
Commentary on Vulnerability and Resilience to Activity-Based 
Anorexia and the Role of Dopamine

Jeff A. Beeler1,3,4,5,*, Nesha S. Burghardt2,3,5,*

1Department of Psychology, Queens College, CUNY, Flushing, NY, 11367 USA

2Department of Psychology, Hunter College, CUNY, New York, NY, 10065 USA

3Department of Psychology, The Graduate Center, CUNY, New York, NY, 10016 USA

4Department of Biology, The Graduate Center, CUNY, New York, NY, 10016 USA

5CUNY Neuroscience Collaborative, The Graduate Center, CUNY, New York, NY, 10016 USA

Abstract

Activity-based anorexia (ABA) is a commonly used rodent model of anorexia nervosa that 

is based on observations made in rats decades ago. In recently published work, we describe 

using this paradigm to model vulnerability and resilience to anorexia nervosa in mice, 

where vulnerability is characterized by hyperactivity and life-threatening weight loss and 

resilience is characterized by adaptation and weight stabilization. Using genetically modified 

hyperdopaminergic mice, we also demonstrate that increased dopamine augments vulnerability to 

ABA. Here, we briefly review our findings and discuss how obtaining vulnerable and resilient 

phenotypes enhances utility of the ABA model for understanding the neurobiological basis of 

anorexia nervosa. We comment on our dopamine findings and close by discussing implications for 

clinical treatment.
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Introduction

Anorexia nervosa (AN) is an eating disorder characterized by a fear of gaining weight and 

self-starvation, leading to life-threatening weight loss [1]. It occurs predominately in women 

and frequently begins during adolescence [2]. Although not part of the formal diagnostic 

criteria, exercise is an important aspect of this disorder, with up to 80% of AN patients 

engaging in excessive exercise [3-6]. Many patients report high levels of physical activity 

before the onset of the disorder, which they describe as progressively increasing during the 
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most extensive periods of diet and weight loss [7]. While overactivity increases the risk of 

developing AN [7,8], including among athletes [9-13], most people diet and exercise without 

developing an eating disorder. Identifying factors mediating resilience and vulnerability to 

AN would contribute importantly to understanding the pathophysiology of the disorder.

We recently modeled vulnerability and resilience to AN in mice using the activity-based 

anorexia (ABA) paradigm [14]. ABA involves combining food restriction with unlimited 

access to a running wheel, making it ideal for studying how caloric restriction and increased 

physical activity interact to promote behaviors leading to weight loss. Early studies in 

rats have shown that these conditions lead to a paradoxical increase in wheel running, a 

self-imposed decrease in food intake, extreme weight loss and death, unless removed from 

the experiment [15]. We tested ABA in adult female C57BL/6N mice and observed that 

approximately half of the mice exhibited the expected increase in running and dramatic 

weight loss. These animals were all removed from the model when they lost at least 25% 

of their baseline bodyweight and were characterized as ‘vulnerable.’ The other half of 

the mice exhibited ‘resilience’ to ABA. Following an initial loss of bodyweight, resilient 

mice adapted to their limited food availability by reducing wheel running activity and 

progressively increasing their food intake, leading to weight stabilization. We also identified 

vulnerable and resilient phenotypes in our food restriction control mice (FR), which were 

food restricted for the same amount of time as the ABA group but were housed with 

a locked running wheel that prevented them from running. We then identified a role 

for dopamine in ABA vulnerability by testing dopamine hyperdopaminergic transporter 

knockdown mice. We found that increased dopamine promotes vulnerability by accelerating 

hyperactivity that occurs in response to caloric restriction. Here, we provide an expanded 

discussion of our study, highlighting novel aspects of our findings and implications for 

treatment.

Enhancing the Utility of ABA as a Model of AN

The appeal of the ABA model is that it shares several features with AN, including 

increased physical activity, self-starvation, enhanced vulnerability during adolescence, and 

life threatening weight loss [16]. In contrast to the human disorder where food restriction 

is self-imposed, the experimenter gives animals in the ABA model a limited time (e.g. 1-2 

hours) to eat as much as they want, usually at the onset of the dark cycle. Initially, food 

intake is low, which may not be purposeful, as animals do not yet know that food availability 

is restricted. However, with additional days of testing, we found that resilient mice housed 

with a freely turning (ABA) or locked running wheel (FR) steadily increase their intake, 

indicating that it is possible to consume sufficient food in the allotted time period (2 hours) 

[14]. The failure of vulnerable ABA and FR mice to do so despite the obvious need and the 

same duration of food access is consistent with a form of self-starvation.

The important role of food intake in ABA resilience was confirmed by the positive 

correlation between the amount of food resilient mice consumed each night and their change 

in bodyweight the next day. However, no such correlation was found in the vulnerable 

ABA mice and instead daily change in bodyweight correlated with wheel running. These 

results indicate that rapid weight loss in the vulnerable mice was driven by high levels of 
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activity, which exacerbated the effects of caloric restriction. Upon closer examination of the 

distribution of wheel running, we found that daily weight change was associated with dark 

cycle running in all ABA mice, but only correlated with light cycle running in the vulnerable 

ABA group. Vulnerable mice also ran significantly more during the light cycle than the 

resilient mice or the wheel control mice (no food restriction), indicating a unique role for 

high levels of daytime activity in ABA vulnerability.

We conducted a more granular analysis of the characteristics of wheel running and found 

that resilient mice started running approximately 3 hours before food was available, 

consistent with food anticipatory activity (FAA) [17]. In contrast, vulnerable mice exhibited 

increased running throughout most of the light cycle, disrupting sleep patterns. While FAA 

reflects a shift in circadian activity entrained to food availability, presumably engaging 

mechanisms by which the availability of food modulates circadian cycling, the extreme light 

cycle running observed in the vulnerable mice appears to be more than entrainment. Instead 

it seems to reflect a failure of circadian cycling or a partial transition to diurnality, similar 

to what others have shown with food restriction [18-20]. Thus, we see that ABA evokes 

two distinct changes in running, one of which appears to be FAA and is associated with 

adaptation and resilience, and one that reflects disrupted circadian cycling and is associated 

with vulnerability. In terms of their clinical relevance, to our knowledge there are no reports 

of FAA-like behavior or symptomology in AN, but there are reports of disturbed sleep 

patterns in AN [21], adding to the validity of our model of AN vulnerability.

Since the early descriptions of the ABA model by Routtenberg and Kuznesof in 1967 [15], it 

has been known that food restriction can cause rodents to run themselves to death. A central 

question has been why animals that have access to food (albeit limited) would expend so 

much energy instead of preserving energy until food arrives. The life-threatening light cycle 

running found in our vulnerable mice likely reflects the engagement of ‘crisis foraging,’ 

in which a state of starvation upregulates drive for activity to increase the probability of 

finding food. Under conditions of net negative energy balance, where the animal will die 

without additional food, it makes sense to drive energy expenditure in a final effort to 

find food. Maladaptive activation of the neural circuits underlying foraging may account 

for the excessive running exhibited by vulnerable mice. However, this does not explain 

why vulnerable mice, like those with AN, fail to eat sufficient amounts of food when it is 

available. It has been proposed in the Adapted to Flee Famine Hypothesis that hyperactivity 

and self-imposed food restriction were once evolutionarily adaptive responses in ancestral 

nomadic foragers [22]. According to the hypothesis, the most essential action to ensure 

survival during local famine is to flee to a new environment containing food. In doing so, 

the individual needs to increase physical activity and direct attention away from searching 

for food in the current environment, which requires ignoring food and denying starvation. 

Weight loss has been suggested to trigger these archaic adaptions in genetically susceptible 

individuals [22], an idea that might also be true for the vulnerable mice in our model.

Our detailed analysis of wheel running revealed that in addition to running more throughout 

the light cycle, vulnerable mice exhibited a dramatic burst in light cycle running shortly 

before requiring removal from the experiment. This sudden increase was quite dramatic, 

with mice running an additional 11,000-56,000 revolutions in one light cycle, which is a 
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3.0-15.6 kilometer increase in running from the previous light cycle. We detected the same 

phenomenon in younger animals and hyperdopaminergic animals, both of which are highly 

vulnerable to ABA. This has not been reported previously, so there is little upon which 

to base an interpretation of this phenomenon. However, the abrupt and dramatic nature of 

this increase together with its consistent occurrence prior to reaching a dangerously low 

bodyweight (75% of baseline weight), and its absence in resilient mice, is suggestive of 

some equally abrupt change in underlying pathophysiology or neuroadaptation. Progression 

from normal bodyweight to life threateningly low bodyweight is compressed in the ABA 

model to a few days. In AN, a presumably similar sequence of analogous neural and 

physiological adaptations occurs over the course of months and years. While it is difficult 

to speculate whether this abrupt increase in activity reflects any corresponding phenomenon 

in human AN, it is worth noting that individuals with AN have described exercising the 

most during the most extreme periods of diet and weight loss [7]. Moreover, in qualitative, 

narrative studies, one theme that emerges in patients’ stories is the rapidity at which an 

exercise regimen becomes compulsive [23]. The abrupt, dramatic increase in light cycle 

running we observe in vulnerable mice may be comparable to how AN patients transition 

from experiencing exercise as voluntary to experiencing it as compulsive.

The importance of excessive wheel running in achieving life-threatening weight loss in the 

ABA model was demonstrated in early studies conducted by Routtenberg and Kuznesof 

[15]. In contrast to food restricted rats housed with a running wheel, they found that those 

without a running wheel (FR control group) maintain a stable bodyweight. This necessary 

role of exercise in ABA is actually implicated in the name “activity-based anorexia.” Some 

subsequent studies have replicated this finding in the FR control group [24,25], while others 

have not [26,27], results that are likely attributable to methodological differences across 

experiments (see Supplemental Discussion of [14] for details). In our study, we found that 

some mice in the FR control group do exhibit vulnerability, indicating that the running 

wheel may not be essential under all conditions and that the primary driver of the vulnerable 

phenotype is caloric restriction, not exercise. This is not to minimize the importance of 

wheel running, which we show facilitates weight loss in vulnerable animals. Given that not 

all AN patients engage in excessive exercise, this FR control group provides an opportunity 

to model vulnerability and resilience to dieting alone. Studying both the ABA and FR 

groups allows us to observe the full spectrum of behavioral dysregulation of energy balance, 

where hyperactivity is one part of the equation.

In sum, we provide a mouse model of vulnerability and resilience to AN in which 

contrasting behavioral adaptations to both food intake and activity lead to distinct outcomes 

(i.e. dangerous weight loss vs. weight stabilization). Regina Casper has called AN a 

‘disorder of energy homeostasis,’ [28,29] which aptly captures the derangement of both 

activity and consumption we observe in our vulnerable ABA mice. Bulik and colleagues 

[30,31] have characterized AN as both a metabolic and psychiatric disorder in their 

genetic work. In terms of treatment, the psychological aspects of the disorder are often the 

primary focus with the expectation that improvements in behaviors mediating the metabolic 

aspects will follow. Like any animal model, we are limited in our ability to capture many 

psychological aspects of this complex disorder. However, we concur with Södersten and 

colleagues that the neurobiological and endocrine adaptations that underlie AN are the root 
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cause of the disorder and likely drive psychiatric symptoms [32-34]. The extent to which 

our vulnerable phenotype exhibits a pattern strikingly similar to AN suggests to us that the 

adaptations that underlie vulnerability to ABA and FR reflect similar pathophysiological 

adaptations to caloric restriction that underlie AN. It is hoped that future studies focused on 

identification of these adaptations will provide much needed insight into the neurobiological 

basis of AN.

Dopamine in AN

AN has long been associated with abnormalities in the dopamine system [35-37]. A 

persistent question in the field is whether these changes reflect preexisting individual 

differences in dopamine or arise secondary to the disorder, i.e., trait or state [38-40]. While 

our data with hyperdopaminergic mice indicate that preexisting differences in dopamine 

can modulate vulnerability to ABA, i.e., be a trait risk factor, this does not rule out the 

possibility that the dopamine system also changes over the course of the disorder. As 

many have hypothesized, these secondary changes could contribute to the development and 

maintenance of the disorder [40-46]. For example, in some individuals caloric restriction 

and exercise could induce an upregulation in the dopamine system that in turn facilitates the 

development of the disorder. An increase in dopamine function prior to diet and exercise, 

such as that found in our hyperdopaminergic mice, could predispose individuals to these 

dopaminergic neuroadaptations, thereby increasing AN risk. However, direct evidence in 

humans for preexisting alterations in dopamine function, such as prospective studies or 

genome-wide association studies, is currently lacking.

Interestingly, we found that higher baseline levels of dopamine did not affect how mice 

responded to food restriction in the absence of a running wheel. That is, hyperdopaminergic 

mice and wild-type littermates ate the same amount of food when tested in the FR control 

conditions. Similarly, both groups ran the same amount when housed with a running 

wheel and given unlimited access to food (wheel control conditions). Therefore, preexisting 

increases in dopamine did not simply increase vulnerability to food restriction or promote 

hyperactivity. Instead, enhanced dopamine interacted with the combination of wheel running 

and food restriction to promote vulnerability to ABA. These results support the idea that 

there are neuroadaptive changes arising from the combination of diet and exercise that 

could interact with preexisting alterations in dopamine to facilitate the development and 

maintenance of AN. Such dopamine-mediated increases in AN risk may not result when 

dieting occurs in the absence of exercise or vice versa.

In contrast to our finding that hyperdopaminergic mice are more vulnerable to ABA, Foldi 

et al. [24] demonstrated that pharmacogenetic activation of dopamine in the mesolimbic 

pathway via virally expressed DREADDs (Designer Receptors Exclusively Activated by 

Designer Drugs) rescues rats from ABA. In that study, DREADD expression was not 

restricted to dopamine cells, leaving open the possibility that activation of midbrain 

GABAergic cells contributed to the rescue. Moreover, the use of systemic CNO to drive 

DREADD activation and the subsequent conversion of CNO to the antipsychotic clozapine 

[47] further complicates the interpretation of those findings. Clozapine has established 

effects on weight gain [48] and may have recruited additional neurotransmitter systems 
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in that study [49]. Contradictory evidence about the direction of putative dopamine 

alterations in AN has been a persistent theme for decades [36,37]. While our data with 

hyperdopaminergic mice suggest that preexisting alterations in the dopamine system could 

enhance vulnerability to the disorder, it remains unknown how caloric restriction in 

combination with exercise might alter dopamine to promote the development of AN.

Diet and exercise affect many endocrine and neural substrates, several of which modulate 

dopamine [40]. These include, but are not limited to, insulin, leptin, ghrelin, glucocorticoids, 

orexin, endogenous opioids, and estrogen. If resulting changes in dopamine function do 

contribute to the development of AN, then preexisting genetic differences in any of these 

systems could affect AN risk. In this way, the risk for a single central pathophysiological 

change, alterations in dopamine, may be polygenic. This also opens up the possibility 

that preexisting alterations in dopamine function may not be required for an individual 

to be vulnerable to AN, even if changes in dopamine function crucially contribute to the 

development of the disorder. For example, we report in our study that adolescent female 

mice, which are highly vulnerable to ABA, have normal levels of dopamine at baseline 

and normal expression of dopamine-associated proteins in the striatum. Perhaps adolescent 

mice are more sensitive to food restriction and wheel running, leading to higher activation 

of one (or more) of the factors listed above that modulate dopamine, thereby triggering 

maladaptive changes in this neurotransmitter system and excessive weight loss. Future 

studies tracking endocrine and dopamine changes across the course of ABA are required to 

test this possibility.

Discussions of dopamine in AN primarily refer to dopamine in the ventral tegmental area, a 

subregion of the midbrain with projections to the prefrontal cortex and limbic regions (e.g., 

nucleus accumbens, hippocampus and amygdala). However, our genetic knockdown of the 

dopamine transporter was not restricted to the midbrain and increased dopamine in other 

regions may have contributed to our findings. One candidate region is the hypothalamus, 

where dopamine may play a crucial role in energy homeostasis [50-52]. The hypothalamus 

and midbrain are reciprocally connected regions that modulate each other [53,54], and 

together could orchestrate the adaptive and maladaptive behaviors associated with the 

resilient and vulnerable phenotypes we describe.

Implications for Treatment

An unusual finding in our study was that among the resilient mice, those that exercised 

showed better adaptation to food restriction than those that did not. Specifically, resilient 

mice in both the ABA (freely turning wheel) and FR (locked wheel) conditions increased 

their consumption and stabilized bodyweight, but the resilient ABA mice consumed more 

food than the resilient FR mice and they maintained their bodyweight at approximately 90% 

of baseline, despite increased energy expenditure. In contrast, the FR mice maintained their 

bodyweight at about 80-85% of baseline. In the same way that voluntary wheel running 

appears to augment and accelerate failure to adapt to food restriction in vulnerable ABA 

mice, it seems to equally augment and accelerate adaptation among resilient ABA mice. 

Clinically, conventional approaches to treatment often prevent exercise activity in patients 

to prevent further weight loss and promote weight gain [55,56]. In severely malnourished 
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states, exercise can also increase the risk of bone fractures, cardiac incidents and other 

potential injuries [57]. However, in recent years clinical studies have begun challenging 

this approach by investigating the therapeutic effects of moderate exercise. Accumulating 

evidence indicates that ‘appropriate’ exercise may actually be beneficial and improve 

treatment outcomes [58-61], results that are consistent with our findings in resilient mice.

Given the compulsive nature of exercise in AN, developing a regimen of ‘appropriate’ 

exercise within a treatment plan may be difficult to implement. That said, Södersten and 

colleagues have long argued that restoring caloric intake is the single most critical aspect 

of treatment [33]. They suggest that restoring bodyweight allows deranged neuro- and 

endocrine adaptations to normalize, facilitating psychological and behavioral changes that 

support recovery. Therefore, it may be that a more effective treatment plan would be to 

restore caloric intake and then after some weight restoration, allow for moderate exercise 

activity. This would be analogous to shifting patient behavior so they no longer exhibit 

the vulnerable phenotype (low food intake, high levels of exercise) and instead exhibit the 

resilient phenotype (progressive increases in food intake, moderate levels of exercise). In 

this clinically induced shift, the positive role of exercise in treatment and recovery may be as 

significant as the negative role it plays in the pathophysiology of the disorder.

The development of an effective pharmacological treatment for AN continues to be elusive. 

Our finding that increased dopamine enhances vulnerability to ABA supports dopamine as 

a potential therapeutic target, an idea that has persisted since the 1970s [35]. However, 

dopamine acting antipsychotic drugs have shown little to no efficacy in AN [62-66]. Our 

poor understanding of how dopamine is altered and its exact role in AN makes it difficult to 

ascertain why antipsychotic drugs have not been effective. Directly targeting D2 dopamine 

receptors with antipsychotic medications may be too simplistic an approach, as it assumes 

a direct link between AN behaviors and receptor activation. Several theories have suggested 

that increased dopamine drives behaviors that mediate AN through effects on reinforcement 

learning and brain plasticity rather than directly causing self-starvation or hyperactivity 

[41,44,67]. Such a complex role of dopamine highlights the importance of uncovering 

exactly how it changes over the course of the disorder. A more nuanced, physiological 

approach may be to target other systems that interact with and modulate dopamine, such 

as insulin, leptin, ghrelin, glucocorticoids, orexin, endogenous opioids, and estrogen. If 

the interaction of these potential targets with the dopamine system during physiological 

adaptation to caloric restriction and elevated exercise drives changes in dopamine that 

consequently promote maladaptive behaviors underlying AN (e.g., [43]), then indirectly 

targeting dopamine may be a more effective strategy.

Overall, a combination of diet and exercise appears to create fertile ground for the 

development of AN, and yet only a relatively small subset of individuals will actually 

develop the disorder. While much of the literature on AN risk has focused on psychological 

factors, the ABA model strongly suggests a substantial biological component. Indeed, AN 

has high heritability estimated at 50-60% [68,69]. Our study increases the utility of the 

ABA model by adjusting the parameters such that it yields both vulnerable and resilient 

mice, where resilience is defined by adaptation, weight stabilization and survival and 

not by delayed life-threatening weight loss (e.g., [27,70,71]. With clearly distinguishable 
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phenotypes, the model can facilitate better understanding of genetic risk factors and the 

neural and endocrine adaptations that underlie the development of AN, potentially opening 

new avenues for treatment and prevention of the disorder.
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