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Purpose: Lipolysis-stimulated lipoprotein receptor (LSR) is a type I single-pass
transmembrane protein which is mainly expressed in the liver. In this study, we
investigated if and how LSR is involved in the carcinogenesis of hepatocellular
carcinoma (HCC).

Experimental Design: To evaluate if LSR was abnormally expressed in human HCC
tissues, and how its expression was associated with the survival probability of patients, we
obtained data from Gene Expression Omnibus and The Cancer Genome Atlas Program.
To investigate if and how LSR regulates tumor growth, we knocked down and
overexpressed LSR in human HCC cell lines. In addition, to evaluate the interaction
between LSR and yes-associated protein1 (YAP1), we mutated LSR at PPPY motif, a
binding site of YAP1.

Results: Totally, 454 patients were enrolled in the present study, and high expression of
LSR significantly decreased the probability of death. Knockdown of LSR significantly
increased the expansion of HCC cells and significantly promoted tumor growth. In
addition, downregulation of LSR increased the nuclear accumulation and transcriptional
function of YAP1. Conversely, overexpression of LSR impairs this function of YAP1 and
phosphorylates YAP1 at serine 127. Of note, mutation of LSR at the PPPYmotif could block
the interaction between LSR and YAP1, and restore the transcriptional ability of YAP1.

Conclusions: The present study suggests that LSR binds to YAP1 via the PPPY motif.
Thus, LSR increases the phosphorylation of YAP1 and impairs the growth of HCC. This
highlights that targeting LSR might be a promising therapeutic strategy for HCC.
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INTRODUCTION

Hepatocellular carcinoma (HCC) accounts for between 85% and
90% of primary liver cancers (1–3). It seriously endangers public
health in Japan (4), China (5), United States (6), and several
European regions (7). Unfortunately, systemic chemotherapy
failed to improve the survival of advanced HCC patients (8).
Sorafenib, a molecular targeting Raf kinases, could give rise to
survival benefits for patients with advanced HCC (9). But it only
slightly improved the median overall survival (sorafenib vs.
placebo: 10.7 months vs. 7.9 months) (9). Thus, there is an
urgent need to identify new therapeutic targets and develop
novel treatment strategies for HCC.

Lipolysis-stimulated lipoprotein receptor (LSR) is a type I single-
pass transmembrane protein, which is mainly expressed in the liver
(10, 11). Interestingly, some studies recently suggested that LSR is
involved in tumor initiation and progression (12–15). Moreover,
other studies reported that LSR impairs different aspects of cancer
pathophysiology such as invasive growth (16, 17) and enhances
chemosensitivity (18). Unfortunately, the effect of LSR in HCC is
still unclear.

Yes-associated protein1 (YAP1) is a core component of the
Hippo signaling pathway, which is involved in oncogenesis (19)
and might be a promising target for treating HCC (20, 21). It has
been demonstrated that YAP1 can move to the nucleus and
promote the transcription of several genes, such as cysteine-rich
61 (CYR61) and connective tissue growth factor (CTGF), which
promote tumor growth (22, 23). However large tumor
suppressor kinases (LATS1 and LATS2, LATS1/2) can
phosphorylate YAP1 at serine 127 and retain YAP1 in the
cytoplasm (19). In this case, YAP1 cannot translocate to the
nucleus to induce the transcription of its target genes (24).
Interestingly, it has been reported that knockdown of LSR
could upregulate the expression of CYR61, the target gene of
YAP1 (25). This suggests that LSR might be also involved in
regulating the function of YAP1.

Thus, the present study evaluated the expression of LSR in
human HCC tissues and investigated the effects of LSR in vitro
and in vivo. In addition, we also investigated if and how LSR
regulated the function of YAP1.
MATERIALS AND METHODS

Human Tissues, Cell Culture
and Antibodies
The human tissues, in Figures 1A, B, were obtained from patients
who underwent hepatectomy in the First Affiliated Hospital of
Dalian Medical University. The protocol of this study was
approved by the Ethics Committee of the First Affiliated Hospital
of Dalian Medical University in accordance with the declaration of
Helsinki. The human HCC cell lines, Hep3B, Huh7, SNU449, and
embryonic kidney 293T cells were purchased from ATCC
(Manassas, USA). The SNU449 cells were cultured in RPMI
1640 medium. The Huh7 and 293T cells were cultured in
Dulbecco’s modified eagle medium (DMEM) and the Hep3B
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cells were cultured in Eagle’s minimal essential medium
(EMEM). The media were supplemented with 10% fetal bovine
serum, 100 U/ml penicillin and 100 mg/ml streptomycin. The cells
grew in a humidified 5% CO2 incubator at 37°C, and the proteins
were measured with the antibodies as specified in
Supplementary Table 1.

Clonogenic Assay and Xenograft Model
For the clonogenic assay in Figure 2, 1 ×103 Hep3B cells or Huh7
cells per well were seeded into 6-well plates. After 14 days, the
cells were stained with 0.2% crystal violet (Damao, Tianjin,
China) and the number of colonies, consisting of 50 or more
cells, were determined with the help of a Leica DMI4000B
microscopy (Leica, Mannheim, Germany). To evaluate the
effect of LSR in vivo, six-week-old female BALB/c (CAnN.Cg-
Foxn1nu/Crl) nude mice were purchased from Charles River
(Wilmington, MA, USA) and bred in the central animal facility
of the Dalian Medical University as previously described (26). 2 ×
106 HCC cells or the identical number of LSR knockdown cells
were resuspended in 100 µL phosphate-buffered saline and
subcutaneously injected into the right flank of the BALB/c
nude mice. Tumor volume was determined by digital calipers
weekly and calculated using the formula: p/6 × large diameter ×
small diameter2 (27). The in vivo study was approved by the
Animal Experimentation Ethics Committee of Dalian Medical
University (Approval No. AEE17027).

Immunofluorescence and
Immunohistochemistry Assay
For immunofluorescence in Figure 3, 2 × 105 Hep3B cells were
seeded in a glass-bottom dish (NEST, Wuxi, China, code 801001).
After 24 hours, these cells were incubated with a rabbit-anti-LSR
antibody followed by a fluorescence-labeled secondary antibody
(Supplementary Table 1), and the nuclei were stained by 4’, 6-
diamidino-2-phenylindole (DAPI, Sigma-Aldrich, St. Louis, USA,
code: D9542). The images were acquired by a confocal
microscope, Leica TCS SP5 (Leica, Mannheim, Germany), using
the 60× oil objective. For the immunohistochemistry assay, the
staining of LSR was performed on 4 mm paraffin sections using a
rabbit anti-LSR antibody (Supplementary Table 1). In addition,
the nuclei were stained by hematoxylin (ZSGB-BIO,
Beijing, China).

Western Blot and Immunoprecipitation
To evaluate the accumulation of proteins in human tissues, the
western blots were performed as previously described (28) using
the antibodies in Supplementary Table 1. In addition, the cell
fractionation assay was performed using the NE-PER Kit (Pierce,
Rockford, USA, code: 78833). To evaluate if LSR binds to YAP1,
immunoprecipitation was performed in 293T cells. Briefly, 1.5 ×
106 293T cells per well were plated in a tissue-culture dish and
transfected with distinct plasmids. After 24 hours, the cell lysates
were incubated with relevant antibodies for one hour.
Subsequently, proteins bound to the antibodies were purified
with protein G agarose (Roche; Basle, Switzerland; code:
11243233001) for three hours and western blots were performed.
May 2022 | Volume 12 | Article 896412
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Plasmids
The human DNA, pCMV-HA-LSR, was a kind gift from Dr.
James Hastie at the University of Dundee, Scotland, United
Kingdom (29). To obtain the V5 tagged LSR plasmid
(pcDNA3.1-V5-LSR-WT, in Figures 4A, B), the pCMV-HA-
LSR was amplified by Pfu DNA polymerase (Thermo Fisher
Scientific; Waltham, USA; code: EP0502) using the primer
specified in Supplementary Table 2. Subsequently, the
polymerase chain reaction (PCR) fragment of wild-type LSR
was inserted between BamH1 and XbaI sites of a pcDNA 3.1/V5-
His TOPO vector (Thermo Fisher Scientific; code: K480040). To
generate the mutation of V5 tagged LSR (pcDNA3.1-V5-LSR-
Y623A, Figures 4A, B), a PCR-mediated site-directed
mutagenesis was performed using the primers specified in
Frontiers in Oncology | www.frontiersin.org May 2022 | Volume 12 | Article 8964123
Supplementary Table 2. The PCR primer sequences and the
DNA sequences were synthesized and verified by GenScript
(Nanjing, China). In addition, the plasmid expressing the Myc
tagged YAP1 protein (Myc-YAP1, Figure 4B) was a gift from
Prof. Zengqiang Yuan at the Institute of Biophysics, Beijing,
China (30).

Lentivirus Transfected Cell Lines
To downregulate the expression of LSR in Hep3B and Huh7
cells, these cells were infected by shRNA lentiviral particles
(Santa Cruz; code: sc-97082V) in the presence of polybrene
and puromycin. Subsequently, two LSR knocked down clones,
KD-LSR-I and KD-LSR-II, were used for this study. To obtain
the V5-LSR-WT and V5-LSR-Y623A stably overexpressing
A

C

B

FIGURE 1 | Low expression of LSR increases the risk of death. Immunoblotting (A) and immunohistochemistry (B) experiments suggest that LSR is highly
expressed in liver but not in HCC tissues. Kaplan-Meier curves (C) were obtained from data deposited in the Gene Expression Omnibus (GEO, accession
number: GSE 10143 and GSE 27150) and The Cancer Genome Atlas (TCGA) data bank with the help of PROGgeneV2 (http://genomics.jefferson.edu/
proggene/). The synthesis of hazard ratios were performed using Review Manager and demonstrated that high expression of LSR significantly reduced the
risk of death.
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FIGURE 2 | Knockdown of LSR promotes the expansion of HCC cells and increases tumor growth. Knockdown of LSR in Hep3B (A) and Huh7 (B) cells
significantly increased the expansion of these cells (C, D), and significantly enhanced tumor growth in vivo (E, F). The significances of differences were evaluated by
Mann-Whitney U test. For C and D, the experiments were independently repeated six times. For (E, F) the mean ± standard deviation was obtained from nine mice
and ten mice.
Frontiers in Oncology | www.frontiersin.org May 2022 | Volume 12 | Article 8964124

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Dong et al. LSR Impairs HCC and YAP1
A

C

B

D E

FIGURE 3 | Knockdown of LSR reduces phosphorylation of YAP1 at serine 127 and promotes nuclear localization of YAP1. Knockdown of LSR decreased the
accumulation of phosphorylated YAP1 and increased the level of CYR61 and CTGF in Hep3B (A) and Huh7 (B) cells. In addition, downregulation of LSR promoted
YAP1 to move into nucleus (C, D). Conversely, overexpression of LSR increased the level of phosphorylated YAP1 and decreased the accumulation of CYR61 and
CTGF in SNU449 cells (E). Bar = 25 µm.
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SNU449 cells, the PCR fragments were inserted between EcoRI
and BamHI sites of a pCDH-CMV vector (System Biosciences,
California, USA, code: CD510B-1) with the help of the primer
defined in in Supplementary Table 2. Subsequently, 293T cells
were transfected by pCDH-V5-LSR-WT or pCDH-V5-LSR-
Y623A in the presence of the lentiviral packaging plasmid,
psPAX2 and pMD2.G, using Lipofectamine 3000 (Thermo
Frontiers in Oncology | www.frontiersin.org 6
Fisher Scientific; code: L3000001). psPAX2 was a gift from
Didier Trono (Addgene; Watertown, Massachusetts, USA;
code: 12260) and pMD2.G was a gift from Didier Trono
(Addgene; code: 12259). After 48 hours, the supernatants were
collected and filtered with a filter (0.45 µm pore size), and used
for infecting the SNU449 cells in the presence of 8 mg/mL
polybrene (Santa cruz, Texas; USA; code: sc-134220) for 48
A

B C

FIGURE 4 | LSR binds to YAP1 via a PPPY motif. LSR contains a conserved PPPY motif (A). An antibody directed against the Myc tag of YAP1 could pull down
wild type LSR but not a LSR protein, which had a tyrosine to alanine mutation in the PPPY domain (B). Wild type but not mutated LSR induced the phosphorylation
of YAP1 and reduced the level of CYR61 and CTGF (C).
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hours. Then these SNU449 cells were cultured in the medium
containing 5 ug/mL puromycin (Amresco, Pennsylvania, USA,
code: J593) for the selection of stable clones.

Statistical Analysis
In order to calculate the hazard ratio (HR) in Figure 1C, the data
were obtained from Gene Expression Omnibus (GEO, accession
number: GSE 10143 and GSE 27150) and The Cancer Genome
Atlas (TCGA) Program with the help of PROGgeneV2 (http://
genomics.jefferson.edu/proggene/) (31). The synthesis of data was
performed as previously described (32) using Review Manager
(Computer program. Version 5.3. Copenhagen: The Nordic
Cochrane Centre, The Cochrane Collaboration, 2014). For the
clonogenic assay (Figures 2C, D), the data were presented as box
plots, and for tumor volume (Figures 2E, F), the data were
expressed as mean ± standard deviation. The significance of
differences were evaluated by the Mann-Whitney U test using
SigmaPlot12.0 (SYSTAT Software Inc., San Jose, USA). A P-value
< 0.05 was considered as a statistically significant.
RESULTS

LSR Impairs the HCC
In order to investigate the expression of LSR during carcinogenesis
of HCC, wemeasured the accumulation of LSR in HCC and normal
liver tissues by western blot. We observed that the level of LSR was
more abundant in the liver than in tumor tissues (Figure 1A). This
observation was confirmed by immunohistochemistry (Figure 1B).
In addition, we evaluated, if the abnormal expression of LSR in
HCC tissues was associated with an altered survival of patients. We
obtained data from three HCC cohorts: GSE 10143, GSE 27150, and
TCGA (Figure 1C). Importantly, the forest plot of these data
suggested that, compared to low expression of LSR, high
expression of LSR reduced the risk of death by 11% (high
expression of LSR vs. low expression of LSR: HR = 0.89, 95% CI,
0.81 and 0.97, P = 0.008, Figure 1C). This suggests that LSR might
inhibit the development of HCC. To evaluate this hypothesis, we
inhibited the expression of LSR in Hep3B (Figure 2A) and Huh7
(Figure 2B) cells by shRNA. We observed that knockdown of LSR
significantly promoted the expansion of these cells (Figures 2C, D).
In addition, we evaluated control and knocked down cells in a
xenograft model and we found that inhibiting the expression of LSR
increased the tumor volume (Figures 2E, F). These data suggest that
LSR impairs the growth of HCC.

LSR Impairs the Nuclear Localization and
Transcriptional Function of YAP1
To evaluate if LSR regulates YAP1 signaling, LSR was depleted in
Hep3B (Figure 3A) and Huh7 (Figure 3B) cells. We observed
that the knockdown of LSR impaired the phosphorylation of
YAP1 at serine 127, however, it failed to have an influence on the
level of YAP1 and LATS2, a major kinase that phosphorylates
YAP1 at serine 127 (Figures 3A, B). In addition, downregulation
of LSR increased the accumulation of CYR61 and CTGF, two
target proteins of YAP1 (Figures 3A, B). This suggests that
Frontiers in Oncology | www.frontiersin.org 7
knockdown of LSR might increase the nuclear localization of
YAP1 and promote the transcription of CYR61 and CTGF. To
evaluate this hypothesis, we investigated the localization of YAP1
by immunofluorescence assay and cell fractionation
experiments. Indeed, knockdown of LSR promoted the nuclear
localization of YAP1 and reduced the cytoplasmic YAP1
concentration (Figures 3C, D). Moreover, we also investigated
if overexpression of LSR could promote the phosphorylation of
YAP1 and impair the transcriptional function of YAP1. We
transduced LSR wild-type (V5-LSR-WT) into SNU449 cells. We
observed that overexpression of LSR could increase the
accumulation of phosphorylated YAP1 and decreased the level
of CYR61 and CTGF (Figure 3D). This confirms that LSR might
inhibit the nuclear accumulation of YAP1. Taken together,
knockdown and overexpression of LSR imply that this protein
enhances the phosphorylation of YAP1 at serine 127 and impairs
the nuclear localization and function of YAP1.

LSR Binds to YAP1 via a PPPY Motif and
Inhibits the Transcriptional Ability of YAP1
To understand how LSR impairs the function of YAP1, we
investigated different domains of LSR. We observed that LSR
contains a conserved PPxY motif, PPPY (Figure 4A). It has been
demonstrated that a peptide containing the PPxY motif could bind
to the WW domain of YAP1 (33–35). Thus we assumed that LSR
could bind to YAP1 directly. In order to verify this hypothesis, the
Myc tagged YAP1 (Myc-YAP1) and V5 tagged LSR (V5-LSR-WT)
were transfected into 293T cells and the interaction between these
two proteins was measured by a pull-down assay. Indeed, LSR
could be pulled down by an antibody directed against the Myc tag
of YAP1 (Figure 4B). In order to evaluate if the PPPYmotif of LSR
is responsible for the interaction between LSR and YAP1, we
transfected the mutated LSR (V5- LSR-Y623A, Figure 4A) and
Myc-YAP1 into 293T cells. We observed that the interaction
between LSR and YAP1 was abolished by the Y623A mutation
(Figure 4B). This suggests that LSR binds to YAP1 via the PPPY
motif. In addition, wild-type LSR, V5-LSR-WT, increased, whereas
the mutated LSR, V5-LSR-Y623A, decreased the accumulation of
phosphorylated YAP1 (Figure 4C). Moreover, only wild-type LSR
but not the mutated LSR reduced the accumulation of CYR61 and
CTGF (Figure 4C). Based on these data, we speculate that LSR
indeed interacts with YAP1 via the PPPY motif and impairs the
transcriptional function of YAP1 (Figure 5).
DISCUSSION

In the present study, we observed that LSR induces the
phosphorylation of the oncogene YAP1 at serine 127 and
blocks the nuclear translocation and transcriptional function of
YAP1 (Figures 3, 4). Since LSR is not a kinase, and thus cannot
directly phosphorylate YAP1, this observation could be
explained by the assumption that LSR also binds directly or
indirectly to LATS1/2, two kinases phosphorylating YAP1 at
serine127 (19). Subsequently, LSR might help to associate
LATS1/2 to YAP1, which then facilitates the phosphorylation
May 2022 | Volume 12 | Article 896412
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of YAP1 by LATS1/2 (36). Thus LSR could be a scaffolding
protein with a similar function as other scaffolding proteins, for
example axin (37), which has been demonstrated to suppress the
growth of HCC cells (38). Previous studies suggest that LSR
contributes to clear the atherogenic triglyceride-rich lipoproteins
and low-density lipoproteins (10, 13, 14). This implies that the
lipid metabolic might be involved in the interaction between LSR
and YAP1; and additional study need to address this question.
Consistent with our study, Shimada et al. proved that LSR
impairs cancer cells (17, 39). In addition, Shimada et al.
observed that the level of LSR in endometrial cancer tissues
was low and YAP1 was accumulated in the nucleus (39). This
suggests that down regulation of LSR might promote the nuclear
localization of YAP1. However, Shimada et al. reported that LSR
increased the level of phosphorylated YAP1, which reduced the
nuclear localization of YAP1 (39). Therefore, how LSR regulates
YAP1, whether to promote the accumulation of YAP1 in the
nucleus or the retention of YAP1 in the cytoplasm, still needs to
be further studied.

An anti-oncogenic function of LSR was also observed in a
study, which demonstrated that abolished LSR could increase the
motility and invasion of bladder cancer cells (25). In addition,
this study demonstrated that knockdown of LSR could increase
the expression of pro-oncogenic genes, such as interleukin 1
alpha and endothelin 1, which could contribute to tumor
initiation and progression (40, 41).

In contrast to these publications, other studies demonstrated
that LSR was overexpressed in breast and gastric cancers (42, 43)
and that overexpressed LSR in breast cancer cells causes the
development of cancer in xenograft studies (44). In addition, the
Frontiers in Oncology | www.frontiersin.org 8
knockdown of LSR could also increase the expression of the anti-
oncogenic gene, early growth response 1, which could upregulate
the accumulation of Bcl-2-associated X protein (BAX), a pro-
apoptotic protein (45).

These contradictory studies suggest that LSR might have pro-
and anti-cancerous effects (17, 25, 39, 42–44). This raises the
following issue: Should the function of LSR be inhibited or
induced when treating cancer patients? To answer this
question it will be important to investigate the expression of
LSR in individual cancer types and to evaluate if expression levels
are associated with poor or good survival. This information, in
addition to gain and loss of functions experiments, is crucial for
deciding if one should activate or inactivate LSR function in
cancer patients.

The present study demonstrated that high expression of LSR
decreased the risk of death for HCC patients and also in vitro and
in vivo studies demonstrate an anti-oncogenic function of LSR.
This suggests that overexpression of the LSR gene might be a
promising strategy to treat HCC. An optimal transportation of
this gene therapy might be adenovirus, which has been approved
by the Chinese State Food and Drug Administration for treating
head and neck cancer (46). In addition, a clinical study has
proved that treating patients with the adenoviral vector-
mediated IFN-Alpha 2b is safe in malignant mesothelioma
patients, and this gene therapy in combination with traditional
chemotherapies increased the overall survival rate, when
compared to patients treated only by chemotherapies (47).
Thus, a preclinical study, which will evaluate the anticancer
efficacy of adenoviral vector-mediated LSR in combination with
sorafenib, the first line targeted therapeutic drug of HCC, might
FIGURE 5 | Schema how LSR regulates YAP signaling. The present study suggests that LSR binds to YAP1 via the PPPY motif and induces the phosphorylation of
YAP1 at serine 127 (Figure 4). This leads to the cytoplasmic retention of YAP1 and impairs the oncogenic function of YAP1 in the nucleus. As a result the
transcription of YAP target genes, CYR61 and CTGF, is reduced.
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allow us to understand the benefit of treating HCC by
targeting LSR.
CONCLUSIONS

In conclusion, the present study proposes that high expression of
LSR decreases the probability of death in human HCC cohorts.
In vitro and in vivo experiments also demonstrate that LSR
inhibits HCC cell expansion and reduced tumor growth. We also
observed that LSR binds to YAP1 and impairs the oncogenic
function of YAP1. This suggests that LSR might be a promising
target for developing a novel therapy for HCC patients.
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