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Abstract: In this study, multiple regression analysis (MRA) and polynomial regression analysis
(PRA), which are traditional statistical methods, were applied to analyze factors affecting the tensile
strength of basalt and glass fiber-reinforced polymers (FRPs) exposed to alkaline environments and
predict the tensile strength degradation. The MRA and PRA are methods of estimating functions
using statistical techniques, but there are disadvantages in the scalability of the model because they
are limited by experimental results. Therefore, recently, highly scalable artificial neural networks
(ANN) have been studied to analyze complex relationships. In this study, the prediction performance
was evaluated in comparison to the MRA, PRA, and ANN. Tensile strength tests were conducted
after exposure for 50, 100, and 200 days in alkaline environments at 20, 40, and 60 ◦C. The tensile
strength was set as the dependent variable, with the temperature (TP), the exposure day (ED), and the
diameter (D) as independent variables. The MRA and PRA results showed that the TP was the most
influential factor in the tensile strength degradation of FRPs, followed by the exposure time (ED) and
diameter (D). The ANN method provided the best correlation between predictions and experimental
values, with the lowest error and error rate. The PRA method applied to the response surface method
outperformed the MRA method, which is most commonly used. These results demonstrate that
ANN can be the most efficient model for predicting the durability of FRPs.

Keywords: GFRP; BFRP; tensile strength prediction; multiple regression analysis; response surface;
polynomial regression; artificial neural network

1. Introduction

The reinforcement material in reinforced concrete undergoes corrosion due to chem-
ical factors penetrating the concrete, which can cause structural collapse. To prevent
reinforcement corrosion, fiber-reinforced polymers (FRPs) have been used in buildings,
precast products, and construction strengthening [1–3]. FRPs can be combined with carbon,
aramid, glass, and basalt fibers. For example, carbon and glass fiber-reinforced polymers
(CFRPs and GFRPs, respectively) have been produced and commercialized in large quanti-
ties [4,5]. Despite the outstanding properties of CFRPs, GFRPs have been preferred owing
to their cost advantage [4–9]. Recently, basalt fiber-reinforced polymers (BFRPs) have been
developed with lower costs and higher environmental benefits [4].

Unlike steel reinforcements, FRPs are corrosion-free. However, because an FRP is
composed of a resin and fibers, there are concerns over its durability and drawbacks ex-
ist, such as chemical attacks under external conditions and manufacturing errors when
employed as a construction material [9–11]. In the case of GFRPs used in concrete under
alkaline environments, the surface between the resin and fibers undergoes damage as it
reacts with the alkali ions in the high-pH alkaline environment [6]. To assess the deteriora-
tion in the durability of GFRPs in an alkaline environment, Won [12] prepared a solution
containing 1.4% KOH, 1% NaOH, and 0.16% Ca(OH)2 to simulate an alkaline environment
and assessed the strength deterioration of GFRPs in this environment at temperatures of
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20, 40, 60, and 80 ◦C. The longer the exposure period and the higher the temperature, the
greater the decrease in the tensile strength was. Elgabbas [13] assessed the durability of
BFRPs in alkaline solutions at 60 ◦C and found that an alkaline environment significantly
deteriorates their mechanical properties.

Therefore, it is important to assess and predict the durability and strength deterioration
of FRPs employed in concrete under an alkaline environment to ensure the safety and
durability of the structure. The durability design of reinforced concrete structures with FRPs
poses challenges in terms of the performance prediction of structures, universally, because
the durability of the FRP depends on the surface characteristics between the resin and
fibers, degree of fiber dispersion, and resin system [14]. In addition to alkaline environment
exposure, the durability and physical mechanical properties can vary significantly with the
increase in the number of environmental factors, affecting the durability, which should be
considered for an accurate prediction and structural application.

Various techniques have been developed to predict material performance, such as
regression analysis (RA) and artificial neural networks (ANNs) [15–20]. Among the various
types of regression analyses, multiple regression analysis (MRA) is used to correlate two
or more independent variables and one dependent variable. Although MRA is relatively
simple and quick in making predictions, its accuracy decreases with the increase in the
number of independent variables [16,20]. Recently, many researchers have constructed
strength prediction models for concrete by applying ANNs when independent variables are
in abundance; however, the model construction process is complex [19]. Chithra [16] com-
pared MRA and ANN models in predicting the strength of concrete containing nano-silica
and copper slag. Atici [17] used MRA and ANN models for concrete strength prediction
based on the characteristics of fly ash and blast-furnace slag. The authors demonstrated
that ANN models outperform MRA models in terms of predictive performance.

Recently, response surface methods (RSMs) have been used to optimize the mixing of
concrete and to assess the influence of each factor (e.g., the ratio of cement, aggregates, and
water) [21–24]. Alyamac [21] proposed an optimization model using an RSM to develop
eco-friendly magnetic compression concrete by recycling marble sludge. The author
compared the model with experimental values in terms of accuracy and demonstrated
its validity. Haque [22] used an RSM to simulate a model that can predict the desired
target strength and optimize the concrete mixture, and the RSM model showed an error
of less than 5%. RSM are used when performing a statistical analysis based on fitting
polynomials to data and evaluating the influencing variables, i.e., independent variables
and predictors. Bezerra [25] presented the advantages of applying polynomial regression
in response surface analyses.

To the best of our knowledge, no predictive techniques have been used to date to
predict the strength degradation of FRPs exposed to alkaline environments. Naderpour [26]
trained an ANN model to predict the shear strength of concrete beams reinforced with an
FRP. For the prediction, experimental data were inputted to the ANN model and compared
with the calculation results of shear strength equations suggested by previous researchers
by using the mean absolute error (MAE), root-mean-square error (RMSE), and mean square
error (MSE) values. Zhou [27] conducted an experiment on the interfacial coupling between
FRPs and concrete and presented a model with stable prediction results by simulating an
ANN model using a back-propagation neural network (BPNN) method.

In this study, we analyzed the critical factors and correlations influencing the strengths
of GFRPs and BFRPs exposed to alkaline environments and compared the results of
three modeling approaches: MRA, polynomial regression analysis (PRA), and ANN. The
independent variables affecting the strength were temperature (TP), exposure time (ED),
and FRP diameter (D). Furthermore, the accuracy of each model was assessed in terms of
the RMSE, correlation coefficient (R), MAE, and mean absolute percentage error (MAPE).
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2. Analysis Methods
2.1. Multiple Regression Analysis

The MRA is a method for analyzing linear relationships between a dependent variable
and more than one independent variable—it is an extended method of simple regression. In
an MRA, the independent variables affect the dependent variable; therefore, independent
variables can be established when validity is obtained in relation to the dependent variable.
To describe the relationships between independent and dependent variables, the constant
and regression coefficients of each variable are calculated. The general multiple regression
equation is expressed in Equation (1):

Y = α + β1Xa + β2Xb + · · ·+ βkXk ± e (1)

where Y is the dependent variable, α is a constant, β1–βk are the regression coefficients,
X1–Xk are the independent variables, and e is error. The MRA model assesses the va-
lidity of the association between the independent and dependent variables using the
determination coefficient, R2. The general determination coefficient equation is given by
Equation (2), and R2 is the amount of change in the dependent variable related to the
independent variables. However, the determination coefficient increases with the increase
in the number of independent variables in the established model, and the adjusted deter-
mination coefficient (R2

adj) can be used to assess the validity. R2 and R2
adj are expressed in

Equations (2) and (3), respectively:

R2 = 1− ∑(ŷi − y)2

∑(yi − y)2 (2)

R2
adj = 1− n− 1

(n− p− 1)(1− R2)
(3)

where ∑(yi − y)2 is the amount of change in the dependent variable, ŷi is the prediction
value, y is the average of the experimental values, and yi is the experimental value. In
Equation (3), n is the number of experimental values and p is the number of indepen-
dent variables.

2.2. Polynomial Regression Analysis

The advantage of RSMs is that they have a low error and improve the prediction
performance using a polynomial regression equation [28]. The polynomial regression
equation is composed of a predicted variable, intersection, and square terms of the predicted
variable. This study attempts to assess the accuracy of the strength prediction performance
using a polynomial regression equation when applied to an RSM. The general polynomial
regression equation is given by Equation (4), where Y is the predicted variable, α is a
constant, βi–βij are the regression coefficients, and Xi and Xj are the input variables:

Y = α +∑βiXi +∑βijXij +∑βijXi
2 (4)

2.3. Artificial Neural Network

Each neuron in the human brain is connected by tens of thousands of different neurons
and billions of neurites, which operate the human nervous system by interacting with the
neurons. ANNs were developed in an attempt to combine simple computational elements
into complex, highly interconnected systems, and then simulate complex phenomena by
modeling them into biological neural systems imitating the human brain [16,17,19,29,30].
As shown in Figure 1, an ANN comprises an input layer, a hidden layer, and an output
layer, each of which contain a node called a neuron, analogous to that found in the human
neural network. Early ANNs had a single-layer perceptron comprising input and output
layers; however, because nonlinear separation of data is not possible in a single-layer
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perceptron, a multi-layer perceptron (MLP) was developed by adding hidden layers. MLPs
can analyze nonlinear relationships between data with complex properties owing to the
addition of hidden layers, and the technique is not much different from general statistical
programs that analyze nonlinear regression and discriminant models [29].

Figure 1. Structure of an artificial neural network.

MLPs can be learned through back propagation [16,17,29,30]. Back propagation is a
method that reduces error by assigning training data to the input and calculating the error
value, which is the difference between the neural network’s prediction value and the real
value as a result of performing the feed-forward method and again using neural network
weights. The weight sum of the back propagation is calculated using Equation (5):

xj = ∑
i

yiwji (5)

where xj is the weight value of the j-th neuron, yi is the input value of the i-th neuron,
and wji is the connective weight of the i-th to j-th neurons. The weight values are passed
through a nonlinear activation function, as expressed in Equation (6):

yi =
1

1 + e−xj
(6)

3. Model Comparison

The best analysis method for predictive models was evaluated by comparing the
models developed using each analysis method. The model performance was compared
using the R, RMSE, MAE, and MAPE values. The correlation coefficient (R) is a numerical
value indicating the correlation between variables, and a linear relationship was evaluated
by comparing the experimental and predicted values of the tensile strength. R ranges
from +1 to –1, and the closer the R value is to 1, the better the predictive performance
of the model. R is equal to the square root of the determination coefficient, as expressed
in Equation (7). The RMSE is a method of measuring the prediction accuracy, which is
averaged over the square of the error and then with the square roots. Since the MAE
represents the average of the absolute values of the error of the predicted and experimental
values, errors can be intuitively evaluated. The MAPE is a method of evaluating differences
by calculating the predicted and experimental values as ratios. The following are the
expressions of each indicator:
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R =
√

R2 =

√√√√1− ∑(ŷi − y)2

∑(yi − y)2 (7)

RMSE =

√
∑(ŷi − y)2

n
(8)

MAE =
1
n∑|ŷi − y| (9)

MAPE =
100
n
·∑ |ŷi − y|

y
(10)

4. Data Preparation
4.1. Test Specimens

The prepared FRPs were a GFRP and a BFRP based on 72% fibers and 28% vinyl ester
resin [31]. Testing devices for the tensile strength of the FRPs were required because tensile
test methods, such as steel rebars, are difficult to apply given that the polymer matrix
may crumble [32]. Therefore, the test specimens were prepared with reference to the ACI
440.3R-12 [33] and CSA S807 [34] methods. Figure 2 shows the details of the test specimens.

Figure 2. The specimens used in the test: (a) the shape of the GFRP and BFRP, (b) the length of the exposure section, and
(c) the diameter of the GFRP and BFRP.

4.2. Environmental Exposure Conditions

The deterioration of FRP is caused by alkali penetration during the pouring of concrete
and hardening stages of concrete. To simulate the alkali environment, the tensile strength
was assessed by exposing BFRP and GFRP for 50, 100, and 200 days by mixing a solution
similar to the alkali environment of concrete. The alkali environment of concrete has pH of
12.5 to 13, and the solution is mixed as shown in Equation (11). As shown in Table 1, the
temperature variables were set at 20, 40, and 60 ◦C, and the exposure day was at 50, 100,
and 200 days. A water-proofing film was installed to prevent the evaporation of moisture.

0.16%Ca(OH2) + 1%Na(OH) + 1.4%K(OH) (11)

4.3. Tensile Test and Results

Tensile strength testing was conducted on a total of 69 test specimens for GFRP,
except where tensile strength testing was not possible due to deterioration, and on 75 test
specimens for BFRP. Table 2 shows the average tensile strength test results for the GFRP
and BFRP. The tensile strength test results showed that the TP had a greater effect than
the ED. In the case of exposure to an alkali solution at 20 ◦C, the tensile strength was not



Materials 2021, 14, 4861 6 of 13

significant until 100 days of exposure; however, the tensile strength decreased sharply up
to 50% after 200 days of exposure. This shows that the tensile strength decreased sharply
by up to 50% when the FRPs were exposed for 200 days at a TP of 40 ◦C. In particular,
BFRP was unable to measure the tensile strength after 200 days of exposure because of
the impairment of the resin and fibers. At 60 ◦C exposure, the tensile strength could not
be measured because of resin damage and swelling of the fibers after 50 days. The FRPs
showed a nonlinear increase in the elongation at 40 and 60 ◦C when exposed for 200 days,
and this is attributed to the damage between the resin and fiber and the fracture of fibers.

Table 1. Environmental exposure condition.

Exposure Condition TP
(◦C)

ED
(Days)

Reference In air -

Alkaline solution
(pH = 12.6) 20, 40, 60

50
100
200

Table 2. Tensile test results of BFRP and GFRP.

D
(mm)

TP
(◦C)

ED
(Days)

Tensile Strength (MPa) Average ± SD

BFRP GFRP

13

20 0 1067.2 ± 84.86 917.30 ± 26.48

20 50 953.9 ± 27.40 821.97 ± 29.39

40 50 689.3 ± 16.02 633.80 ± 18.87

60 50 232.4 ± 12.18 299.15 ± 8.59

20 100 1041.7 ± 64.17 912.50 ± 31.14

40 100 286.6 ± 10.46 391.27 ± 24.34

20 200 609.7 ± 55.78 519.58 ± 12.90

40 200 - 153.33 ± 5.56

16

20 0 1130.73 ± 5.61 808.95 ± 25.07

20 50 1002.37 ± 26.49 707.16 ± 21.09

40 50 828.40 ± 10.40 600.18 ± 31.40

60 50 249.33 ± 20.41 316.37 ± 37.79

20 100 1091.72 ± 9.46 789.18 ± 38.12

40 100 473.76 ± 18.79 458.30 ± 32.11

20 200 478.06 ± 18.08 424.37 ± 25.48

40 200 - 155.68 ± 32.38

5. Analysis and Results
5.1. MRA Results

In this study, the SPSS program was used for the MRA. A stepwise regression method
was applied, in which the greater the number of variables added, the greater the num-
ber of existing analyzed variables re-analyzed, and nonsignificant variables were ex-
cluded from the analysis. The validity of the developed model was assessed through
R2, R2

adj, t-test, F-test, and Durbin–Watson test. The developed models are expressed in
Equations (12) and (13):

TSBFRP = 1561.9− 19.4TP− 2.9ED (12)
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TSGFRP = 1439.7− 12.99TP− 2.19ED− 17.0D (13)

Table 3 shows the results of MRAs. The R2 values for the BFRP and GFRP were 0.886
and 0.887 respectively, with a validity of more than 88%. Both models showed the same
R2

adj value (0.83), which was lower than R2. To verify the independence of the error, the
Durbin–Watson values for the BFRP and GFRP were 0.863 and 0.594 respectively, indicating
that the other variables increase when any one of the independent variables, namely TP,
ED, and D, increases. Figure 3 shows R2

adj linear curves and scatter plots.

Table 3. MRA results of BFRP and GFRP.

Type Variable β t p TOL VIF

BFRP

Constant 1561.94 34.962 0.000 - -
TP −19.409 −19.491 0.000 0.963 1.039
ED −2.887 −10.109 0.000 0.963 1.039
D - 0.864 0.391 0.998

F(p) 210.862 R 0.942
R2

adj 0.882 R2 0.886
Durbin–Watson 0.863 p-value 0.000

GFRP

Constant 1439.72 14.173 0.000 - -
TP −12.99 −18.441 0.000 0.997 1.003
ED −2.19 −13.353 0.000 0.997 1.003
D −17.0 −2.509 0.015 0.998 1.002

F(p) 169.626 R 0.942
R2

adj 0.882 R2 0.887
Durbin–Watson 0.594 p-value 0.000

Figure 3. Relationship between the predictive and test values from the MRA results for the (a) BFRP
and (b) GFRP predictive models.

In MRAs, there are two methods for testing significance: the F-test and the t-test. The
F-test examines whether the models are significant, while the t-test examines whether each
independent variable represents a significant relationship with the dependent variable.
The F-test of the BFRP was 210.86 (p = 0.000), and p was shown to be significant to less
than 0.05 (5%) at the 95% confidence level. The F-test value of the GFRP, likewise, was
169.63 (p = 0.000), indicating a significance level of less than 0.05. The t-test of the two
models generally showed a significant probability of 0.000; however, D of the BFRP model
did not satisfy a significance level of less than 0.05, and D of the GFRP prediction model
satisfied a significance level of less than 0.05. Therefore, with the TP, ED, and D of the
BFRP predictive model as independent variables, D of the significance probability of 39.1%
is >0.05, indicating that D does not affect the strength of the dependent variable in the
BFRP, as shown in Equation (12).
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β shows the influence of each independent variable on the dependent variable, compar-
ing the relative influence by standardizing the different unit systems of each independent
and dependent variable. In the BFRP model, excluding D, the β values are −19.409 and
−2.887 for TP and ED, respectively. A negative β indicates that the tensile strength de-
creases as the TP and ED increase. The β values of the GFRP model were −12.99, −2.19,
and −17.0 for TP, ED, and D, respectively. Contrary to the GFRP, D was found to not affect
the tensile strength of the BFRP.

Multicollinearity is intended to determine the correlation between independent vari-
ables when two or more independent variables exist, and the higher the correlation between
independent variables, the less reliable the model parameter estimates. A multicollinearity
problem arises when the highly correlated independent variable has a variance inflation
factor (VIF) of 10 or more or a tolerance of 0.1 or less. The tolerance values, excluding D, of
the BFRP were 0.963 for both TP and ED, and those of the GFRP were 0.997 for TP and ED
and 0.998 for D. The VIF values of the BFRP were 1.039 for both TP and ED, and those of
the GFRP were 1.003, 1.003, and 1.002 for TP, ED, and D, respectively. Both the BFRP and
GFRP prediction models were evaluated as having no multicollinearity problems.

5.2. Polynomial Regression Analysis Results

The PRA was performed using the Minitab v20. To adopt the polynomial regression
used in the RSM, three variables are combined to form linear, cross-product, and quadratic
terms. The stepwise regression method was adopted, and ANOVA was used to determine
the sequence and interactions of the significant factors. The models are expressed in
Equations (14) and (15):

TSBFRP = 297 + 14.51TP + 10.93ED + 39.4D− 0.2652TP2−0.01701ED2 − 0.271T·ED− 0.311ED·D (14)

TSGFRP = 1946− 29.89TP + 1.135ED− 60.2D− 0.01075ED2 − 0.0352TP·ED + 1.277TP·D (15)

The nonsignificant variables were excluded. Table 4 presents the ANOVA results. In
Table 4, the highest p-value is the TP linear term, followed by ED. Relatively linear terms
have been shown to have a significant effect on the tensile strength compared with the
cross-product and quadratic terms. The R2 values were found to have high explanatory
powers of 94.78 and 93.99 in the BFRP and GFRP models, indicating that there is a good
correlation between the prediction and experimental values, as shown in Figure 4.

Table 4. ANOVA results of the PRA.

BFRP Terms Contribution F-Value p-Value GFRP Terms Contribution F-Value p-Value

TP 67.17 4.33 0.043 TP 56.14 36.89 0.000
ED 21.48 25.65 0.000 ED 31.43 5.71 0.020
D 0.16 12.25 0.001 D 1.10 25.35 0.000

TP2 0.08 13.50 0.001 TP2 3.76 28.85 0.000
ED2 1.31 28.40 0.000 ED2 0.79 9.38 0.003

TP*ED 4.65 49.31 0.000 TP*ED 1.29 14.61 0.000
ED*D 0.58 6.19 0.016 ED*D - - -

R 97.68 R 97.22

R2 95.43 R2 94.52

R2
adj 94.78 R2

adj 93.99

Durbin–Watson 1.265 Durbin–Watson 0.783
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Figure 4. Relationship between the predictive and test values from the PRA results for the (a) BFRP
and (b) GFRP predictive models.

5.3. ANN Analysis Results

MATLAB, which is widely used for ANN analysis in technical computing, was used
in this study. The learning, validation, and testing phases in the ANN algorithm were 60%,
20%, and 20% respectively, and the number of epochs for learning the dataset was 11 for
BFRP and 12 for GFRP. The Levenberg–Marquardt algorithm (LM), known to be the fastest
back-propagation algorithm, was employed. In particular, the LM shows outstanding
performance in nonlinear regression problems and is well-suited for mean-squared error
training neural networks [34,35]. The activation function consists of a nonlinear neural
network, the sigmoid function is applied to the hidden layer, and the purlin function is
applied to the output layer as a linear activation function.

The TP, ED, and D values were applied to three input nodes at the input layer, one
hidden layer was applied, and the tensile strength test values were applied to the output
layer. It is challenging to construct an optimal model by specifying the number of nodes
in the hidden layer at once. Therefore, constructing the model by appropriately selecting
hidden-layer nodes is the core of the ANN model [17]. In this study, the model performance
was evaluated by increasing or decreasing the number of hidden nodes and by calculating
the MSE.

As shown in Figure 5, the lowest validation MSE value of the BFRP model is 176.6 when
applied with 9, and of the GFRP model is 306.7 when applied with 6. This means that the
model with the lowest MSE exhibits the best performance [30]. The R values shown in
Figure 6 and Table 5 for the BFRP and GFRP models are 0.994 and 0.993, respectively. Since
the R value is close to 1, the model accuracy is evaluated as good.

Figure 5. MSE training results of the training, validation, and testing stages for the (a) BFRP and
(b) GFRP predictive models.



Materials 2021, 14, 4861 10 of 13

Figure 6. Regression plots for the relationship between the prediction and test values from the ANN
results for the (a) BFRP and (b) GFRP predictive models.

Table 5. Performance of ANN model for BFRP and GFRP.

Training Validation Testing NN Model

R MSE R MSE R MSE R MSE

BFRP 0.991 1617.3 0.999 176.6 0.995 1069.2 0.994 1233.5

GFRP 0.993 774.2 0.996 306.7 0.990 1345.4 0.993 795.2

6. Summary and Discussion

The importance of the factors influencing the deterioration in the tensile strength can
be confirmed through the results of previous studies. Jongpil et al. [12] reported that the
TP and ED had a significant effect on the tensile strength of GFRPs. In the study conducted
by Elgabbas [13] on BFRPs, the TP and ED were found to be directly related to intensity
degradation. In this study, the MRA showed the extent to which the TP and ED affected
the tensile strength degradation, with the TP having a greater effect on the tensile strength
than the ED. Furthermore, although the D was not a significant factor in the tensile strength
degradation of the BFRP, it was somewhat significant in the case of the GFRP.

The MRA, PRA, and ANN methods have been used to predict the tensile strength
degradation. The performance was compared using R, RMSE, MAE, and MAPE. Table 6
summarizes these results. By evaluating the computed values, the ANN models showed
the best predictive performance. The R values of the BFRP were 0.94, 0.98, and 0.99 for the
MRA, PRA, and ANN models respectively, and the R values of the GFRP were 0.94, 0.97,
and 0.99, respectively. ANN models with R values close to 1 have been shown to perform
well in prediction. Similarly, the RMSE results show that the smallest difference between
the experimental and predictive values was found in the ANN models, demonstrating
their superiority. When the error of each model was confirmed by MAPE, the errors in the
ANN model were 3.71% and 4.68% for the BFRP and GFRP models respectively, with the
error between the prediction and experimental values being less than 5%. Compared with
the MRA model, there was a difference of more than three times, and compared with the
PRA, there was a difference of more than two times.
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Table 6. Comparison of each model developed by MRA, PRA, and ANN methods.

MRA PRA ANN
BFRP GFRP BFRP GFRP BFRP GFRP

R 0.94 0.94 0.98 0.97 0.99 0.99

RMSE 109.24 81.86 69.32 56.94 35.12 28.20

MAE 82.31 66.48 56.03 45.39 24.00 22.19

MAPE 13.51 14.33 9.60 8.50 3.71 4.68

These results imply that ANNs provide more reasonable performance than the MRA
and PRA. Previous studies also reported similar results, confirming that the predictive
performance of ANNs is satisfactory [15–18,36,37]. PRA methods also show better predic-
tive performance than the most commonly used MRA methods. Therefore, the prediction
technique used in this study utilizing an ANN method is not significantly different from
those used in other studies.

7. Conclusions

In this study, statistical techniques were used to evaluate different factors affecting
the tensile strength degradation of FRPs, and the prediction accuracy of the three most
commonly used techniques to predict the tensile strength, i.e., MRA, PRA, and ANN, was
compared. The TP was the most influential factor in the tensile strength degradation of
the FRPs, followed by the ED. The D was not a significant factor for the BFRP, but it was
significant for the GFRP. As shown in previous studies by Oh [38], it was found that erosion
can easily occur at the interface between fibers and resins for GFRP, with relatively longer
fiber lengths and larger diameters than BFRP.

ANN showed the best predictive performance in predicting tensile strength degra-
dation of FPRs, followed by PRA and MRA. When creating an ANN model, it is essential
to identify the appropriate number of nodes to ensure a good performance model. Pre-
dictive performance does not significantly improve if the number of nodes in the hidden
layer is too large or too small. Consequently, researchers should create prediction models
considering activation functions, the number of nodes, and the learning rate.

The prediction techniques examined in this study are accurate enough to predict the
durability of concrete structures with FRPs. However, since the tests were conducted in
a controlled environment where concrete structures were exposed to extreme conditions
only, the durability of FRPs should be assessed using models that consider more diverse
environmental conditions to achieve greater accuracy.

Author Contributions: Conceptualization, Y.K. and H.O.; methodology, Y.K.; software, Y.K.; valida-
tion, H.O.; formal analysis, H.O.; investigation, Y.K.; resources, H.O.; data curation, Y.K.; writing, Y.K.;
writing—review, H.O.; visualization, Y.K.; supervision, H.O.; project administration, H.O.; funding
acquisition, H.O. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by Basic Science Research Program through the National Re-
search Foundation of Korea (NRF), funded by the Ministry of Education (NRF-2018R1D1A1B07049278).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.



Materials 2021, 14, 4861 12 of 13

References
1. Berg, A.C.; Bank, L.C.; Oliva, M.G.; Russell, J.S. Construction and cost analysis of an FRP reinforced concrete bridge deck. Constr.

Build. Mater. 2005, 20, 515–526. [CrossRef]
2. Caratelli, A.; Meda, A.; Rinaldi, Z.; Spagnuolo, S.; Maddaluno, G. Optimization of GFRP reinforcement in precast segments for

metro tunnel lining. Compos. Struct. 2017, 181, 336–346. [CrossRef]
3. Berardi, U.; Dembsey, N. Thermal and Fire Characteristics of FRP Composites for Architectural Applications. Polymers 2015, 7,

2276–2289. [CrossRef]
4. Wang, Z.; Zhao, X.L.; Xian, G.; Wu, G.; Raman, R.K.S.; Al-Saadi, S.; Haque, A. Long-term durability of basalt- and glass-fiber

reinforced polymer (BFRP/GFRP) bars in seawater and sea sand concrete environment. Constr. Build. Mater. 2017, 139, 467–489.
[CrossRef]

5. Mugahed Amran, Y.H.; Alyousef, R.; Rashid, R.S.M.; Alabduljabbar, H.; Hung, C.C. Properties and applications of FRP in
strengthening RC structures: A review. Structures 2018, 16, 208–238. [CrossRef]

6. Davalos, J.F.; Chen, Y.; Ray, I. Long-term durability prediction models for GFRP bars in concrete environment. J. Compos. Mater.
2011, 46, 1899–1914. [CrossRef]

7. Lu, Z.; Xian, G.; Li, H. Effects of elevated temperatures on the mechanical properties of basalt fibers and BFRP plates. Constr.
Build. Mater. 2016, 127, 1029–1036. [CrossRef]

8. Rifai, M.A.; El-Hassan, H.; El-Maaddawy, T.; Abed, F. Durability of basalt FRP reinforcing bars in alkaline solution and moist
concrete environments. Constr. Build. Mater. 2020, 243, 118258. [CrossRef]

9. Davalos, J.F.; Chen, Y.; Ray, I. Effect of FRP bar degradation on interface bond with high strength concrete. Cem. Concr. Compos.
2008, 30, 722–730. [CrossRef]

10. Hollaway, L.C. A review of the present and future utilization of FRP composites in the civil infrastructure with reference to their
important in-service properties. Constr. Build. Mater. 2010, 24, 2419–2445. [CrossRef]

11. Ceroni, F.; Cosenza, E.; Gaetano, M.; Pecce, M. Durability issues of FRP rebars in reinforced concrete members. Cem. Concr.
Compos. 2006, 28, 857–868. [CrossRef]

12. Won, J.P.; Lee, S.J.; Kim, Y.J.; Jang, C.I.; Lee, S.W. The effect of exposure to alkaline solution and water on the strength-porosity
relationship of GFRP rebar. Composites 2008, 39, 764–772. [CrossRef]

13. Elgabbas, F.; Ahmed, E.A.; Benmokrane, B. Physical and mechanical characteristics of new basalt-FRP bars for reinforcing concrete
structures. Constr. Build. Mater. 2015, 95, 623–635. [CrossRef]

14. Benmokrane, B.; Ali, A.H.; Mohamed, H.M.; Elsafty, A.; Manalo, A. Laboratory assessment and durability performance of
vinyl-ester, polyester, and epoxy glass-FRP bars for concrete structures. Compos. Part B 2017, 114, 163–174. [CrossRef]

15. Tavakkol, S.; Alapour, F.; Kazemian, A.; Hasaninejad, A.; Ghanbari, A.; Ramezanianpour, A.A. Prediction of lightweight concrete
strength by categorized regression, MLR and ANN. Comput. Concr. 2013, 12, 151–167. [CrossRef]

16. Chithra, S.; Senthil Kumar, S.R.R.; Chinnaraju, K.; Alfin Ashmita, F. A comparative study on the compressive strength prediction
models for High Performance Concrete containing nano silica and copper slag using regression analysis and Artificial Neural
Networks. Constr. Build. Mater. 2016, 114, 528–535. [CrossRef]

17. Atici, U. Prediction of the strength of mineral admixture concrete using multivariable regression analysis and an artificial neural
network. Expert Syst. Appl. 2011, 38, 9609–9618. [CrossRef]

18. Pranamika, R.; Senthil Pandian, M.; Karthikeyan, K. Predictive study on Mechanical strength of Lightweight concrete using MRA
and ANN. Turk. J. Comput. Math. Educ. 2021, 12, 7774–7792. [CrossRef]

19. Charhate, S.; Subhedar, M.; Adsul, N. Prediction of Concrete Properties using Multiple Linear Regression and Artificial Neural
Network. J. Soft Comput. Civ. Eng. 2018, 2-3, 27–38. [CrossRef]

20. Chopra, P.; Sharma, R.K.; Kumar, M. Regression Models for the Prediction of Compressive Strength of Concrete with & without
Fly ash. Int. J. Latest Trends Eng. Technol. 2017, 3, 400–406.

21. Alyamac, K.E.; Ghafari, E.; Ince, R. Development of eco-efficient self-compacting concrete with waste marble powder using the
response surface method. J. Clean. Prod. 2017, 144, 192–202. [CrossRef]

22. Haque, M.; Ray, S.; Mita, A.F.; Bhattacharjee, S.; Shams, M.J.B. Prediction and optimization of the fresh and hardened properties
of concrete containing rice husk ash and glass fiber using response surface methodology. Case Stud. Constr. Mater. 2021, 14,
e00505. [CrossRef]

23. Li, W.; Cai, L.; Wu, Y.; Liu, Q.; Yu, H.; Zhang, C. Assessing recycled pavement concrete mechanical properties under joint action
of freezing and fatigue via RSM. Constr. Build. Mater. 2018, 164, 1–11. [CrossRef]

24. Habibi, A.; Ramezanianpour, A.M.; Mahdikhani, M.; Bamshad, O. RSM-based evaluation of mechanical and durability properties
of recycled aggregate concrete containing GGBFS and silica fume. Constr. Build. Mater. 2021, 270, 121431. [CrossRef]

25. Bezerra, M.A.; Santelli, R.E.; Oliveira, E.P.; Villar, L.S.; Escaleira, L.A. Response surface methodology (RSM) as a tool for
optimization in analytical chemistry. Talanta 2008, 76, 965–977. [CrossRef] [PubMed]

26. Naderpour, H.; Haji, M.; Mirrashid, M. Shear capacity estimation of FRP-reinforced concrete beams using computational
intelligence. Structures 2020, 28, 321–328. [CrossRef]

27. Zhou, Y.; Zheng, S.; Huang, Z.; Sui, L.; Chen, Y. Explicit neural network model for predicting FRP-concrete interfacial bond
strength based on a large database. Compos. Struct. 2020, 240, 111998. [CrossRef]

http://doi.org/10.1016/j.conbuildmat.2005.02.007
http://doi.org/10.1016/j.compstruct.2017.08.083
http://doi.org/10.3390/polym7111513
http://doi.org/10.1016/j.conbuildmat.2017.02.038
http://doi.org/10.1016/j.istruc.2018.09.008
http://doi.org/10.1177/0021998311427777
http://doi.org/10.1016/j.conbuildmat.2015.10.207
http://doi.org/10.1016/j.conbuildmat.2020.118258
http://doi.org/10.1016/j.cemconcomp.2008.05.006
http://doi.org/10.1016/j.conbuildmat.2010.04.062
http://doi.org/10.1016/j.cemconcomp.2006.07.004
http://doi.org/10.1016/j.compositesb.2007.11.002
http://doi.org/10.1016/j.conbuildmat.2015.07.036
http://doi.org/10.1016/j.compositesb.2017.02.002
http://doi.org/10.12989/cac.2013.12.2.151
http://doi.org/10.1016/j.conbuildmat.2016.03.214
http://doi.org/10.1016/j.eswa.2011.01.156
http://doi.org/10.17762/turcomat.v12i10.5759
http://doi.org/10.22115/SCCE.2018.112140.1041
http://doi.org/10.1016/j.jclepro.2016.12.156
http://doi.org/10.1016/j.cscm.2021.e00505
http://doi.org/10.1016/j.conbuildmat.2017.12.219
http://doi.org/10.1016/j.conbuildmat.2020.121431
http://doi.org/10.1016/j.talanta.2008.05.019
http://www.ncbi.nlm.nih.gov/pubmed/18761143
http://doi.org/10.1016/j.istruc.2020.08.076
http://doi.org/10.1016/j.compstruct.2020.111998


Materials 2021, 14, 4861 13 of 13

28. Nooraziah, A.; Janahiraman, T.V. A study on Regression Model Using Response Surface Methodology. Appl. Mech. Mater. 2014,
666, 235–239. [CrossRef]

29. Sarle, W.S. Neural Networks and Statistical Models. In Proceeding of the Nineteenth Annual SAS Users Group International
Conference, Cary, NC, USA, April 1994; pp. 1538–1550.

30. McElroy, P.D.; Bibang, H.; Emadi, H.; Kocoglu, Y.; Hussain, A.; Watson, M.C. Artificial neural network (ANN) Approach to
predict unconfined compressive strength (UCS) of oil and gas well cement reinforced with nanoparticles. J. Nat. Gas Sci. Eng.
2021, 88, 103816. [CrossRef]

31. Dai, L.; He, X. Experimental Study on Tensile Properties of GFRP Bars Embedded in Concrete Beams with Working Cracks.
MATEC Web Conf. 2017, 2005. [CrossRef]

32. Kazakevich, T.; Mamodov, S.; Nizhegorodtsev, D.; Klevan, V. Improving the reliability of FRP bars tests by increasing the adhesive
strength in Specimen anchor. IOP Conf. Ser. Mater. Sci. Eng. 2020, 896, 012033. [CrossRef]

33. Brahim, B.; Claude, N.; Xavier, S.; Allan, M. Comparison between ASTM D7205 and CSA S806 Tensile-Testing Methods for Glass
Fiber-Reinforced Polymer Bars. J. Compos. Constr. 2017, 21, 5. [CrossRef]

34. Zhou, Q.; Wang, F.; Zhu, F. Estimation of compressive strength of hollow concrete masonry prisms using artificial neural networks
and adaptive neuro-fuzzy inference. Constr. Build. Mater. 2016, 125, 417–426. [CrossRef]

35. Nazerian, M.; Kamyabb, M.; Shamsianb, M.; Dahmardehb, M.; Kooshaa, M. Comparison of response surface methodology
(RSM) and artificial neural networks (ANN) towards efficient optimization of flexural properties of gypsum-bonded fiberboards.
Open Sci. J. 2018, 24, 35–47. [CrossRef]

36. Xu, W.S.; Yu, Q.M.; Sun, Y.L.; Dong, T.W. Research on Improving Training Speed of LMBP Algorithm and its Simulation
in Application. In Proceedings of the International Conference on Computational Intelligence and Security, Harbin, China,
15–19 December 2007; pp. 540–545. [CrossRef]

37. Badkar, D.S.; Pandey, K.S.; Buvanashekaran, G. Development of RSM- and ANN-based models to predict and analyze the effects
of process parameters of laser-hardened commercially pure titanium on heat input and tensile strength. Int. J. Adv. Manuf. Technol.
2013, 65, 1319–1338. [CrossRef]

38. Oh, H.; Kim, Y.; Jang, N. An Experimental Study on the Degradations of Material Properties of Vinylester/FRP Reinforcing Bars
under Accelerated Alkaline Condition. J. Korea Inst. Struct. Maint. Insp. 2019, 23, 51–59. [CrossRef]

http://doi.org/10.4028/www.scientific.net/AMM.666.235
http://doi.org/10.1016/j.jngse.2021.103816
http://doi.org/10.1051/matecconf/20178802005
http://doi.org/10.1088/1757-899X/896/1/012033
http://doi.org/10.1061/(ASCE)CC.1943-5614.0000819
http://doi.org/10.1016/j.conbuildmat.2016.08.064
http://doi.org/10.1590/01047760201824012484
http://doi.org/10.1109/CIS.2007.32
http://doi.org/10.1007/s00170-012-4259-0
http://doi.org/10.11112/jksmi.2019.23.2.51

	Introduction 
	Analysis Methods 
	Multiple Regression Analysis 
	Polynomial Regression Analysis 
	Artificial Neural Network 

	Model Comparison 
	Data Preparation 
	Test Specimens 
	Environmental Exposure Conditions 
	Tensile Test and Results 

	Analysis and Results 
	MRA Results 
	Polynomial Regression Analysis Results 
	ANN Analysis Results 

	Summary and Discussion 
	Conclusions 
	References

