentation [10–12] can be broadly defined as the task
of grouping parts of the input data, which can be 2D or 3D images or even 3D point clouds,
which belong to the same object class, thus classifying each pixel or 3D point in the input
according to a category.

Most of the recent methods deploy deep learning techniques while considering object
models as black boxes. This trend is highlighted in the survey published by Guo et al. [13]
on recent work on deep learning methods for point clouds, including semantic segmenta-
tion. Their survey reviews the most relevant applications for point cloud understanding,
within the topics of 3D shape classification, 3D object detection and tracking and 3D point
cloud segmentation. A review of state-of-the-art Deep Learning methods is presented
using various publicly available datasets.

Semantic segmentation was inspired by the success of Deep Learning methods in
producing an accurate result [10,13,14], but these techniques require an extremely large
amount of data to train the network. Such large datasets may be difficult to obtain, or
not provide adequate information, such as the case of man-made structures captured by
sensors that only provide colourless point clouds.

3D object recognition based on point clouds has been studied across various disci-
plines, with an emphasis on deep neural network based approaches and feature point
based methods. Relevant research in this area has been summarized and organized in
various survey, using global and local methods [3,15]. Global recognition methods describe
the entire object as a single vector of values, whereas local recognition methods are more
focused on local regions and are only based on salient points.

Accurate and efficient algorithms for segmentation and recognition are required for
the emerging Inspection, Maintenance and Repair (IMR) applications, especially given the
recent advances in laser scanning technology. An example of critical application scenarios,
that are attracting increasing research interest, are construction sites such as refineries
which have extensive networks of industrial pipelines, that need frequent inspection
and intervention.

Research in segmentation and recognition for pipeline sites has been conducted by
Huang et al. [16] and Pang et al. [17], where a complex pipeline structure is partitioned
and modeled as a set of interconnected parts using a Support Vector Machine (SVM)-based
approach and a single local feature descriptor. Another notable application to pipeline
classification is the work of Kumar et al. [18], in which an aerial vehicle equipped with
a low-cost Light Detection and Ranging (LIDAR) is able to map and identify pipes of
different lengths and radii. Ramon et al. [19] proposed a visual algorithm based on a
semantic Convolutional Neural Networks (CNN) to detect pipes. The authors presented
an approach based on a drone capable of autonomously landing on pipes, for inspection
and maintenance in industrial environments. More recently, Kim et al. [20] presented an
automatic pipe-elbow detection system in which pipes and elbows were recognized directly
from laser-scanned points. The methods they used are based on curvature information and
CNN-based primitive classification.

Regarding marine applications, the use of vision sensors underwater is becoming
widespread. However, these sensors impose strong requirements related to water turbidity
and the presence of light, to capture high quality images. Since the underwater images
are subjected to rapid attenuation and scattering of light, object detection and recognition
can only be performed at very short distances from objects, of the order of a few meters.
Acoustic propagation allows much longer ranges in terms of sensing distance, but the object
representations obtained are much too noisy and coarse in resolution to allow accurate
object identification and localization for autonomous object grasping.
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A comparatively small number of object recognition applications have been reported
underwater. These include pipeline identification and inspections based on optical images
in seabed survey operations [21], cable identification and pipeline tracking based on
acoustic images [22] and recognition of different geometric shapes such as cylinders and
cubes [23] using acoustic imaging cameras.

Similarly to in-air applications, Deep Learning methods have been quickly adapted
to handle object recognition in underwater environments. In [24], Yang et al. applied
both YOLOv3 [25] and Fast Region-based Convolutional Network (Faster R-CNN) [26]
methods based on deep learning to localise and classify the images from their dataset
Underwater Robot Picking Contest (URPC) into three categories—sea cucumber, sea urchin
and scallop. The two algorithms were used in comparative experiments, to select the best
algorithm and model for target detection and recognition, as part of their underwater
detection robot. In [27], a detailed review of Deep Learning-based object recognition is
given, whether it is underwater or surface target recognition. Surface object recognition
is mostly based on images, while underwater objects are recognized based on videos,
target radiated noises [28] and acoustic noises [29]. While Deep Learning outperforms
traditional machine-learning methods when large amounts of training data are available, it
also imposes additional effort in the annotation of those large amounts of data. Work on
detection and mapping of pipelines and related objects has focused, almost exclusively, on
above-water scenarios. An exception is the work of Martin et al. [30], which presents an
approach based on a deep neural network PointNet [31]. These authors are able to detect
pipes and valves from 3D point clouds with RGB color information, obtained with a stereo
camera, using their own dataset to train and test the network.

1.1. Objectives and Contributions

The present paper develops a semantic Bayesian model for the recognition of 3D un-
derwater pipeline structures. The proposed approach builds upon our previous work in [3],
and extends it in several directions. The present work was motivated by the challenges
stemming from real data collected under realistic underwater conditions with an AUV
equipped with a fast laser scanner developed at our research center [32]. An example of the
challenging conditions is the fact that data is collected by a free-floating, platform whose
movements create deformations of the perceived shape of the objects which are difficult to
be corrected with the typically available sensors, such as Inertial Measurement Unit (IMU)
and Doppler Velocity Log (DVL). Three main contributions of the present paper can be
summarized as follows.

• The 3D complexity of pipeline structures makes segmentation a difficult issue to deal
with. Our test structure, which is described in further detail in Section 5, includes
four different types of objects: two different valves (Butterfly-Valve and Ball-Valves), an
Elbow and a r-R-Tee. These objects are connected by cylindrical pipes. In this paper a
semantic segmentation method is proposed, based on geometric constraints together
with rules for decomposing connected pipe structures. The aim of this method is to
separate and distinguish, at the point cloud level, the points that belong to objects and
those that belong to connecting pipes.

• Most global 3D descriptor methods assume that the point clouds are de-noised, com-
plete, and consistent. This is not always the case, specially for the conditions that we
are targeting in this paper, where the objects may be partially occluded due to the
cluttered nature of the pipelines, and the point clouds may be inconsistent due to un-
modeled deformations caused scanner motions during acquisition. These conditions
commonly lead to false detection and overall failure of the global descriptor methods.
Additionally, the similarity between objects can also lead to confusion when only a
small or non-informative part of the object is observed. To overcome these limitations,
a Bayesian semantic model is proposed. Taking advantage of the results obtained in
our previous work [3], a confusion matrix was created for different global descriptors
and objects. In this study, only the two best performing descriptors were considered:
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CVFH and Oriented, Unique and Repeatable (OUR-CVFH).
• To feed the Bayesian estimation model, observations of the same object across multiple

scans are required. However, the underwater data suffer from the lack of DVL tracking
during the descent of the AUV and sometimes during the mission when, for example,
the sensor beams touch the side slopes of the test tank facility. The loss of DVL
tracking leads to a rapid degradation of the estimates of the absolute pose of the
pipeline structure with respect to the vehicle, which in turn hinders the ability to
correctly perform the tracking of the objects. To overcome this problem, a multi-
object tracking method inspired in the Joint Compatibility Branch and Bound (JCBB)
algorithm [33] was proposed.

1.2. Structure of the Paper

The remainder of the paper is organized as follows. Section 2 describes the processing
pipeline that is proposed in this paper. It includes a description of the object database, the
algorithms used for pipe detection and semantic object detection, and the object recognition
based on global descriptors. Section 3 describes the Bayesian Recognition component of
our approach. It details the object tracking and Bayesian estimation processes. In Section 4,
the algorithm developed for the recognition based on semantic information is detailed.
Section 5 presents a description of the experimental hardware, the testing conditions and
the analysis of the experimental results. This analysis is separated in terms of average and
class-by-class performance, followed by a discussion of results. Finally Sections 6 and 7
present the overall conclusions of this work and lines for further research, respectively.

2. 3D Object Recognition Pipeline

Our recognition strategy focuses on object recognition of connected objects, which
includes polyvinylchloride (PVC) pipes and attached elements, such as simple pipe con-
nectors and valves suitable for manipulation and intervention. The proposed recognition
pipeline is shown in Figure 1. The method uses, as input, a 3D point cloud acquired by a
laser scanner mounted on an AUV. The scene contains objects for which 3D models are
available a priori in a database. These objects are interconnected through pipes. The goal
of the algorithm is to identify these objects by returning the class of the object with its
associated Bayesian probability.

As shown in Figure 1, the recognition pipeline is divided into different modules
described in the following subsections.

2.1. Object Data Base

The data base contains 3D models of the a priori known objects. Each one is modelled
as a set of overlapping partial views stored as point clouds and covering the full object. The
details on how the data base was built are presented in [3]. The only difference regarding
the database used in the present paper is that, given the similarities of the partial views of
Ball-Valve and the Ball-Valve-S (as can be seen in Figure 2) it was decided to merge these
two classes into a single class labelled Ball-Valve.

The most relevant characteristics of the objects in the database are illustrated in Table 1
including their views.

2.2. Plane Segmentation

Our recognition system was tested in a robotics testing pool, as described in Section 5.
The pool walls appear in the scans as large co-planar sets of points. These surfaces need to
be removed in order to avoid unnecessary interference with the semantic segmentation that
will be applied to the industrial pipe structure. In order to achieve this, a plane segmenta-
tion procedure was implemented using the Random Sample Consensus (RANSAC) [34]
algorithm already available in Point Cloud Library (PCL) [35]. Due to the fact that the AUV
is free-floating and moving during the scan acquisitions, the sets of points corresponding to
the pool walls are not precisely co-planar. In fact, they follow a slightly curved but almost
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flat surface, which is not straightforward to describe parametrically. However good results
for the plane extraction can be achieved by properly adjusting the acceptance threshold in
the plane-fitting algorithm.

Figure 1. 3D Object Recognition Pipeline.

Table 1. Polyvinylchloride (PVC) pressure pipes objects used in the experiments.

PVC Objects Id Name Size (mm3) PVC Objects Views (12)

1-Ball-Valve 198× 160× 120

2- Elbow 122.5× 122.5× 77

3- R-Tee 122.5× 168× 77

4- R-Socket 88× 75× 75

5- Butterfly-Valve 287.5× 243× 121

6- 3-Way-Ball-Valve 240× 160× 172
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Figure 2. Ball-valve (top) and Ball-valve-s (bottom) with their respective segmented scan.

2.3. Pipe Detection

The next step is to detect the pipes that are visible within the current scan. A variety
of methods exist to estimate the parameters of primitive geometric shapes such as planes,
spheres, cylinders, cones, within 3-D point clouds [36–40]. In our case, a method based on
RANSAC-PCL [35] has been applied to detect the pipes in the scene which are modelled as
as cylinders of similar radii. The RANSAC-PCL method uses a seven parameter description
of the cylinders, where the first three represent a point on the axis, the second three
represent the direction of the axis, and the last one represents the radius of the cylinder.
Since the diameters of the pipes are known and equal to 0.064 m, we look for potential
candidate cylinders whose radii are within a tolerance of this value.

Once the set of points belonging to a cylinder has been identified, the location of the
extremities and the length can be computed by projecting the points on the cylinder axis and
calculating the maximum and minimum of the segment defined by the projection. Figure 3
shows, for a given scan, all detected pipes with their respective endpoints. Unfortunately,
in some cases, the same pipe may generate two different cylindrical point clouds. As
shown in the encircled area of the left Figure 4, two pipes where detected, one appearing
in red (the long one) and the other in blue (small section of a pipe). This happens due to
small deformations of the scan caused by the motion induced distortion present in the
underwater laser scanner [41]. Therefore, it is necessary to identify and fuse the point
clouds that correspond to the same pipe segment (Algorithm 1) in order to provide a set of
non duplicated pipes as input to the next module. The right side of Figure 4, shows the
result after the merging.

Algorithm 1: Detection of Pipes and Extremities

1 function DetectPipes(in: scan, out: PI):
// Returns the set of pipes PI detected in the scan using RANSAC

2 function MergePipes(in: MPi , out: PMPi
):

// Returns a single pipe (PMPi
) result of merging the input set of

pipes (MPi)

3 function PipeSegmentation(in: scan, out: PO):
// Returns the set of non duplicated pipes present in the scan

4 PI =DetectPipes(scan) // get the set detected pipes
5 forall Pi ∈ PI do

// MPi set of duplicated pipes to be merged
6 MPi = {Pi} ∪ {Pj ∈ PI |∃Pk ∈ MPi , (Colinear(Pj, Pk) ∧Overlapped(Pj, Pk))}
7 PMPi

= MergePipes(MPi) // merge the duplicated pipes

8 PO = PO ∪ {PMPi
} // add to the set of detected pipes

9 PI = PI \MPi // substract MPi form PI

10 return PO
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Figure 3. Pipes detection: (left) 3D laser scan point cloud; (right) pipes with their respective endpoints.

Figure 4. Pipes Merging: (left) Pipe detection result previous to merging showing, within circles,
multiple pipe detections of the same pipe; (right) Result after merging where the multiple detections
have been merged into a single one.

2.4. Semantic Object-Segmentation

This block of the procedure handles segmenting the object point clouds, from an input
scan, containing pipes and objects. Instance segmentation is the process of clustering of
input data (e.g., image or point cloud) into multiple contiguous parts without regard to
understanding the context of its environment. One of the drawbacks of instance segmen-
tation is that it relies on object detection methods to find the individual instances, which
results in segmenting only the detected instances, so its performance in terms of over- or
under-segmentation, depends on the result of the object detection method used.

By contrast, semantic segmentation partitions the scenes into semantically meaningful
parts, based on the understanding of what these parts represent, classifying each part into
one of the pre-determined classes: pipes and objects. Therefore, semantic segmentation
can be used to segment point clouds corresponding to challenging scenes where objects
are connected to pipes. Since the pipes have been already detected, and because they are
connected through objects, it is possible to exploit the connectivity and pipe intersections to
guide the segmentation process. The SemanticSegmentation(·) (Algorithm 2) is organized
in 4 steps:

1. Compute pipe intersections: This is done by the Connected function (Line 1) which, for
each pair of pipes, checks if they are connected through an object and returns the pipe
intersection point. To be connected, the axes of both pipes should be co-planar and
two of their extremities should be close enough. By close enough, we consider that
their distance should be smaller than the object size. Ideally, co-planarity means that
the axes, when taken as infinite lines, will intersect. In reality, the axis lines estimated
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for the two pipes may not intersect, but will have a small distance between them.
Therefore co-planarity is assessed by checking the inter-line distance.

2. Compute candidate object locations at the intersections: Each pair of pipes defines
an ’intersection’ point. Therefore, if we have 3 pipes connected to an object (e.g.,
the R-Tee), we have 3 pairs of 2 pipes having, therefore, 3 intersection points. The
function ComputeIntersectionLocations in line 16 clusters the intersection points corre-
sponding to the same object and computes their centroids, to obtain a single location
for each object.

3. Compute candidate object locations at isolated pipe extremities: Because of the
iterative nature of the scanning process it may happen that a pipe appears in a
scan together with an object at its extremity, while the other pipes connected to the
object have not yet been detected. The function ComputeExtremityLocations in line 17
computes the object locations in these cases. The outcome of this step is shown in
Figure 5.

4. Crop the objects from the input scan: Once the object locations are known (Ci ∪ Ce),
and knowing the dimensions of the objects, the points contained in a predefined
bounding box are cropped (line 25) and returned for object recognition.

Figure 6 shows an example of semantic segmentation where the candidate object
locations can be appreciated together with the segmented point clouds.

Figure 5. Semantic Segmentation: Red points represent the centroids of segmented objects. The red
circle shows a segmented object located at an isolated extremity.

Figure 6. Semantic Segmentation: (Left) Input 3D point cloud; (Right) Pipes (blue cylinders) with
their endpoints (green spheres), and the centroids of the objects to be segmented (red spheres) along
with the segmented objects point clouds (colored). The objects 1, 2, 3, 4 represent respectively: a
Ball-Valve, a 3-Way-Valve, an Elbow and a R-Tee.
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Algorithm 2: Semantic Segmentation

1 function Connected(in: Pi, Pj, out: connected, intersection):
// Computes the intersection point between Pi, Pj and returns if they are

connected
// Compute the points on the pipe axis lines defining the shortest

distance segment
2 (ci, cj)=LineToLineSegment(Pi, Pj)
3 d = ||ci − cj|| // Compute the line to line distance
4 intersection = (ci + cj)/2 // midpoint ≡ intersection ≡ obj pos
5 d1Pi = ||intersection− Extremity(1, Pi)|| // distance to extremities
6 d2Pi = ||intersection− Extremity(2, Pi)||
7 d1Pj = ||intersection− Extremity(1, Pj)||
8 d2Pj = ||intersection− Extremity(2, Pj)||
9 if (d < τd) then // coplanar?

10 if (d1Pi < τd) &&&&&& (d1Pj < τd) then return connected=true;
11 if (d1Pi < τd) &&&&&& (d2Pj < τd) then return connected=true;
12 if (d2Pi < τd) &&&&&& (d1Pj < τd) then return connected=true;
13 if (d2Pi < τd) &&&&&& (d2Pj < τd) then return connected=true;

14 else
15 return connected=false

16 function ComputeIntersectionLocations(in: Cp, out: Ci):
// Given the set of pipe pairs intersections (Cp), returns the set of

obj locations (Ci) at the pipe intersections

17 function ComputeExtremityLocations(in: P, Ci, out: Ce):
// Returns the set of obj locations at the isolated pipe extremities

18 function SemanticSegmentation(in: scan, P, out: O):
// Returns the set O of objects locations and their cropped point

clouds
19 CP = ∅ // set of pipe pairs intersections
20 forall (Pi, Pj) ∈ P× P|i 6= j do
21 if Connected(Pi, Pj, intersection) then CP = CP

⋃{(intersection, Pi, Pj)} ;

22 Ci =ComputeIntersectionLocations(CP) // set of obj pos at pipe
intersections

23 Ce =ComputeExtremityLocations(P, Ci) // set of obj pos at pipe extremes
24 O = ∅
25 forall objpos ∈ Ci ∪ Ce do
26 objpc =CropObject(objpos, scan) // crop the obj point cloud
27 O = O ∪ {< objpos, objpc >}
28 return O ; // return the set of obj locations and point clouds

2.5. 3D Object Recognition Based on Global Descriptors

Object recognition is based on the use of the global descriptors that we studied
and compared in [3]. The Clustered Viewpoint Feature Histogram (CVFH) [42] and the
Oriented, Unique and Repeatable CVFH (OUR-CVFH) [43] were the two descriptors that
achieved the best overall performance, so we have selected only these two descriptors. A
summary of their characteristics is presented in Table 2.

The descriptors are used to encode, in a compact way, the objects segmented in the
previous step. They also encode the object views stored in the database (see Table 1). In
this way, the segmented objects can be matched against the model views, comparing the
segmented input scan, with all the views of the object models in the database. Using the
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chi-square distance, as proposed in [44,45], the database view corresponding to the smallest
distance is selected.

Table 2. Summarized characteristics of the two descriptors used in this paper, respectively CVFH
and OUR-CVFH. The “based on” column indicates if the descriptor evolved directly from another
approach. The “use of normals” indicates whether the method uses surface normals for computing
the descriptor, while the last column indicates the length of the descriptor vector.

Descriptor
Main Characteristics

Based on Use of Normals Descriptor Size

Clustered Viewpoint Feature
Histogram (CVFH)-2011—[42]

Viewpoint Feature
Histogram(VFH) [46] Yes 308

Oriented, Unique and Repeatable
CVFH (OUR-CVFH)-2012—[43] CVFH [42] Yes 308

3. Bayesian Recognition

One of the problems of performing single view object recognition as proposed above
(in Section 2.5) is that several objects may have similar views. Partial views of the R-Tee may
be easily confused with the Elbow for instance. In [3] we studied the confusion matrices
for the different objects. The confusion matrices state, for n observations of a given object,
how many of them were recognised as object-class-1, how many as object-class-2 and so on.
Therefore, they can be easily converted into probabilities which can be used to implement
a Bayesian estimation method for object recognition to attain more robust results. This
is achieved by combining several observations to compute the probability that an object
belongs to each object-class, selecting, then, the one with highest probability as the solution.
To do this, first it is necessary to be able to track the objects across the scans (as described
in Section 3.1) so that their Bayesian probabilities can be iteratively computed (Section 3.2).

3.1. Object Tracking

To track objects across the scans we have to solve the data association problem. The
simplest way to do it is to use the Individual Compatibility Nearest Neighbour (ICNN). This
can be done if a reasonable dead reckoning navigation is available. In presence of significant
uncertainty ICNN is not enough, and more powerful strategies such as the JCBB [33] are
required. JCBB explores the interpretation tree (Figure 7) searching for the hypothesis
with largest number of jointly consistent pairings between measurements (ei) and features
( f j). The validation of the hypothesis is based on two conditions: (1) the candidate set
of pairings must be individually and jointly compatible and (2) only those hypotheses
that may increase the current number of pairings are explored (bound condition). The
first condition is achieved by comparing the Mahalanobis distance of the set of candidate
pairings with a threshold, defined at a given confidence level, of the related Chi-square
distribution. The second condition is met by estimating the maximum number of pairings
we can achieve if we keep exploring the current branch. Since each depth level of the
tree represents a potential pairing, the number of levels below the node of the current
hypothesis is an estimate of the maximum number of pairings we may add by exploring
the current branch. Then it is only worth continuing exploring if the number of pairings of
the current hypothesis plus the maximum number of achievable pairings is higher than the
one associated with the current best hypothesis.

Unfortunately, when an AUV navigates close to vertical 3D structures, like a water
tank, some DVL beams may suffer from multi-path effects leading to incorrect localization
(position jumps). This type of error cannot be solved using the standard JCBB. For this
reason, a navigation-less variation of the JCBB algorithm based on the intra-scan inter-
object distances is proposed in Algorithm 3, which will be referred to as IJCBB. In this case,
the algorithm pairs objects that are present in two scans so that all their inter-distances in
both scans remain unaltered. Let us consider two sets of object locations E = {e1e1e1, . . . , ememem}
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and F = { f1f1f1, . . . , fnfnfn} segmented from two given scans (SE and SF), whose objects we want
to associate. A matching hypothesis is defined as a set of non-duplicated potential pairings
from both scans:

H = {pij = (ei, f j) ∈ E× F/∀pkl ∈ H =⇒ i 6= k and j 6= l}. (1)

An hypothesis is considered to be jointly compatible if and only if, the distance
between any two objects in scan Si and the corresponding distance of their matching
objects in scan Sj also matches:

H Jointly compatible ⇐⇒ (∀ pij, pkl ∈ H =⇒ ||ei − ek|| = || f j − fl ||). (2)

Figure 7. Interpretation tree stating, for each object ei (level i) its potential associations f1...n, repre-
senting the (*) node, a spurious measurement.

Then, as stated above, the goal of IJCBB (Algorithm 3) is to find the largest hypothesis
HL for which the condition in Equation (2) holds. Once HL has been computed, the
roto-translation transformation between both scans can be computed using Single Value
Decomposition (SVD) [47]. The minimum number of matching pairs required to solve for
the roto-translation is 3, which defines 3 inter-distances. Figure 8 shows an example of the
ambiguities that may arise using 3 pairs only.

Let us consider a robot located at a pose ηkηkηk (yellow) moving, during a small time
interval ∆t, a displacement ∆η∆η∆η to achieve a new pose ηk+1ηk+1ηk+1 (green). Let η̂kη̂kη̂k, ∆η̂∆η̂∆η̂ and η̂k+1η̂k+1η̂k+1
be the estimates of the corresponding vectors. If ∆η̂∆η̂∆η̂ is incorrect due to a failure in the
navigation sensors, the estimated robot location at time k+ 1 (η̂k+1η̂k+1η̂k+1) is also erroneous (frame
{Ek+1} in orange). Now, let us consider 3 equidistant objects: o1o1o1, o2o2o2 and o3o3o3, observed from
{Sk} as: e1e1e1, e2e2e2 and e3e3e3 as well as from {Sk+1} as: f1f1f1, f2f2f2 and f3f3f3. Since the 3 inter-distances
are equal, 6 possible pairings exist ({e1 f1, e2 f2, e3 f3e1 f1, e2 f2, e3 f3e1 f1, e2 f2, e3 f3}, {e1 f2, e2 f3, e3 f1e1 f2, e2 f3, e3 f1e1 f2, e2 f3, e3 f1}, {e1 f3, e2 f1, e3 f2e1 f3, e2 f1, e3 f2e1 f3, e2 f1, e3 f2},
{e1 f3, e2 f2, e3 f1e1 f3, e2 f2, e3 f1e1 f3, e2 f2, e3 f1}, {e1 f1, e2 f3, e3 f2e1 f1, e2 f3, e3 f2e1 f1, e2 f3, e3 f2}, {e1 f2, e2 f1, e3 f3e1 f2, e2 f1, e3 f3e1 f2, e2 f1, e3 f3}), the first 3 (the ones involving a rota-
tion in the plane only) are shown in Figure 8. The other three are not considered since
they involve a motion (in pitch) which the robot cannot manage. The actual solution
corresponds to frame {S1,k+1} (in green) while the others ({S2,k+1} and {S3,k+1} both in
grey) are not correct. Given the fact that we are tracking the robot pose, ∆t is very small
so the smallest motion (lower ∆ψi) can be considered the correct one. In case only two
inter-distances are equal, then four pairings exist and only two are relevant. Again, the
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smallest motion heuristic can be applied. When all the inter-distances are different a single
pairing exists.

Algorithm 3: IJCBB

// The algorithm is called as HL = I JCBB([], [], 1, e1...m, f1...n)
// HL[i] = j⇒ (ei, f j) is a pairing; HL[i] = 0⇒ ei is not paired
// e1...m : object locations in the first scan SE indexed by i
// f1...n : object locations in the second scan SF indexed by j

1 procedure IJCBB(in: H, Best, i;out: H, Best):
2 if i > m then /* leaf node? */
3 if Pairings(H) > Pairings(Best) then
4 Best← H;

5 else
6 for j=1 to n do
7 if JointCompatible(H, i, j) then
8 IJCBB([H j], Best, i + 1) /* (ei, f j) accepted */

9 if Pairings(H) +m− i > Pairings(Best) then
10 IJCBB([H 0], Best, i + 1) /* star node, ei, not paired */

11 function JointCompatible(in: H, i, j, out: compatible):
// Returns true if
// τψ : maximum rotation ∆ψ that can be experimented in ∆t seconds

12 switch i do // number of pairings in the hypothesis
13 case 1 do
14 return true

15 case 2 do
16 return InterdistanceCompatible(H,i,j)

17 otherwise do
18 return (InterdistanceCompatible(H,i,j) && GetRotation() < τψ)

{N}

{Sk} {Sk+1,S1,k+1}

{Ek+1}

ψn Δψ1⌘̂k̂⌘k̂⌘k

ψn+1
�⌘̂�⌘̂�⌘̂

Δψ2

Δψ3

Δψ

{S3,k+1}

{S2,k+1}

o1

o2

o3
e1

e2

e3
f1

f2

f3

⌘̂k+1⌘̂k+1⌘̂k+1

Figure 8. Roto translation estimation.
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It may also happen that Equation (2) holds for an incorrect data-association hypothesis.
This means that we can have two different sets of objects, having the same inter-distances.
This may happen when scanning repetitive structures, for instance. Again, because ∆t is
small, the small motion heuristic also works providing the correct roto-translation. For these
reasons, the JointCompatible(·) function in Algorithm 3 checks the rotation angle implied
by the hypothesisH, which should be small enough to be considered jointly compatible.

Figure 9 shows the tracking of two consecutive scans using IJCBB. The red objects
were detected from SE and the blue ones from SF, corresponding to the previous and the
current scan. In this case five objects were paired, while other three were discarded.

Figure 9. Tracking objects over two consecutive scans, represented in green/red and yellow/blue.
The significant displacement between the two scans is the results of navigation inaccuracies from
noisy Doppler Velocity Log (DVL) readings in the test pool. The solid lines indicate the objects
associated by the tracking.

3.2. Bayesian Estimation

The objects can often be confused with others. This happens because we are dealing
with partial views of the objects appearing in the scans, which may match several views
of other objects in the database. To overcome this problem, we propose to use Bayesian
estimation. The object confusion matrix, already computed in [3], can be used as an estimate
of the conditional probabilities needed for this purpose. Let Z be the object class recognized
with the global descriptor, X its actual class and let their sub-indexes represent each one
of the potential classes (Ball-Valve:1, Elbow:2, R-Tee:3, R-Socket:4, Butterfly-Valve:5, 3-Way-
Valve:6), then P(ZC|Xi) provides the probability of recognising an object as belonging to
class ZC when its actual class is Xi. If C = i then it is a True Positive (TP), otherwise
(C 6= i) it is a False Positive (FP). Tracking the objects across the scans allows computing
its class probabilities in an iterative way, selecting the one with highest probability as the
recognized one.
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The proposed Bayesian recognition method is shown in Algorithm 4. The observa-
tion probabilities P(Zj|Xi) contained in the PZ|X matrix are computed from the synthetic
confusion matrix (Table 3). Then, given an Object O and the class ZC resulting from the
descriptor-based recognition, the next procedure is followed. If the object is observed for
the first time (line 8) its prior probability is initialized considering each potential class
as equi-probable (line 11). Lines 12–16 use the Bayes Theorem to compute the probabil-
ity of the object belonging to each potential class j, given the observed class ZC and its
prior probability O.P[j]. Finally, the most likely class is returned as the one recognised by
the method.

Algorithm 4: Bayesian-based Recognition

// Ball-Valve :1, Elbow :2, R-Tee :3, R-Socket :4,Butterfly-Valve :5,
3-Way-Valve :6

1 function CompatibleClasses(O):
2 return [1,2,3,4,5,6]

3 function BayesianRecognition(in: O, ZC; out: O):
4 return Recognition(O, ZC, O)

5 function Recognition(in: O, ZC; out: O):
// ZC ∈ {1, . . . , 6} Detected Class
// O = 〈seen : boolean, P = [P(X1), · · · , P(X6)], np, id〉}
// Observation probabilities extracted from the Confusion Matrix

6 PZ|X =


P(Z1|X1) P(Z1|X2) . . . P(Z1|X6)
P(Z2|X1) P(Z2|X2) . . . P(Z2|X6)

...
...

. . .
...

P(Z6|X1) P(Z6|X2) . . . P(Z6|X6)


7 SC=CompatibleClasses(O) // Set of compatible classes
8 if ¬(O.seen) then
9 O.seen = true // First Observation of O

10 forall j ∈ SC do
11 O.P[j] = 1/#SC // All classes are equiprobable

12 forall j ∈ SC do
13 P[j] = PZ|X [ZC, j] ∗Oi.P[j] // Non normalized Bayesian prob:

P(ZC|Xj) ∗ P(Xj)

14 η = 1/∑j∈SC
P[j] // Compute the Normalizer

15 forall j ∈ SC do
16 O.P[j] = η ∗ P[j] // Normalized Bayesian probabilities

17 O.id = argmax
j∈SC

O.P[j] // Select the Most likely class

18 return O.id
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Table 3. Confusion Matrices expressed as a numerical %.

Descriptors Experiment

Objects

Ball Valve Elbow R-Tee Butterfly-Valve 3-Way-Ball-Valve

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

CVFH

SYN 63 10 7 1 2 19 2 75 7 14 1 1 4 27 65 2 1 1 17 5 1 1 54 21 9 3 1 1 1 84

DESC 72.5 9.5 1 2.5 3 11.5 10 86.67 3.33 0 0 0 23.5 8 41.5 0 2.5 24.5 50.67 0 1.33 0 25.33 22.67 58.82 0 0 0 11.76 29.41

BAYS 100 0 0 0 0 0 10 90 0 0 0 0 5.5 0 57 0 7 30.5 4 0 0 0 96 0 100 0 0 0 0 0

SEM 100 0 0 0 0 0 0 96.67 0 0 0 3.33 1 0 57 0 1.5 40.5 4 0 0 0 96 0 0 0 0 0 0 100

OUR-CVFH

SYN 62 8 11 1 2 16 2 68 11 17 1 1 2 22 71 3 1 1 13 7 4 1 63 13 10 3 4 1 1 81

DESC 49 28 1 4 1 16 10 86.67 0 0 0 3.33 3 30 40 0 0 26 28 4 0 0 58.67 9.33 64.71 0 0 0 17.65 17.65

BAYS 60 40 0 0 0 0 6.67 93.33 0 0 0 0 1 10.5 46.5 0 0 42 0 0 0 0 98.67 1.33 35.29 0 0 0 64.71 0

SEM 84 15 1 0 0 0 0 96.67 0 0 0 3.33 1 0 57 0 0 42 0 0 0 0 98.67 1.33 0 0 11.76 0 0 88.24
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4. Semantic-Based Recognition

The recognition rate can be further improved using semantic information about the
number of pipes connected to the object and their geometry. This information can be
used to constrain the set of potential compatible classes for a given object. As an example,
if we know that an object is connected to 3 pipes, then only two candidate classes are
possible—the R-Tee and the 3-Way-Valve. Then, we can compute the Bayesian probabilities
for these candidates classes only, assigning zero probability to the rest. Because we track the
pipes to segment the objects, we can use this already available information to estimate the
connectivity of the objects, and use this semantic information to improve the recognition
results. The method has the potential to disambiguate confusing objects having different
connectivity. For instance, certain views of the Ball-Valve can be easily confused with the
3-Way-Valve (See Figure 10). This ambiguity can be easily resolved by taking into account
the connectivity. Algorithm 5 shows this modification with respect to the Bayesian method
algorithm discussed above. The function CompatibleClasses(O), originally returning the 6
classes, now returns only the set of classes compatible with the object connectivity geometry.
It is worth noting that, given the iterative nature of the scanning process, a certain object
may appear connected to a single pipe at first, and connected to two or three pipes later on.
Therefore, 4 different geometric configuration may arise (Table 4):

1. Three pipes: 2 collinear and one orthogonal. This group contains the R-Tee and the
3-Way-Valve.

2. Two orthogonal pipes: This group contains the Elbow but also the members of the
previous group, since it is possible that the third pipe has not been observed yet.

3. Two collinear pipes: All objects are included in this group, except the Elbow (because
it is orthogonal) and the R-Sockets (because only one side can be connect to a pipe of
the given radius). The remaining objects admit a collinear connection to 2 pipes.

4. Single or no connection: All objects are considered as potential candidates.

Figure 10. Confusing Views of the Ball-Valve and 3-Way-Valve objects.

Algorithm 5: Semantic-based Recognition

// Ball-Valve :1, Elbow :2, R-Tee :3, R-Socket :4,Butterfly-Valve :5,
3-Way-Valve :6

1 function ConectedPipes(O):
2 return Number of pipes connected to the object O

3 function Collinear(O):
4 return true if the object connected pipes are collinear, false: otherwise

5 function CompatibleClasses(O):
6 if ConectedPipes(O) = 3 then return [3, 6];
7 if ConectedPipes(O) = 2 &&&&&&¬Collinear(O) then return [2, 3, 6];
8 if ConectedPipes(O) = 2 &&&&&& Collinear(O) then return [1, 3, 5, 6];
9 return [1, . . . , 6]

10 function SemanticRecognition(in: O, ZC; out: O):
11 return Recognition(O, ZC, O)
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Table 4. Semantic connection of Objects.

Type of Connection
Pipes Disposition

Potential Objects Candidate
np ‖ ⊥

3 2 1

2 0 2

2 2 0

1|0 1|0 1|0

5. Experimental Results
5.1. Test Platform and Laser Scanner

Testing was conducted using the Girona 500 AUV, a lightweight intervention- and
survey-capable vehicle rated for 500m depth with dimensions of 1m in height and width,
and 1.5m in length. The lower hull houses the heavier elements such as the batteries
and removable payload, whereas the upper hulls contain flotation material and lighter
components. This arrangement enables the vehicle to be very stable in roll and pitch due
to the distance between the centers of mass and flotation. The pressure sensor, the Attitude
and Heading Reference System (AHRS), the Global Positioning System (GPS), the acoustic
modem and the DVL provide measurements to estimate the pose of the vehicle. The current
configuration of thrusters provides the AUV with 4 degrees of freedom (DoF) which can
be controlled in force, velocity and position. Finally, the vehicle software architecture is
integrated in Robot Operating System (ROS) [48] simplifying the systems integration.

The laser scanner was designed and developed in-house [49]. It contains a laser line
projector, a moving mirror driven by a galvanometer, a camera and two flat viewports, one
for the camera and one for the laser. The galvanometer is electrically synchronized with
the camera, such that the image acquisition is only performed when the galvanometer is
stopped, thus producing an image with only one single laser line. The sensor generates a
3D point cloud by triangulating all the laser points corresponding to the different mirror
positions during a full scan. For the experiments in this paper, the scanner was configured
to acquire scans at a rate of 0.5 Hz generating ≈200 k points/s and 400 lines/scan. At a
nominal distance of 3 m, the distance between scan lines is ≈4.5 mm.

5.2. Experimental Setup

The experiments consisted in exploring an underwater industrial structure made of
pipes and valves, having approximate dimensions of 1.4 m width, 1.4 m depth and 1.2 m
height (see Figure 11). During the experiment, the Girona 500 AUV was tele-operated to
move around the structure. To reduce the distortions within each scan produced by the
vehicle motion, the AUV was put in station-keeping mode during the acquisition of each
scan. The structure was mapped at a distance ranging from 2 to 3.5 m.

During the experiment, 100 scans were processed containing a total of 523 object
observations of 13 different objects from 6 different classes.

To evaluate the performance, ground truth was created by manually labelling objects
appearing in the scans.

The following three object recognition methods, described in this paper, have
been evaluated:

1. The Object Recognition Pipeline described in Section 2.
2. The Bayesian estimation extension presented in Section 3.
3. The Semantic Bayesian estimation extension presented in Section 4.
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The three methods were tested using the two descriptors—CVFH and OUR-CVFH.
These descriptors were selected because they provided the best experimental results in our
previous survey paper [3].

a b c
Figure 11. Image of the Girona 500 AUV inspecting the structure. The mapped structure before deployment (a), underwater view of
the water tank (b) and online 3D visualizer with a scan of the structure (c).

The IJCBB method (Algorithm 3) was used to address and solve the issue of the
navigation jumps, thus allowing tracking of objects across the scans. Consistent tracking of
objects is required for the Bayesian estimation to work properly. The effect of the IJCBB
method can be seen in Figure 12. The left side shows the accumulation of object instances
using only the dead reckoning from the vehicle navigation data. The large navigation
errors and the close proximity of some objects leads to some of the tracked objects being
incorrectly assigned over time. The right side illustrates the improvement in the localization
of these objects by using the tracking based on the IJCBB.

Figure 12. Mapped object point clouds: (Left) Located at their dead reckoning position; (Right)
Located at the position estimated by the tracking using the IJCBB algorithm on the right.

Figure 13 and Table 3 show the graphical and numerical representation of the confu-
sion matrices computed for the following cases:

1. The Synthetic Confusion Matrix.
2. The Confusion Matrix based on global descriptors only.
3. The Confusion Matrix incorporating Bayesian estimation.
4. The Confusion Matrix incorporating Bayesian estimation and semantic information.

The first confusion matrix was computed based on the results of our previous paper [3].
It was obtained by averaging the confusion matrices corresponding to the partial and the
global view experiments for the noise matching and resolution in the order of magnitude
of the one of our scanner (σ = 0.00625, resolution = 0.007 [m]) and for the case where the
same resolution is used for the scan and the object 3D model in the data base. The other 3
were computed from the results of the experiment.
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Figure 13. Graphical representation of the Confusion Matrices.

5.3. Average Performance

The average object recognition rate (percentage of correctly recognized objects) for
both descriptors, CVFH and OUR-CVFH, is summarized in the last column of Table 5. It
can be appreciated that, as hypothesised, in both cases the Bayesian estimation improves
the recognition rate achieved with the descriptor alone. Moreover, the use of semantic infor-
mation further improves the results. When using the OUR-CVFH descriptor improvements
(with respect to the semantic method) of 9% and 25% respectively are observed, achieving
a final average recognition rate of 85%. Nevertheless, the best results are achieved using
the CVFH descriptor, where the Bayesian method improves recognition by 18% and the
semantic variant provides a further improvement of 21%, reaching an average recognition
rate of 90%.

Table 5. Average of recognition per Object and methods for all descriptors, represented in a table.

Descriptors Experiment Average

CVFH
Descriptor 51.2
Bayesian 68.6
Semantic 90

OUR-CVFH
Descriptor 50.8
Bayesian 59.8
Semantic 85

5.4. Class-by-Class Performance

Now let us focus on the class-by-class performance. To provide a better insight, the
evaluation is based on the performance metrics (recall, precision and accuracy) for each
descriptor-method-class combination reported in Table 6, and illustrated graphically in
Figure 14.
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Table 6. Assessment of the recognition performance through Accuracy, Recall and Precision. Qualitative labels used in the text: bad (0–0.2); poor (0.2–0.4); medium; good; excellent.

Descriptors Experiment

Objects

Ball Valve Elbow R-Tee Butterfly-Valve 3-Way-Ball-Valve Average
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CVFH

DESC 0.65 0.73 0.60 0.88 0.87 0.43 0.70 0.42 0.95 0.80 0.25 0.59 0.73 0.29 0.05 0.75 0.51 0.52

BAYS 0.92 1.00 0.85 0.99 0.90 1.00 0.83 0.57 1.00 0.96 0.96 0.84 0.84 0.00 0.00 0.91 0.69 0.74

SEM 0.99 1.00 0.98 1.00 0.97 1.00 0.83 0.57 1.00 0.99 0.96 0.96 0.84 1.00 0.17 0.93 0.90 0.82

OUR-CVFH

DESC 0.64 0.49 0.70 0.67 0.87 0.18 0.68 0.41 0.98 0.88 0.59 0.90 0.70 0.18 0.03 0.71 0.50 0.56

BAYS 0.78 0.60 0.92 0.75 0.93 0.22 0.75 0.47 1.00 0.96 0.99 0.87 0.76 0.00 0.00 0.80 0.60 0.60

SEM 0.92 0.84 0.99 0.93 0.97 0.49 0.82 0.57 0.97 1.00 0.99 1.00 0.82 0.88 0.15 0.90 0.85 0.72



Sensors 2021, 21, 1807 21 of 27

Figure 14. Evaluation of the recognition performance using Accuracy, Recall and Precision
for descriptor-based, Bayesian-based and semantic-based method for both: (Top) OUR-CVFH;
(Bottom) CVFH.

5.4.1. Descriptor Based Recognition Pipeline

When using only the descriptor based recognition, the performance varies across
the object classes. For CVFH, the recall is excellent for the Elbow, good for the Ball-Valve,
medium for the R-Tee and poor for the Butterfly-Valve and the 3-Way-Valve. On the other
hand, the precision is excellent for the R-Tee, good for the Ball-Valve and the Butterfly-Valve,
medium for the Elbow and poor for the 3-Way-Valve. Similar results are obtained for the
OUR-CVFH descriptor which achieves an excellent recall for the Elbow, medium for the
Ball-Valve, the R-Tee and the Butterfly-Valve and again bad for the 3-Way-Valve. In this case
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the precision is excellent for the R-Tee and the Butterfly-Valve, good for the Ball-Valve and
poor for the Elbow and the 3-Way-Valve.

5.4.2. Bayesian Estimation

When applying Bayesian estimation with the CVFH descriptor, both performance
metrics improve significantly becoming excellent for the Ball-Valve, the Elbow and the
Butterfly-Valve. For the R-Tee the recall is medium with an excellent precision, but for the
3-Way-Valve both metrics are actually worse. The precision remains excellent for the R-Tee
and improves to excellent for the Ball-Valve, the Elbow and Butterfly-Valve, but remains poor
for the 3-Way-Valve. For the OUR-CVFH descriptor, the performance improves slightly less.
The recall remains excellent for the Elbow and improves to excellent for the 3-Way-Valve. It
remains good for the R-Tee and improves to good for the Ball-Valve, but still poor for the
3-Way-Valve. On the other hand, the excellent precision of the R-Tee and the Butterfly-Valve
is maintained while it evolves from good to excellent for the Butterfly-Valve, and from bad
to poor for the Elbow, but remains poor for the 3-Way-Valve. However, in general all the
metrics improve.

5.4.3. Bayesian Estimation and Semantic Information

When semantic information is included in the Bayesian estimation, the performance
further improves. For CVFH, the recall and precision qualitative performance remains the
same (mostly excellent) but their numerical values increase slightly. Moreover, the poor
performance in the Bayesian estimation of the 3-Way-Valve, improves to excellent. The
OUR-CVFH descriptor improves significantly in this case. The recall, remains excellent
for the Elbow and the Butterfly-Valve and improves to excellent for the Ball-Valve and the
3-Way-Valve while maintaining the medium performance (but increasing by 10%) for the
R-Tee. Its precision remains excellent for the Ball-Valve and Butterfly-Valve (in both cases
increasing numerically), evolving from poor to medium for the Elbow, although still poor
(but increasing the value) for the 3-Way-Valve. Again, all the numerical values of the
statistics improve.

The overall best results are obtained using the CVFH and the semantic-method with
excellent recall and precision for every object class except the R-Tee which has medium
recall and the 3-Way-Valve which has poor precision.

5.4.4. Discussion

Analysing the results reported in Table 4, we realise that for the Butterfly-Valve and the
3-Way-Valve object classes the recall achieved with the descriptor method is significantly
below the average recall. Moreover, for the 3-Way-Valve, the Bayesian method is not
improving the results but causing troubles. To understand what happens let us examine
the synthetic confusion matrix (Figure 13) for both descriptors. It can be appreciated that
the Butterfly-Valve is commonly confused with the Ball-Valve and the 3-Way-Valve. For
both descriptors the Butterfly-Valve (TP) observation probability is significantly higher
(>50%) than the probabilities of the Ball-Valve and the 3-Way-Valve (False Negatives (FNs)).
However, when the confusion matrix is computed from the experimental data similar
recognition percentages are found for OUR-CVHF while they are reversed for the CVFH,
with higher probabilities for the FNs (Ball-Valve and 3-Way-Valve) than for the TP (Butterfly-
Valve). Using the partial views observed with the scanner in the experiment, CVFH is not
working as well as it did with the synthetic ones simulated in [3]. Instead, the experimental
and synthetic behaviours of OUR-CVFH are closer.

The problem is more severe with the 3-Way-Valve whose experimental and synthetic
recognition percentages are also reversed, and in addition suffering a poor accuracy,
indicating that most of the observations are actually FNs. If we take a close look at the
partial views obtained after the segmentation (see Figure 15) we can see that unfortunately
most of them correspond to challenging scans (in red). Recognizing the object from those
views is difficult, if not unfeasible, even for the human perception. This suggests that a
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method should be designed to decide which view is representative and therefore worth
attempting to recognize and which one should just be ignored.

Figure 15. PVC objects used in the experiment (first column) with their respective database views
(second column). The last two columns provide manually selected examples of segmented objects
from the experiments, with the most difficult in red and the easiest in blue.

For the Butterfly-Valve, the Bayesian method does an excellent job, bringing the recall
and the precision to 0.96 and 0.84 for CVFH and to 0.99 and 0.87 for OUR-CVFH. To un-
derstand why, let us focus on the CVFH descriptor. The TP probability (P(Z5|X5) = 0.54)
is discriminant in comparison to the FP probabilities (P(Z5|X1) = 0.02, P(Z5|X2) = 0.01,
P(Z5|X3) = 0.01, P(Z5|X4) = 0.1, P(Z5|X6) = 0.01).This means that a single TP observa-
tion assigns more weight to the probability of the TP-class than several FP observations do
with their counterparts. Its accuracy (0.59) also helps, since it means that there are more
TPs than FPs, driving therefore, the Bayesian estimation towards the correct class. The
same happens for OUR-CVFH where we start from a much better point with a recall of
0.59 and a good precision of 0.9. Unfortunately this is not the case for the 3-Way-Valve
whose performance even decreases for both descriptors when using the Bayesian method.
For the CVFH case, even though the TP probability (P(Z6|X6) = 0.84) is high, there are
two significant FP probabilities in play (P(Z6|X1) = 0.19, P(Z6|X5) = 0.21).Adding this
to the very high number of FPs (where precision is only 5%) explains the fact that the
Bayesian method is not helping but actually making it worse. It is worth remembering that
the origin of the problem is the fact that the 3-Way-Valve partial views obtained after the
segmentation are poor representatives of the object class.

When semantics are taken into account during the Bayesian estimation process, the
results improve further. Now, Bayesian estimation only affects those classes which are
compatible in terms of pipe connectivity. Because classes having a significant confusion,
like the 3-Way-Valve and the Ball-Valve for instance, have different connectivity (3 and 2
respectively), so they can be easily distinguished by the number of connected pipes. This
further improves the results of all the object classes, recovering, in particular the recall of
the 3-Way-Valve. However, the precision is still poor because there are a significant number
of FPs which are compatible in terms of connectivity. This is the case of the R-Tee class,
which is often confused with the 3-Way-Valve. Because both classes are equivalent in terms
of connectivity, the semantic-based method is not able to help. Again, it is worth noting
that the origin of the problem is the poor 3-Way-Valve views observed in the experiment.
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6. Conclusions

Detecting and recognizing multiply connected objects in underwater environments is
a complex task that must be performed under the constraints of the sensor, the acquisition
platform and the nature of the shapes of the objects we wish to detect. In this paper, we
have presented a method to recognize 3D objects as part of a pipeline for acquiring and pro-
cessing non-colored point clouds using point features. The presented method is intended to
be used for Inspection, Maintenance and Repair (IMR) of industrial underwater structures.
As a representative example for testing, the developed methods were applied to a test
structure consisting of pipes and connected PVC objects. These objects pose considerable
challenges for an object recognition system, due to view-dependant similarities in their
appearance. As such, the testing conditions capture the main difficulties of a real scenario
for underwater Inspection, Maintenance and Repair (IMR).

An initial goal of this paper was to develop methods for the pre-processing of point
cloud data that would potentiate and facilitate the recognition task. These methods include
plane and pipe detection, semantic segmentation, and object tracking based on the IJCBB
algorithm. Semantic segmentation aimed at better obtaining a set of points that belong
to the objects, in order to reduce the negative impact of the presence of parts of the
pipes, during recognition. The semantic segmentation involved determining the pipe
intersections, to then allow for computing candidate object locations and therefore perform
a better crop of the input scan so that it tightly encapsulates the object to be recognized.
The IJCBB-based tracking aimed at correcting the effects of inconsistencies in the robot
navigation, which appeared in the form of sudden jumps in the estimated pose of the AUV
that preclude the tracking of the objects along scans.

The second goal, which conveys the most important contributions of this study, is the
comparison of three established methods, namely descriptor-based, Bayesian-based and
semantic-based recognition.

The descriptor-based method, which was used in our previous work [3] to detect
individual objects attained good performance, especially when the scans contained a
complete, occlusion-free view of the objects. Considerably better results were obtained
by tracking objects along scans and using a Bayesian framework to keep recognition
probabilities assigned to each object, achieving, for the CVFH descriptor an 18% increase
in the average recognition rate.

It should be noted that there is a significant increase in the recognition rate when
the object to be detected satisfies the conditions that a relevant part of the object shape is
present, and that distinctive features of the objects are visible. Clear examples where these
conditions were not met were the Butterfly-valve and the 3-way-ball-valve. These two objects
were affected by poorly segmented views, which resulted in the loss of the distinctive
features needed for discrimination among objects. In this case, the distinctive features are
the handle for the Butterfly-valve and the part of the opening of the 3-way-ball-valve.

These problems have been addressed by semantics-based recognition, which considers
a set of rules based on pipe intersections that allow computation and updating of the
Bayesian estimation approach, considering only objects that verify these rules. For the
CVFH descriptor, the inclusion of semantic rules increases the average recognition rate by
21% with respect to the Bayesian method.

7. Future Work

Although there are clear advantages to using semantic information with the Bayesian
method for recognition, the dependence of the recognition system on the segmented
views makes it vulnerable in some cases. Motivated by the improved results achieved
by using semantic information within the Bayesian approach, near-term future work will
concentrate on the integration of the approach within a Simultaneous Localization And
Mapping (SLAM) framework. Among other advantages, such a framework will further
facilitate the association of observations of objects, releasing the constraint of needing
sufficient temporal overlap between scans, which is implicitly required in the tracking
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process. Moreover, SLAM will provide a consistent long term drift-less navigation, allowing
to explore the structure from different viewpoints. This will enrich the set of views used
during the Bayesian recognition providing more robust results.

From the experiments with the database views generated from the CAD models, we
concluded that significant perceptual differences were observed between the rendered
views in the database and the real views captured by the laser scanner. Such differences
impact the recognition performance negatively. This problem will be addressed, in the
near future, by collecting database views with the laser scanner used in the tank during
the experiment.

As longer term future work, the approach will be used as a building block towards a
complete system for autonomous intervention by I-AUVs working in industrial underwa-
ter scenarios.
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