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Abstract

Heat is a major abiotic stress that seriously affects watermelon (Citrullus lanatus) produc-

tion. However, its effects may be mitigated through grafting watermelon to heat tolerant bot-

tle gourd (Lagenaria siceraria) rootstocks. Understanding the genetic basis of heat

tolerance and development of reliable DNA markers to indirectly select for the trait are nec-

essary in breeding for new varieties with heat tolerance. The objectives of this study were to

investigate the inheritance of heat tolerance and identify molecular markers associated with

heat tolerance in bottle gourd. A segregating F2 population was developed from a cross

between two heat tolerant and sensitive inbred lines. The population was phenotyped for rel-

ative electrical conductivity (REC) upon high temperature treatment which was used as an

indicator for heat tolerance. QTL-seq was performed to identify regions associated with heat

tolerance. We found that REC-based heat tolerance in this population exhibited recessive

inheritance. Seven heat-tolerant quantitative trait loci (qHT1.1, qHT2.1, qHT2.2, qHT5.1,

qHT6.1, qHT7.1, and qHT8.1) were identified with qHT2.1 being a promising major-effect

QTL. In the qHT2.1 region, we identified three non-synonymous SNPs that were potentially

associated with heat tolerance. These SNPs were located in the genes that may play roles

in pollen sterility, intracellular transport, and signal recognition. Association of the three

SNPs with heat tolerance was verified in segregating F2 populations, which could be candi-

date markers for marker assisted selection for heat tolerance in bottle gourd. The qHT2.1

region is an important finding that may be used for fine mapping and discovery of novel

genes associated with heat tolerance in bottle gourd.

Introduction

Heat stress negatively affects physiological processes, reproduction, and adaptation in crop

plants, which are exacerbated by global climate change [1,2]. Watermelon, Citrullus lanatus
var. lanatus, is an important vegetable crop worldwide [3]. Despite of its tropical origin, water-

melon production in many parts of the world is adversely affected by high temperatures
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(> 35˚C) during the summer months [4]. Heat tolerance is a complex trait controlled by quan-

titative trait loci (QTL), which makes it difficult to introgress multiple favorable alleles into

recipient susceptible varieties [5]. There have been attempts to deconstruct stress tolerance

into measurable components for accurate phenotyping, with the aim that QTL associated with

heat tolerance may then be identified and suitable alleles may be introgressed into elite genetic

backgrounds [6]. For example, cell membrane stability as an indicator of heat stress may be

quantified by relative electrical conductivity (REC). REC is highly sensitive to abiotic stress

[7,8] and has been used in studies of abiotic stress tolerance in a range of crops, including

salinity-alkalinity tolerance in muskmelon [9], drought tolerance in Perennial ryegrass [10],

and cold tolerance in alfalfa [11].

One method to mitigate abiotic and biotic stresses in vegetable production is grafting [12].

For example, bottle gourd, Lagenaria siceraria (Mol.) Standl., has been used as the rootstock

for watermelon to reduce heat stress and improve performance of plant growth [13,14]. Bottle

gourd is a relative of watermelon in the Cucurbitaceae family, which originated from Africa

but it is now widely distributed across the tropics [15,16]. In its long-term adaptation, bottle

gourd has gained excellent tolerance to high temperatures and consequently, to heat stress

[17,18]. In practice, due to the close genetic relatedness between bottle gourd and watermelon,

there is a high degree of grafting compatibility between the two species [19]. However, little is

known about the genetic basis of heat tolerance in bottle gourd.

Understanding the genetics of heat tolerance in bottle gourd and identification of DNA

markers may facilitate development of novel bottle gourd rootstocks for heat adaptation of

scion through marker-assisted selection. Recent progress in genetic and genomics resources in

bottle gourd is also making this possible. For example, Xu et al. [20] reported partial sequenc-

ing of the bottle gourd genome using the 454 GS-FLX Titanium sequencing platform, from

which 400 SSR markers were developed. The RAD-Seq [21] technology has also been applied

to an F2 bottle gourd population for SNP and insertion-deletions marker development [22,23].

More recently, Wu et al. [16] reported a high-quality bottle gourd genome sequence which

allowed reconstruction of the most recent common Cucurbitaceae ancestor genome through

comparison with available extant modern cucurbit genome resources [24–26].

In addition, recent development of high throughput sequencing and genotyping technolo-

gies is also accelerating molecular marker development and genetic mapping studies for horti-

culturally important traits in vegetable crops. One such technique is QTL-Seq which combines

bulked-segregant analysis (BSA) and high throughput genome sequencing for quick identifica-

tion of QTLs [27]. QTL-seq has been widely used in a range of crops such as sunflower [28],

rice [29], sorghum [30], potato [31], and cucumber [32,33] for the efficient detection of QTLs

for complex quantitative traits. QTL detection for heat tolerance has also been studied in rice

[34], chickpea [35], wheat [36], and tomato [37]. In this study, we used QTL-seq to identify

major loci regulating heat tolerance in bottle gourd based on REC. Putative candidate genes

controlling heat tolerance and SNPs markers that are highly associated with candidate genes

were identified using the available genomic sequence for bottle gourd [21].

Materials and methods

Plant material and phenotyping

An F2 population was developed from the cross between two bottle gourd inbred lines, the

heat tolerant L1 (P17) and the heat stress sensitive L6 (P23) [38]. Evaluation of heat tolerance

was conducted in three experiments with 147, 56, and 60 F2 individuals, respectively. L1, L6

and F1 plants (10 each) were included in each experiment. The seedlings were planted in

32-hole plastic plugs (~ 230cm3/hole) filled with nursery substrate (2:1 mix of turf: vermiculite)
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and grown in a phytotron set to 16h light/8h dark cycle (30,000lux) at 25/18˚C and 80% rela-

tive humidity. The first true leaf of the seedlings was collected for DNA extraction. When the

third true leaf of the seedlings began to expand, heat stress was applied by moving the seedlings

into a phytotron set at 40˚C temperature under 80% relative humidity and 30,000lux for 6h of

continuous heat exposure.

The electrical conductivity (EC) of leaves was measured before and after heat treatment to

assess cell membrane damage, as described by Zhou and Leul [39] and He et al. [40] with mod-

ifications. In brief, sampled leaves were washed using deionized water, cut into 0.5-cm pieces,

and immersed in deionized water for 30 min. Then, EC of the solution was measured using a

conductivity meter (PHSJ-3F, Jingmi Instruments Co., Ltd., Shanghai, China) and recorded as

S1. After boiling the leaf samples for 15 min, EC of the solution at room temperature was

measured again and recorded as S2. A relative EC (REC) was calculated as S1

S2
� 100%. Leaf rel-

ative injury (LRI) was used as a metric of cell membrane damage, which was calculated as

LRI ¼ Lt� Lck
100� Lck� 100%, where Lt and Lck are the REC values before and after heat exposure,

respectively. A larger LRI value indicates less heat tolerance [41–43].

Analysis of variance (ANOVA) and t-tests were used to determine differences in heat toler-

ance, as indicated by mean (±SE) LRI, among P1, P2, and F1 plants at P< 0.05 using SPSS 13.0

software [16]. For the F2 population, the frequency distribution of LRI was plotted as a histo-

gram and the normal distribution was fitted using the GaussAmp function in ORIGIN 9.1 soft-

ware [44].

QTL-Seq and data analysis

Genomic DNA was isolated from young leaves of parental lines L1 and L6, and 147 F2 plants

from the first experiment using the CTAB method [45]. For QTL-seq, two DNA pools (heat

tolerance: T-pool; heat sensitive: S-pool) were constructed by mixing an equal amount of

DNA from nine heat tolerant (LRI = 1 − 5%) and nine heat sensitive (LRI = 55 − 77%) individ-

uals from the F2 population. Sequencing libraries of ~ 500 bp insert size of the two pools were

constructed and pair-end sequenced (150 bp) at ~ 15× coverage for the two parents and

~ 20×coverage for each pool on an Illumina Hi-Seq 4000 at Shanghai Biozeron Co., Ltd. The

raw sequence data were generated by Illumina base calling software CASAVA v1.8.2 [46] and

raw paired end reads were trimmed and quality controlled by Trimmomatic (http://www.

usadellab.org/cms/index.php?page=trimmomatic) with default setting. The high-quality clean

reads from L1, L6, T-pool and S-pool were aligned against the reference genome of bottle

gourd cv. Hangzhou Gourd (http://cucurbitgenomics.org/organism/13, [21]) using BWA soft-

ware (http://bio-bwa.sourceforge.net/, [47]). After removing the duplicate reads using Picard

Tools (http://picard.sourceforge.net/), SNPs were detected from the valid BAM file using the

GATK “UnifiedGenotyper” function (http://www.broadinstitute.org/gatk/). Low-quality SNPs

with quality value < 20 and read depth coverage < 4× or > 200× were excluded [48]. SNPs

with the consistent differential base type with two parents were remained.

The SNP-index for each SNP position was calculated for the T-pool and S-pool using the

formula:

SNP � index at a positionð Þ ¼
count of alternated base
count of reads aligned

[49]. To identify candidate regions for heat tolerance QTLs, the Δ(SNP-index) for all the SNP

positions with given read depths under the null hypothesis of no QTLs was obtained by sub-

tracting the SNP-index of T-pool from the S-pool [32]. The statistical confidence intervals of Δ
(SNP-index) were plotted [27]. For each read depth, 95% and 99% confidence intervals of Δ
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(SNP-index) were obtained following Takagi et al. [27]. The regions (P< 0.01) were then des-

ignated as QTLs.

To identify the parent that contributed to a putative QTL, the profile of L1 allele frequency

difference (L1AFD) between the T-pool and S-pool was plotted using a 1 Mbp sliding window

moving across the genome with a fixed step length of smoothing window size of 10 kb. The L1

allele frequency within each window in each pool was estimated using the formula developed

by Yang et al. [50]. For a putative QTL, a positive value for L1AFD indicated that L1 increased

heat tolerance and a negative value indicated that L1 decreased heat tolerance [33,50].

For the polymorphic SNPs located in the genomic regions that harbored the major-effect

heat tolerance QTL, further functional annotation was completed using the available bottle

gourd genome data (http://cucurbitgenomics.org/organism/13) and Uniprot database (www.

uniprot.org), using ANNOVAR analysis (http://www.openbioinformatics.org/annovar/) to

detect putative candidate genes [21].

SNP marker development and selection

Based on gene annotations and putative functions, five nonsynonymous candidate SNPs

located in the qHT2.1 interval that are related to heat stress tolerance were selected for marker

development. Flanking sequences were used for PCR primer development using Primer 6.0

soft (http://www.PromerBiosoft.com). The five SNPs were genotyped for four heat tolerant

and four sensitive F2 individuals which were used to generate the two DNA pools. If the SNPs

showed polymorphism between the heat tolerant and sensitive lines, they were used to geno-

type additional plants. Eighteen new individuals including six heat tolerant individuals

(LRI< 10%) and twelve sensitive individuals (LRI> 10%) were selected from the same F2

population used for DNA pool construction. The LRI threshold was set to 10% because the

mean LRI value of the tolerance parent L1 was 9.88±5.00%. PCR and Sanger sequencing were

used and sequence results were visualized and checked using the SnapGene software. We used

trait-marker association to select the most promising SNP markers.

Results

LRI as an indicator of heat tolerance

There were significant differences in the mean LRI values between L1 (P17: 9.88±5.00%) and

L6 (P23: 47.26±10.78%) under heat stress conditions (Table 1). The mean LRI value of F1

(31.98±6.64%) was significantly higher than that of L1 but not significantly different with that

of L6, suggesting the recessive nature of heat tolerance. The LRI of the F2 progeny ranged from

0.34% to 97.49%, with mean LRI value of 29.68±8.52% (Table 1). Transgressive segregation

Table 1. Mean leaf relative injury (LRI) values of parental lines, F1 and three F2 populations under heat stress conditions.

Type Code LRI Reaction

Mean±SE Range

Tolerance parent L1 (P17) 9.88±5.00a� 4.28 − 20.25 Tolerant

Sensitive parent L6 (P23) 47.26±10.78b 33.52 − 59.32 Sensitive

Mid-parent value - 28.32±7.89 - -

F1 population L1 × L6 31.98±6.64b 19.95 − 43.95 Sensitive

F2 population - 29.68±8.52 0.34 − 97.49 -

�P < 0.05.

https://doi.org/10.1371/journal.pone.0227663.t001
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was observed on both sides of the distribution. Overall, the distributions of the three F2 popu-

lations were slightly skewed towards L1 (P17) and showed Gaussian segregation (Fig 1A–1C).

Sequence data

High throughput Illumina sequencing yielded 31.9, 32.7, 40.9, and 40.9 M 150-bp paired-end

raw reads from L1, L6, T-pool, and S-pool, respectively. After trimming and filtering, more

than 80% of reads were mapped to the reference genome of bottle gourd cv. Hangzhou Gourd

(313.4 Mbp, Table 2). Specifically, 23.0, 24.4, 29.0, and 29.5 million short reads were mapped

for L1 (10.10×depth coverage or 92.75% coverage), L6 (10.85×depth coverage or 92.85% cover-

age), T-pool (12.71×depth coverage or 93.25% coverage), and S-pool (12.92×depth coverage or

93.25% coverage), respectively. Lower sequencing depth (about 10×) and higher coverage

(about 92%) of L1 and L6 showed the close genetic relationship between the parental lines and

cv. Hangzhou Gourd. In our study, the high-quality bottle gourd Hangzhou Gourd genome

sequence [21] was used to map each DNA pool. The sequence data of parental lines were used

to verify SNPs detected from two pools. Thus, SNPs between the two pools with alleles not

inherited from either parent were filtered out.

Based on the uniquely mapped reads, 543,798 and 549,415 SNP were identified from the T-

pool and S-pool, respectively. Among them, 359,267 and 361,111 were homozygous in T-pool

and S-pool; 184,531 and 188,304 SNPs were heterozygous in the both pools, respectively

(Table 2). After filtering our low quality SNPs, 153808 SNPs between the T-pool and S-pool

were kept for further analysis.

Fig 1. Frequency distribution of leaf relative injury (LRI) among three F2 populations with 147 individuals (A), 56 individuals (B),

and 60 individuals (C). L1: heat tolerant parent P17; L6: heat sensitive parent P23. Distribution of L1 near the origin of the x-axis indicates

negative transgressive segregants, while distribution of L6 indicates positive transgressive segregants under heat-stress conditions. DNA of

eighteen seedlings was selected from an F2 population with 147 individuals (A) with extreme phenotypes (low and high LRI values) to

develop tolerant and sensitive pools.

https://doi.org/10.1371/journal.pone.0227663.g001

Table 2. Main statistics of resequencing and SNP calling in two parental lines and two pools.

Sample Number of raw reads Trimmed and

filtered reads

Uniquely mapped

reads

Average Depth Coverage (%)a Number of SNPs

Number % Number % Total Homozygous Heterozygous

L1 31,863,484 28,368,754 89.03 22,974,995 80.99 10.10 92.75 476,940 345,242 131,698

L6 32,686,118 29,026,164 88.80 24,419,983 84.13 10.85 92.85 513,552 418,749 94,803

T-pool 40,647,374 35,340,578 86.94 29,026,863 82.13 12.71 93.25 543,798 359,267 184,531

S-pool 40,930,720 35,936,306 87.80 29,457,284 81.97 12.92 93.25 549,415 361,111 188,304

a size of the bottle gourd reference genome is 313,397,697 bp (Xu et al. 2014 [22]).

https://doi.org/10.1371/journal.pone.0227663.t002
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Identification of QTL for heat tolerance from QTL-Seq

The SNP-index graphs were generated for the T-pool (Fig 2A) and S-pool (Fig 2B). The Δ
(SNP-index) was determined by subtracting the SNP-index of T-pool from the S-pool and

plotted against the genome positions (Fig 2C). By examining the Δ(SNP-index) plot, we identi-

fied seven genomic regions that exhibited high Δ(SNP-index) values (Table 3) on chromo-

somes 1, 2, 5, 6, 7 and 8. These were candidate regions harboring heat tolerance QTLs (Fig

2C). Among them, the peak on Chr 5 was the highest, followed by the peaks on Chr 2

(qHT2.1), Chr 1, Chr 7, Chr 6, Chr 8 and Chr 2 (qHT2.2). The two adjacent peaks on Chr 2

contained most of the SNPs, 9052 and 1355, respectively. The peak region on Chr 5 only con-

tained two SNPs (Table 3). The QTL associated with these regions were designated as qHT1.1,

qHT2.1, qHT2.2, qHT6.1, qHT7.1, and qHT8.1, respectively, hereinafter.

Fig 2. SNP-index plots of T-pool (A) and S-pool (B) and Δ(SNP-index) plot (C) from the QTL-Seq analysis. The x-

axis represents the position of eleven chromosomes and the y-axis represents SNP-index or Δ(SNP-index) value. The Δ
(SNP-index) plot (C) shows statistical confidence intervals under the null hypothesis of no QTL (P< 0.01). The red

and green wavy line means 99% and 95% confidence intervals, respectively. The promising genomic region identified

for LRI associated with heat tolerance is highlighted at 11.03–19.25 Mb on Chromosome 2 by red frame. The other six

QTL region with high Δ(SNP-index) value are highlighted by green frame. (D) Profile of the tolerant parent (L1) allele

frequency difference (L1AFD).

https://doi.org/10.1371/journal.pone.0227663.g002
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The L1AFD value of a QTL reflects the magnitude and direction of L1 allele effect of the

associated QTL. Thus, qHT5.1 seemed to have the largest effect on REC, followed by qHT2.1,

qHT7.1, qHT6.1, qHT8.1, qHT1.1 and qHT2.2. The tolerant alleles of qHT5.1, qHT2.1, qHT6.1,

qHT8.1, qHT1.1 and qHT2.2 were derived from the tolerant parent L1 (L1AFD value > 0)

while the qHT7.1 (L1AFD value < 0) was from the susceptible parent L6 (Fig 2D and Table 3).

Although qHT5.1 showed the highest values of Δ(SNP-index) and L1AFD, only two SNPs

were associated with this QTL, both of which were located in intergenic regions. Thus,

qHT2.1, with Δ(SNP-index) value of 0.32 (P< 0.01), L1AFD value of 0.24, and containing

9052 SNPs, was selected as a promising major QTL controlling heat tolerance.

Identification of heat tolerance candidate genes in qHT2.1 interval

In general, the confidence intervals of the QTL regions based on Δ(SNP-index) peaks were

large, with a maximum of 8.22 Mbp for qHT2.1 (Table 3). There were 9052 SNPs between T-

pool and S-pool in this region, of which 527 were in genic regions. Regions harboring the 279

SNPs were annotated by BLASTx against the non-redundant protein database (S1 Table, [51]),

which identified 62 non-synonymous SNPs with Δ(SNP-index)� 0.5 (S2 Table). Gene ontol-

ogy classification revealed these 62 genes were mainly associated with biological processes (S1

Fig), such as metabolism; cellular components, such as the cell membrane; and molecular

function, such as catalytic activity. The biological processes of the 62 candidate genes were

retrieved from the available bottle gourd genome data and Uniprot database. Thirty four of the

62 genes seemed to be related with heat stress and are involved in biological processes, pollen

and flower sterility, oxidative stress response, autophagy, and abiotic stress response (S3

Table).

Development of SNP markers associated with heat tolerance

Among the 34 candidate genes potentially associated with tolerance, five genes harboring five

nonsynonymous SNPs were selected for primer design (Table 4). Among them, SNP 2

Table 3. QTLs identified from QTL-Seq that conferred heat tolerance in bottle gourd.

Region QTL SNP Number SNP-index Δ(SNP-index) P-value Interval L1AFD

T-pool S-pool

Chr01:26,260,000–27,279,999 qHT1.1 12 0.3713 0.622 0.25 0.000413811 1,019,999 0.13

Chr02:11,030,000–19,249,999 qHT2.1 9052 0.3092 0.6285 0.32 9.79E-06 8,219,999 0.24

Chr02:19,410,000–20,989,999 qHT2.2 1355 0.3579 0.5463 0.19 0.006172464 1,579,999 0.11

Chr05:39,390,000–40,419,999 qHT5.1 2 0.45 0.8333 0.38 1.42E-07 1,029,999 0.25

Chr06:7,460,000–8,459,999 qHT6.1 934 0.5917 0.379 -0.21 0.001783751 999,999 -0.21

Chr07:23,220,000–24,229,999 qHT7.1 5 0.3648 0.5812 0.22 0.001986976 1,009,999 0.23

Chr08:24,880,000–25,889,999 qHT8.1 4 0.1853 0.3988 0.21 0.002248176 1,009,999 0.19

https://doi.org/10.1371/journal.pone.0227663.t003

Table 4. Primer design, position of SNPs located in their respective gene and the protein sequence alteration.

SNP Gene Mutation Chr Pos Protein Primer-F Tm-R Primer-R Tm-F

15 BG_GLEAN_10022339 C->T 2 12878537 V! I TACTCCTCGGCGTCTAACCA 60.0 TGAGAAGCAGCCTCTCGTTG 60.0

26 BG_GLEAN_10022734 A->G 2 17634545 T! A AGGTAGGCCCGAAGACTCAT 60.0 GGGAGGGCAGCTTGTTACTT 60.0

2 BG_GLEAN_10022642 C->A 2 16355258 S! Y CGCGCTATGAAGGTCCAGAA 60.2 CCCAGGATTCTCAGCACACA 60.0

16 BG_GLEAN_10022589 A->G 2 15709303 K! E GAGCCCAGTTGGTTCCTTGA 60.0 CATCTGCGATCTCCGTCCTG 60.0

31 BG_GLEAN_10022727 T->A 2 17457363 C! S CGTCTATGGGGGTTGGCAAT 60.1 CGAGAGTCCTGCAGCAGAAA 60.0

https://doi.org/10.1371/journal.pone.0227663.t004
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(BG_GLEAN_10022642, annexin 5) was related to pollen and flower sterility. SNP 15

(BG_GLEAN_10022339, PQL1 and PQL2) and SNP 16 (BG_GLEAN_10022589, serine/threo-

nine-protein kinase) were related to signal recognition. SNP 26 (BG_GLEAN_10022734,

MuDR) and SNP 31 (BG_GLEAN_10022727, AP-3 adaptor complex) were related to intracel-

lular transport. All these five SNPs altered the predicted protein sequences of the genes

(Table 4).

Genotyping of 10 heat tolerant and 16 sensitive F2 individuals (S2 and S3 Figs, Table 5)

showed two of the five SNPs (SNP 15 and SNP 26) had no polymorphism between the heat tol-

erant and sensitivity lines. SNP 2 (CC), SNP 16 (GG) and SNP 31 (TT) were homozygous in

heat tolerant individuals, which were with homozygous (AA, AA, AA) or heterozygous geno-

type (AC, AG, AT) in heat sensitive plants, respectively. The alleles of the three SNPs (SNP 2,

SNP 16 and SNP 31) showed good correlations with heat tolerance in the two parents, the two

pools and tested F2 plants (Table 5) suggesting their potential value as makers for marker-assis-

ted selection of heat tolerance.

Discussion

Parental lines were not used as reference genome

Based on QTL-seq protocol [27], the genome sequence of either of the two parents can be used

as a reference to map the DNA pool [32,52]. This would make it easier to identify the source of

the SNPs and to tell from which parent the allele responsible for the QTL region came from.

But since there is a close genetic relationship between the parental lines used in this study and

cv. Hangzhou Gourd, the cultivar used to develop the high-quality reference genome for bottle

gourd [19], the available genome sequence for the latter was used as reference in our study.

The sequence data of parental lines were mainly applied to ensure the differential SNPs

detected from two pools were inherited from either parent.

Moreover, the L1 allele frequency difference (L1AFD) was plotted to identify the size of the

effect and direction of action of the parental allele for each QTL [50]. The profile of L1AFD

indicated that except for qHT7.1 (L1AFD < 0) derived from the susceptible parent L6, the

other six tolerant alleles of qHT5.1, qHT2.1, qHT6.1, qHT8.1, qHT1.1 and qHT2.2 (L1AFD

value > 0) were all from the tolerant parent L1.

The qHT2.1 had higher values of Δ(SNP-index) and L1AFD, and contained the largest

number of detected SNPs (9052). Thus, qHT2.1 was identified as the most promising major-

effect QTL for heat tolerance. For cucumber [33], credible QTLs associated with downy mil-

dew resistance were detected via QTL-Seq method and double checked by conventional

method. In their research, the reads of two DNA pools were mapped against the reference

genome of cucumber cv. Chinese Long, not mapped against the parental line of TH118FLM or

Table 5. Sanger sequencing verification of five candidate SNP loci in 10 heat tolerant and 16 sensitive F2 individuals.

SNP Gene L1 L6 Heat tolerant individuals Heat sensitive individuals

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

15 BG_GLEAN_10022339 T C C C C C -� - - - - - C C C C - - - - - - - - - - - -

26 BG_GLEAN_10022734 G A AG AG AG AG - - - - - - AG AG AG AG - - - - - - - - - - - -

2 BG_GLEAN_10022642 C A C C C C C C C C C C A AC AC A A A AC A AC AC AC AC A AC AC AC

16 BG_GLEAN_10022589 G A G G G G G G G G G G A A A A A A AG A AG AG AG AG A AG AG AG

31 BG_GLEAN_10022727 T A T T T T T T T T T T A AT AT A A A AT A AT AT AT AT A AT AT AT

�SNP 15 and SNP 26 had no difference between the four heat tolerant lines and four heat sensitivity lines, so they were not genotyped for the 18 lines additionally.

https://doi.org/10.1371/journal.pone.0227663.t005

PLOS ONE QTL-Seq identifies QTL for relative electrical conductivity associated with heat tolerance in bottle gourd

PLOS ONE | https://doi.org/10.1371/journal.pone.0227663 November 10, 2020 8 / 16

https://doi.org/10.1371/journal.pone.0227663.t005
https://doi.org/10.1371/journal.pone.0227663


WME. The genetic relationship among cucumber was narrow. The polymorphism informa-

tion content value of SSR and SCAR was only 0.65 [53]. For sunflower [54], the reference

genome for Helianthus annuus was used and not the parental lines 902R or 906R, for the iden-

tification of candidate resistance gene to broomrape by BSA-seq.

Genetics basis of heat tolerance in bottle gourd

Plants have evolved a range of metabolic responses, such as antioxidant activity, membrane

lipid unsaturation, protein stability, gene expression and translation, and accumulation of

compatible solutes [55], to cope with heat stress through the activation of stress-response

genes [56]. Heat tolerance, which could be characterized by different phenotypic and physio-

logical parameters, has been shown to be a quantitative trait [57]. The quantitative nature of

heat tolerance has been revealed in a number of crop plants, like wheat [58,59], rice [34], and

broccoli [60,61]. However, there are also reports of monogenic and oligogenic responses to

heat tolerance [62,63]. Little is known about the inheritance of heat tolerance in bottle gourd.

In this study, the F1 of the L1×L6 was heat sensitive suggesting that heat tolerance is a recessive

trait in bottle gourd. We also identified major-effect QTL for this trait. Thus, our work repre-

sented the first to report REC related to heat tolerance in this important vegetable crop.

In the present study, qHT2.1 was identified as the most promising major QTL for heat tol-

erance. Similar results have been reported for African rice (Oryza glaberrima Steud.) [64]. It

was reported that a major QTL that controls the survival rate of seedlings exposed to high tem-

peratures was governed by the Thermo tolerance 1 gene. The gene encodes a 23S proteasome

subunit that degrades ubiquitinated cytotoxic denatured proteins formed due to high tempera-

ture stress. Major-effect QTL control of complex traits, such as heat tolerance, may be

explained by inheritance patterns of the trait [13] and action of major regulator genes that may

switch off subordinate genes, if a key gene is mutated [65].

Annotation of heat tolerance candidate genes

Functional genomics studies in plants facilitate the elucidation of candidate genes and their

relationship with traits [35]. For example, heat stress affects pollen and flower sterility [66]. Of

the 34 candidate genes, four were found to have key roles in gametogenesis [67], pollen devel-

opment [68,69], or Ogura cytoplasmic male sterility [70]. Heat-stress also causes cellular dam-

age by oxidative stress and toxicity due to reactive oxygen species (ROS) formation [71,72].

Antioxidants scavenge ROS to mitigate oxidative stress. We found four putative candidate

genes that had a role in defying oxidative stress and recovering plants from heat-stress damage

[73–76]. Many reports have mentioned transcription factors [77], binding factors [78,79],

intracellular transporters [80,81], and enzymes [82,83] that are responsible for abiotic toler-

ance in different crops. The signaling molecules [84] and autophagy [85] also play important

roles in plant responses to stress.

Markers and candidate genes associated with heat tolerance in bottle gourd

In this study, three SNPs with contrasting functional annotation were found to be associated

with heat tolerance in bottle gourd. The three SNPs were located in three genes including

those encoding for homologs of annexin 5 (BG_GLEAN_10022642, SNP 2), AP-3 adaptor

complex protein (BG_GLEAN_10022727, SNP 31), and serine/threonine-protein kinase

(BG_GLEAN_10022589, SNP 16). A common response of crop plants to temperature stress is

significant yield loss, as a result of effects on spikelet fertility in rice [86], pod set in lentil [65],

and pollen sterility in canola [66]. Annexins are members of the ubiquitous family of proteins

present in eukaryotic organisms [87] and localized in various subcellular compartments [88].
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They are known to be involved in a variety of cellular processes, such as maintenance of vesic-

ular trafficking, cellular redox homeostasis, actin binding, and ion transport [89], due to their

calcium- and membrane-binding capacity. Annexin 5 is involved in pollen grain development

and germination, and pollen tube growth through the promotion of calcium-modulated endo-

membrane trafficking [90]. For example, down-regulation of Arabidopsis annexin 5 in trans-

genic Ann5-RNAi lines has been shown to cause sterility in pollen grains [68].

Adaptor proteins that are involved in protein trafficking and sorting [91–93] may recognize

cargo and coat proteins during vesicle formation [94]. AP-3 was first identified in mammalian

cells and probably functions as a clathrin adaptor [95]. Losses in AP-3 function reduce seed

germination potential [96,97], due to mistargeted protein S-ACYL transferase10 that is critical

for pollen tube growth during dynamic vacuolar organization in Arabidopsis [98].

Serine/threonine-protein kinases (STKs) are involved in signal transduction networks to

coordinate growth and differentiation of cell responses to extracellular stimuli [99]. In a range

of smut pathogenesis-related biological processes, Huang et al. [84] reported that STKs may

act as receptors or signaling factors, such as in Ca2+ signaling, that then activate defense

responses. Umezawa et al. [100] reported that SRK2C is annotated as a putative and osmotic-

stress-activated STK in Arabidopsis. It might mediate signal transduction and regulate a series

of drought stress-response genes that enhance expression of 35S:SRK2C-GFP to improve

drought tolerance in plants.

Conclusions

Understanding the genetic basis of heat tolerance and development of reliable DNA markers

to indirectly select for the trait are important in breeding for new varieties with heat tolerance.

In this study, we show that REC could be used as an indicator for heat tolerance, which exhib-

ited recessive inheritance. We also identified three SNPs that are associated with heat toler-

ance. The three SNPs were identified in genes regulating pollen sterility, intracellular

transport, and signal recognition. These SNPs can be used in marker-assisted selection for

heat tolerance in bottle gourd. Intensity of global warming will increase over the next two to

three decades and will exacerbate challenges for the cultivation of Cucurbitaceae plants. Identi-

fication of heat tolerant genotypes of bottle gourds that can be used to improve heat tolerance

of other Cucurbitaceae plants, such as watermelon, through grafting techniques may mitigate

these challenges. These results revealed the novel region of 11.03 − 19.25 Mb on Chr 2 harbor-

ing qHT2.1 that may provide the basis for further exploration and fine mapping of novel genes

associated with heat tolerance in bottle gourd.
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