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ABSTRACT

Data currently generated in the field of nutrition are becoming increasingly complex and high-dimensional, bringing with them new methods
of data analysis. The characteristics of machine learning (ML) make it suitable for such analysis and thus lend itself as an alternative tool to deal
with data of this nature. ML has already been applied in important problem areas in nutrition, such as obesity, metabolic health, and malnutrition.
Despite this, experts in nutrition are often without an understanding of ML, which limits its application and therefore potential to solve currently
open questions. The current article aims to bridge this knowledge gap by supplying nutrition researchers with a resource to facilitate the use of
ML in their research. ML is first explained and distinguished from existing solutions, with key examples of applications in the nutrition literature
provided. Two case studies of domains in which ML is particularly applicable, precision nutrition and metabolomics, are then presented. Finally, a
framework is outlined to guide interested researchers in integrating ML into their work. By acting as a resource to which researchers can refer, we
hope to support the integration of ML in the field of nutrition to facilitate modern research. Adv Nutr 2022;13:2573–2589.

Statement of Significance: Many problems in nutrition are complex, multifactorial, and unlikely to be solved with data analysis methods
that have been used traditionally; however, the capabilities of machine learning may be able to. For nutrition researchers to fully capitalize on
the types of data that will be generated in the coming years, we provide a guide to machine learning in nutrition for nutrition researchers.
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Introduction
There is a high prevalence of nutritionally mediated chronic
diseases that have multifaceted origins and require com-
plex and diverse data to be solved. Traditional research
applications have approached these questions with focused
and mechanistic techniques that may not fully capture
the complexity of the interaction between nutrition and
disease. Technological and computational advances have
recently allowed investigators to utilize high-dimensional
data approaches to better understand these diseases and
other complex questions. Topical themes, such as obesity (1,
2), omics (3, 4), and the microbiome (5–7), as well as older
subjects such as epidemiology, are deriving benefits from
these developments (8–10). Due to the increasing complexity
of the data generated, new trends in nutrition research, such
as precision nutrition (PN) (11) and data-driven disease
modeling (12, 13), require an increasing complexity in
algorithms to make sense of these data; artificial intelligence
(AI) and its subdivision, machine learning (ML), have been
important for this.

The terms AI and ML are used interchangeably in some
of the literature (13), exposing some of the conceptual con-
fusion that surrounds these topics. The overall goal of AI is to
simulate human-like intelligence in a computer system (14).
ML is the overarching term used for a subset of algorithms
that help achieve this goal. These algorithms are self-learning
from the data with which they are presented and can identify
complex underlying patterns in data; they are also capable
of processing unstructured types of data that traditional
statistical techniques are incapable of doing, such as free text,
images, video, and audio. Making such unstructured data
available for use by ML algorithms increases the amount and
potentially the quality of information available, which can
lead to better predictive capacity.

By using ML algorithms, the work in the field of AI so
far has been able to build systems that are performing well
in a specific task. However, outside the scope of that task,
most of these systems perform poorly, meaning that true
intelligence has yet to be achieved (14). For nutritionists,
the application of ML algorithms to their data is not
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to approximate human intelligence but rather to process
complex data to generate results relevant to health and
disease or to process large volumes of complex data—in other
words, to apply these algorithms to a very specific scope of
the task. Within the field of nutrition, specific tasks that have
already benefited from ML algorithms are related to finding
causes and potential solutions for many nutrition-related
noncommunicable diseases, such as obesity, diabetes, cancer,
and CVD, all of which have a complex and multifactorial
etiology (3, 4, 14–19). These works have shown promise to
the application of ML in solving the biggest challenges in
nutrition and to the opportunities before us.

The direction of research in the discipline of nutrition
science is going increasingly toward one that would benefit
from the use of advanced tools, from data generation through
to explanation and prediction. ML has the potential to
supplement existing techniques to generate and analyze
complex data, but to do so, it must be applied appropriately.
Although the use of AI and ML does not require extensive
background knowledge in computer science or mathematics,
the application of ML without appropriate understanding can
lead to biased models and results that do not represent real-
world representative. For a nutritionist without prior ML ex-
perience, approaching the subject area can be overwhelming,
which subsequently hampers adoption of its use by interested
researchers.

This article aims to deal with this by providing a resource
to which nutrition researchers can refer to guide their efforts.
First, ML itself and its distinction from traditional techniques
are explained. Next, an overview of ML is provided, and key
concepts are elucidated. This covers core ideas in ML, such as
ML types, tasks, data types, common algorithms, explainable
AI (xAI), and ML performance evaluation. Throughout
the aforementioned sections, application examples from the
literature are provided. Related terminology can be found
in Supplemental Table 1. Following this, a short review of
nutrition-orientated literature utilizing ML is elaborated in
the form of case studies of areas in nutrition science that
are currently employing ML. Finally, practical application
is supported by providing a framework for implementing
ML in nutrition research. By providing a key reference,
we enable the continuation of groundbreaking research
by circumventing the problem that ML-naive researchers
encounter when dealing with complex problems.

This project was partially funded by the 4TU–Pride and Prejudice program (4TU-UIT-346; 4
Dutch Technical Universities).
Author disclosures: The authors report no conflicts of interest.
Supplemental Tables 1 and 2, Supplemental Figure 1, and Supplemental Material are available
from the “Supplementary data” link in the online posting of the article and from the same link
in the online table of contents at https://academic.oup.com/advances/.
Address correspondence to DK (e-mail: daniel.kirk@wur.nl).
Abbreviations used: AI, artificial intelligence; AUROC, area under the receiver operating
characteristic curve; CV, cross-validation; IBS, irritable bowel syndrome; kNN, k-nearest
neighbors; LIME, local interpretable model-agnostic explanations; ML, machine learning;
NAFLD, nonalcoholic fatty liver disease; NLP, natural language processing; PCA, principal
component analysis; PN, precision nutrition; PPGR, postprandial glucose response; RF, random
forest; SHAP, Shapley additive explanations; SVM, support vector machine; T2D, type 2
diabetes; xAI, explainable AI.

Machine Learning Capabilities
ML is a subdivision of AI that employs algorithms to
complete a task by learning from patterns in the data, rather
than being explicitly programmed to do so. This is achieved
by defining an objective (e.g., predicting a numerical value),
evaluating performance, and then performing experiments
recursively to optimize the model. Whereas AI falls short of
replicating the complexity of human thinking, it excels in
certain aspects of learning, making it faster, able to deal with
high-dimensional data, and able to learn abstract patterns
(15, 16). These aspects of ML make it more suitable for tasks
than traditional statistical techniques and certain domain-
specific techniques and so gift ML with practical advantages
that make it attractive, as discussed throughout.

Whereas the current section focuses on situations in
which ML may be advantageous over traditionally used
methods, researchers should be encouraged to consider each
option as another tool in the box rather than using one or
the other. Understanding the advantages and disadvantages
of various methods and learning when and how to apply each
one can lead to synergy and more fruitful results by allowing
methods to complement one another. Researchers should
be encouraged to think deeply about their problem and the
research questions that they would like to answer and to
select the appropriate techniques that best do this. Whenever
possible, researchers should also consider experimenting
with multiple options and selecting those most suitable. The
idea of selecting the pool of solutions to suit the problem at
hand is discussed in detail in the Framework for Applying
ML in Nutrition Science section.

Machine Learning and Traditional Statistical Methods
When the goal is inference; interpretability is paramount;
and the features are well established, simple, known a priori,
and low-dimensional, traditional statistical techniques such
as regression methods may suffice (1). However, researchers
often choose these approaches due to familiarity, despite
that ML techniques can be more suitable and efficacious in
certain circumstances. ML is suited for high-dimensional
data and when the goal is predictive performance (17).
The capability of ML to learn from patterns in the data
means that precise and premeditated variable selection is
not a necessity; instead, many variables can be trialed, and
repeated experimentation can quickly identify those of most
relevance. That is, ML can be applied exploratively (17),
which may lead to the discovery of novel predictive features,
sometimes serendipitously (18–24).

By perceiving data to have been generated by a stochastic
model, traditional statistics is limited by the assumptions
that it makes: assumptions that are increasingly unjust
as data are increasingly complex in domains relevant to
nutrition such as health (25). When predicting mortal-
ity with epidemiologic data sets, Song et al. (26) noted
that the nonlinear capabilities of more sophisticated ML
techniques explain their consistently superior performance.
Stolfi and Castiglione (27) integrated metabolic, nutritional,
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and lifestyle data in an emulator for a handheld device
application in the context of precision medicine that predicts
processes in the development of type 2 diabetes (T2D). They
noted that such a dynamic and high-dimensional system
is too computationally demanding for statistical methods
traditionally used for emulation. Compared with classifiers
or regressors that assume linearity, ensemble predictors
(seeSupplemental Figure S1, for example) applied to medical
data consistently perform better (1, 21, 25, 28). Whereas
ensemble predictors are considered uninterpretable, Breiman
(25) made the interesting case that although the mechanism
by which outputs are generated is not entirely transparent,
this is counterbalanced with the advantage of making a more
accurate prediction and in this way better represents the true
process of data generation than do white box models. Other
authors noted the inadequacy of statistical techniques for
dealing with complex data derived from such subject areas
as obesity (1), omics (29), and the microbiota (5). Ultimately,
as data become more complex, the advantage of presenting
a simplified representation of the data comes at a cost, a
characteristic of classic statistical techniques from which ML
suffers less.

Machine Learning and Traditional Statistical Methods
ML can be used to supplement domain-specific data analysis
techniques. Gou et al. (20) linked 2 domains suitable for
ML application—diabetes and the microbiome—by using
ML to generate risk scores for T2D development based on
microbiome composition. After pointing out that analysis
of microbiota data is beyond the capabilities of classical
statistical tools, they proceeded with ML to predict T2D
better than traditional, domain-specific diabetes risk factors
while identifying 11 novel microbial taxa predictive for
T2D risk. Tap et al. (22) showed that conventional ecologic
approaches did not find differences in microbiota signatures
between patients with irritable bowel syndrome (IBS) and
controls, whereas their ML approach (Lasso) was able to
link intestinal microbiota signatures with IBS symptom
severity.

Activity tracking utilizes unstructured data of movement
generated from wearable devices to predict activity types and
calorie expenditure, making it suitable for ML applications.
Compared with domain-specific cut points, classification
via ML techniques reduces misclassification rate, increases
generalizability, allows grading of movement quality, and
simplifies experimental design (30–32). Energy expenditure
estimation traditionally uses methods that are expensive
(e.g., doubly labeled water), impractical (e.g., indirect
calorimetry with breathing masks), or non–free-living (e.g.,
direct calorimetry). Systems that analyze accelerometer data,
with or without other physiologic data, can be adequate
alternatives for the prediction of energy expenditure in a free-
living, practical, and cost-effective manner (33, 34). In CVD
research, CVD risk scores may be generated by using various
biomarkers and are deployed in clinical practice; here too,
ML techniques outperform traditional risk scores, making
use of and identifying novel biomarkers in the process (19,

23, 35–38). ML is also a promising alternative for domain-
specific techniques that are expensive, invasive, or both, as
with nonalcoholic fatty liver disease (NAFLD) (39–41) and
cancer (42–47).

Machine Learning: Practical Advantages
There are practical advantages of ML. Since the computer
learns itself to complete a task, time and effort need not be
invested in instructing the computer on what to do. This not
only saves time and effort that would otherwise be spent on
programming but also increases adaptability to solve various
problems. That is, the same algorithm can be retrained on
various data sets and problems. On a similar note, ML accepts
various data types as input, including structured (e.g., tabular
data) and unstructured (e.g., image based). In some cases, the
same ML algorithms can be applied to different problems,
perform different tasks, and take as input different data types;
neural networks and k-nearest neighbors (kNN) are such
examples.

By predicting an outcome based on existing data, ML
algorithms can save on the time and cost of having to
verify such outcomes experimentally. For example, Sorino
et al. (48) concluded that incorporating ML algorithms
into the analysis of noninvasive and comparatively cheaper
variables could avoid 81.9% of unnecessary ultrasound scans
in NAFLD, which are expensive and have long waiting times
for results.

The tools required for performing ML experiments are
minimal; other than a computer and a virtual environment
to work in, all that is needed is a data set. To this end,
data are being increasingly generated, and recent pushes
for data sharing are meaning that more and more data sets
are publicly available, suggesting that researchers across the
world are able to run experiments and derive meaningful
results in their field without the need for grants, research
equipment, or generation of the data themselves. This is an
extremely empowering aspect of ML, and if more researchers
were better able to mine their own and others’ data, more
scientific progress could be expected.

Machine Learning Overview
Types
Four types of ML exist, each differing in the way that it learns,
the algorithms that it employs, and its uses. A graphical
depiction of each learning type is provided in Figure 1.

Supervised learning.
In supervised learning, the data come with labels in which
the value or class being predicted by the algorithm is known,
meaning that performance can be objectively verified. This is
commonly observed in predictive models utilizing data sets
with health variables and a disease outcome, such as CVD,
T2D, and plasma nutrient prediction (49, 50). Since the labels
of the data are required, human intervention plays a larger
role than in other ML types, which can increase costs and
time (51).
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FIGURE 1 Four types of machine learning. In supervised learning, labels are provided in the data for objective evaluation of algorithm
performance, whereas in unsupervised learning, the algorithm partitions the data based on similarity. In semi-supervised, only a portion
of the data comes with labels, although all data are eventually classified. Reinforcement learning makes use of penalties and rewards in a
dynamic environment to train the algorithm.

Unsupervised learning.
Unsupervised learning occurs without labels; instead, the
algorithms seek to find patterns in the data and partition
them based on similarity. This reduces human interven-
tion, saving time on feature engineering and labeling. The
most common use of unsupervised learning is clustering,
dimensionality reduction and anomaly detection are also
unsupervised. Unsupervised learning has been applied ex-
tensively in phenotyping, such as grouping individuals for
PN (11). Unsupervised learning can also be used as a
processing step before a supervised task to homogenize the
data, as evidenced by Ramyaa et al. (52), who predicted
BMI in women more accurately after phenotyping than
when using the data as a whole. Another attractive use of
unsupervised learning is hypothesis generation; because this
type of learning works on the detection of patterns, this may
lead to the formation of previously unidentified groups in
the data.

Semi-supervised learning.
Semi-supervised is somewhat in between the 2 previously
defined learning types in that labels are partially present
but usually mostly absent. Providing labels on a subset of
the data has the advantages of improving accuracy and
generalizability while sparing the time and financial costs
of labeling an entire data set (53). Consequently, semi-
supervised learning has been used to study the influence of

genes on disease outcomes when the known genes (i.e., the
labeled data) are few (54).

Another example of semi-supervised learning is con-
strained clustering, which expects that certain criteria are
satisfied during cluster formation, such as given data points
being necessarily in the same or different clusters (55). This
can be a way to circumvent potential issues that can arise
when dealing with biological or health data in unsupervised
learning, such as the grouping or separation of data points
that violate plausibility—for example, the clustering of data
of one biological sex with another in a system where this is
not possible. However, it should be kept in mind that such
findings may also provide interesting information about the
data and adding such constraints may mask this.

Reinforcement learning.
In reinforcement learning, the algorithm exists in a dynamic
environment and is penalized or rewarded for the deci-
sions that it makes within the environment. The algorithm
then updates its behavior to maximize reward, minimize
penalization, or both. This allows the algorithm to become
proficient in a task without being explicitly programmed to
behave in a certain way. A famous example of reinforcement
learning is Alpha Go Zero, which was able to achieve
superhuman performance playing Go (Weiqi) with only a few
hours of training by playing against itself (56). The complex
nature of reinforcement learning limits application in simple
classification or regression tasks and is instead used where the
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integration of complex and varied data is concerned, such as
recommender systems (57) or mobile-based fitness apps (58).

Tasks
ML algorithms are employed to complete tasks, which are
distinguished into various categories. To complete these
tasks, algorithms are used. Various of these are mentioned
throughout the current subsection; for a more detailed
description of each algorithm, see the Supplemental Material.

Regression.
Regression involves the prediction of a continuous variable
based on one or more input variables. In the case of linear
regression, a linear relationship between the input variables
and the dependent variable is assumed, whereas in nonlinear
regression, relationships can be more complex. As well as
basic linear regression and its variants (e.g., Ridge, Lasso),
more complex algorithms can be used, including some that
are more often associated with classification, such as random
forest (RF) and support vector machines (SVMs) (59, 60).

Classification.
Classification tasks aim to predict the class labels of data
based on their independent variables. Data of the same class
will likely have similar characteristics, at least for variables
that contribute most to the classification decision; this forms
the basis for how an algorithm learns to assign classes to a
data point. In binary classification, there are only 2 labels,
whereas with multiclass classification, there can be many.

Sample uses of classification include predicting adherence
to exercise regimes (61) and image-based food recognition
for dietary intake monitoring (11). Classification has signif-
icant overlap with regression in that oftentimes a regression
problem can be converted to a classification task with only
slight modifications and vice versa. This is reflected in the
algorithms that can do both, such as SVM, RF, decision trees,
and kNN.

Clustering.
Similar to classification, algorithms in clustering split the data
based on similar characteristics, but clustering differs in that
it is unsupervised, meaning that there is no ground truth or
class labels to which the data points should belong. Thus,
the goal is to obtain clusters that are more homogeneous
than the data as a whole. Because it is typically unsupervised,
clustering can be performed with or without expectations,
leading to new discoveries and hypothesis generation. A well-
known and popular application of clustering in nutrition
and health research is that of phenotyping individuals
based on shared characteristics, such as microbiome pro-
files (62) or identifying activity patterns (63). The most
common clustering algorithm is k-means (for numerical
data), with adaptations including k-modes (for categorical
data) and k-prototypes (for mixed data). Other examples
include density-based spatial clustering and mean-shift
clustering (51).

Recommendation.
Recommender systems use data to generate a recommenda-
tion on a decision to be taken and have been used in nutrition
to suggest meals to help manage chronic diseases (64–67).
Recommender systems can be further classified into subtypes
such as collaborative filtering, content based, and popularity
based, as well as hybridizations of each. Recommender
systems can be complex and may require the integration of
multiple components, each of which may involve different
ML tasks and algorithms. For example, Baek et al. (68)
described a recommender method that clusters individuals
based on chronic disease status, suggests suitable foods for
each cluster, and considers the preferences of the individual
and on the universal level. Because recommendation systems
can involve lots of data, deep neural networks are often
utilized.

Dimensionality reduction.
When working with data sets with many features, dimension-
ality can be problematic; it slows computation, may reduce
accuracy, and can cause overfitting (69). This is particularly
relevant in the modern age where high-dimensional data are
being generated (70). Dimensionality reduction techniques
aim to reduce dimensionality while maintaining the most
important characteristics of the data or the variance. Whereas
at times this may cause a small reduction in predictive
capability, it may be preferred in exchange for data with
drastically fewer (irrelevant) features, which can enhance
computational efficiency and interpretability. Conversely,
by reducing noise and simplifying learning for the model,
dimensionality reduction may sometimes even improve
performance.

Modern techniques such as microarrays can generate
high-dimensional data with few samples and thus benefit
from dimensionality reduction techniques (69, 71). Princi-
pal component analysis (PCA) and t-distributed stochastic
neighborhood embedding are linear and nonlinear dimen-
sionality reduction techniques, respectively. Because of its
capacity to eliminate redundant features, Lasso regression
can also be used as a dimensionality reduction technique.

Explainable AI
The concept of xAI is concerned with not only generating an
output but also how it was generated. Technological develop-
ments have enabled the creation of sophisticated algorithms
such as ensemble methods and deep neural networks that,
although usually superior, are not interpretable. If predictive
ability is most relevant to the problem being solved, then this
may not be an issue; however, in some practical applications
of ML, it is important to know how the output was generated.
This is understandable in medical situations where the
predicting output can have serious consequences for, say,
patient lifestyle or treatment avenues. The results of xAI can
be informative in that they reveal which features contributed
most to the algorithm output (72).

In certain situations, interpretable algorithms are pre-
ferred over ensemble methods, despite better performance
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in the latter, as is the case with nutrition care by Maduri
et al. (73) and in the prediction of nutrient content in
infant milk by Wong et al. (74). However, methods exist that
facilitate interpretability without sacrificing performance.
xAI techniques such as Shapley additive explanations (SHAP)
and Shapley values (75), partial dependence plots (76), and
local interpretable model-agnostic explanations (LIME) (77)
exist to make transparent black box models. Choi et al. (28)
emphasized the importance of being able to capture complex
nonlinear interactions when predicting refeeding hypophos-
phatemia and thus chose to opt for XGBoost in place of
linear models, especially since classification was much better
in the former. Instead, they used SHAP values to elucidate
the features most influential for classification decision by
XGBoost. Zeevi et al. (78) used partial dependence plots
to extract the relative contribution of their features for the
prediction of postprandial glucose response (PPGR). This
enabled the use of a gradient-boosting RF that, although
black box, was able to capture the nonlinear relationships
inherent to their complex feature set. Davagdorj et al. (79)
made use of LIME to explain predictions of artificial neural
networks and XGBoost, the best performers, when predicting
hypertension in the Korean population. They emphasized
the importance not only of prediction quality but also
explainability for decision making in public health.

In conclusion, not only is the eventual output of ML
relevant but so is the means by which it was produced.
After the proof-of-principle stages of model development,
researchers can further their fields by incorporating xAI into
their work, therein providing transparency and encouraging
public understanding.

Evaluating Performance
Metrics for evaluating ML algorithms are broad and can be
task, type, or model specific (Supplemental Table 2). For
example, evaluation approaches of supervised algorithms
are often not suitable for unsupervised techniques since
the data might be without labels. In clustering, metrics are
instead used that focus on the purity of the data partitioning
or similarity of the data after grouping (80). For PCA
for dimensionality reduction, cumulative variance with a
predetermined, arbitrary cutoff point is used (e.g., 95%).

Additionally, although some evaluation metrics reflect
model performance similarly, the specification of evaluation
metrics should not be made arbitrarily. For example, where
higher accuracy at the cost of specificity might be less prob-
lematic in applications categorizing food for dietary intake
purposes, the same trade-off can have serious consequences
in disease prediction, as in the incorrect assignment of a
serious disease (false positives) such as cancer (81). Accuracy
is the most common classification metric but too often it is
presented or interpreted at face value, whilst other metrics are
neglected. The consequences of this can be easily witnessed
in data sets with class imbalances in the target variable, as is
common in health data. For example, a classifier that predicts
negative for all data points on a given NHANES data set
where the target variable is undiagnosed T2D would have an

accuracy of approximately 97% (82), without actually having
real predictive power. For these reasons, multiple metrics or
meta-metrics, such as F1 score or area under the receiver
operating characteristic curve (AUROC) (83), should be
considered.

Evaluation metrics should be specific to the problem
at hand. For example, the coefficient of determination R2

measures how well a continuous target variable is estimated
by a set of predictors and is thus generalizable across
problems, models, and data sets. However, at times it may be
more relevant to know how well the model performs for a
specific problem, such as mean error in prediction of plasma
cholesterol or cost of meeting a healthy diet; in such cases,
a metric such as mean absolute error would be preferred.
Likewise, in circumstances where the consequences of the
model output are less severe and the treatment response is
risk-free, the emphasis would be on accuracy rather than
specificity. An example of such a case could be the prediction
of risk for overweight, with the treatment response being
free admission to an education healthy eating course. These
examples demonstrate the influence that the problem has on
metric selection.

In sum, many methods exist for evaluating the perfor-
mance of ML models. Metrics should be chosen thoughtfully,
keeping in mind the task, the model being used, and the
specific problem trying to be solved.

Validation
ML models will most likely perform better on the training
data on which they were trained than on unseen data. Whilst
this is to be expected, it can give a deceptive reflection of
how well the algorithm has learned a task. If performance
drops substantially when going from the training to unseen
data, overfitting has occurred, and the model is therefore
not generalizable or useful in real applications. Overfitting
is a widespread problem and often unaccounted for in the
literature. Whereas virtually all supervised techniques suffer
from overfitting, the degree to which they do so can be
lessened with validation techniques such as data splitting,
cross-validation (CV), external validation, and combinations
of these, as discussed later and shown in Figure 2. It is
imperative that robust methods of validation are used to
preserve generalizable model conclusions.

Data split.
Also known as the holdout method, the data split method
splits the data into a training set and a test set, where the
model is first trained on the training data and then applied
to the test set to gauge generalizability. In this way, the test
data act as the “unseen” data, although, since the data set
came from the same source and was processed in the same
way, it is not truly unseen. Splitting the data like this can
be problematic in small data sets by reducing the instances
from which the model has to learn. It can also increase
vulnerability to outliers. Finally, unless data are sufficiently
large, there can be large variations in results between different
splits of the data. In most circumstances, a simple data split is
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FIGURE 2 Various validation techniques. Data split simply consists of excluding a portion of the data for testing after training. In k-fold
cross-validation, the data are split into k number of folds, and each fold is used once for training and k – 1 times for training. Leave-one-out
cross-validation uses the same concept except that k is equal to the number of data samples, so each individual sample is used once for
testing and n – 1 times for training. Stratified cross-validation ensures that the proportions of classes remain the same in each split
(training and test) and each fold. Finally, external validation consists of using data different from those on which the algorithm was trained.

not a sufficiently powerful tool for assessing the generalizable
performance of ML models.

Cross-validation.
CV and its variations run the model multiple times with
different splits in the data so that every split is used for
training and once for testing. This is most often achieved
with k-fold CV, where k is an arbitrarily selected value by
which to split the data, with a minimum value of 2 and
a maximum value of n – 1. In the case of the latter, this
represents another CV variation known as leave-one-out
CV, where all instances but 1 are used to train the model,
with the remaining data point representing the test data.
The aforementioned instances use random sampling to split
the data; in another variation, stratified CV, the data are
split in a way that maintains the proportions of classes of
the original data. This is useful in preventing issues arising
when certain classes are particularly low since otherwise the
model might be left with too few instances from which to
learn. Eventually, results from each fold after performing CV
should be averaged to give a balanced CV score, although
examining the scores of each fold can also be informative; if
they differ wildly, this can be indicative of problems such as

outliers or class imbalances. CV provides a more robust way
to validate a model and should be selected over a simple data
split whenever possible.

Despite these advantages, biased models can still occur
when the same CV scheme is used for hyperparameter
tuning and model evaluation. Hyperparameter optimization
schemes such as those discussed in the Supplemental
Material (Hyperparameter Optimization section) often use
CV, and although overfitting is reduced, the model is still
yet to be tested on a pristine test sample that was not
involved in either model training or hyperparameter tuning
(84). Nested CV aims to overcome this by splitting the data
into an outer loop, which itself is split into training and
testing, and an inner loop, which is composed of the training
folds of the outer loop. CV is used on the inner folds to
select model hyperparameters; then, the outer loop is run
by the optimal model identified in the inner loop. This is
repeated k times, where k represents the number of folds of
the outer loop. This prevents that all of the data are used
for model selection, evaluation, and feature selection and
maintains the ability to evaluate cross-validated performance
on unseen data. Although this increases computational
demands substantially, it provides a much more honest
representation of model performance.
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External validation.
For an even truer representation of model generalizability,
a different data set from that used to train and test the
model can be used. For example, a model predicting glycemic
response trained on an Israeli cohort was tested in an
American cohort, meaning that different dietary elements,
societal influences, and genetics are introduced (85). Captur-
ing the effect of intercohort variation in this way informs the
degree to which the model can perform its task in different
populations. This is a common approach in health studies
deploying ML that use cohorts (22, 36, 37, 40, 42, 78, 86, 87).

Case Studies: Applications of Machine Learning
in Nutrition Domains
The current section briefly presents two case studies within
the discipline of nutrition that are suitable for the application
of ML techniques. It is hoped that readers will derive ideas
and inspiration from the case studies, which they can then
apply to their own research domains.

Precision Nutrition
PN concerns the use of personal information to generate
nutritional advice that, in theory, leads to superior health
outcomes than generic advice (11, 88). It rests on the basis
that differences in a myriad of factors among individuals
ultimately necessitate specific nutritional requirements that
population-level guidelines cannot capture. The diversity,
complexity, and, at times, high dimensionality of the data
that represent these factors have created expectations for
ML in PN. Such expectation is reflected in the commitment
of the National Institutes of Health to supply $170 million
in funding algorithm development in PN over the next 5
years (89). A detailed systematic review of ML in PN is
provided by Kirk et al. (11); here, a short overview and recent
developments are provided.

A model example of the application of ML in PN was
in the high-impact study of Zeevi et al. (78), which made
use of a gradient-boosting RF model to integrate plasma,
microbiome, anthropometric, personal, and dietary data to
predict PPGR to the challenge meal, with accuracy com-
fortably exceeding established methods. A striking finding
was the remarkable interindividual variation in PPGR seen
in response to the same foods, substantiating the claims of
PN for improving health. Berry et al. (90) used a similar
design to predict not only postprandial glucose but also
triglyceride and C-peptide with an RF regressor. In both
studies, the features most relevant to the decision outcomes
were estimated, and the contribution of modifiable factors
was shown to be large. These studies show not only that the
influence of specific foods on metabolic parameters in an
individual can be known but also the main factors that can be
modified to change this. Such information is of great value to
those attempting to manage metabolic health.

Obesity and overweight constitute another important
subject area in nutrition, thus attracting attention in PN.
Ramyaa et al. (52) found homogeneous phenotypes within
a population of women and then proceeded to predict their

body weight. The clusters associated with different dietary
and physical activity variables suggested that the women
responded differently to macronutrients and exercise in their
propensity to gain weight and thus that personalized diets
and exercise regimes would be effective. Zellerbach and
Ruiz (91) aimed to predict instances of overeating based on
macronutrient composition of an individual’s diet. Although
they were unsuccessful, the concept may have merit with
the inclusion of other relevant variables (e.g., stress, sleep,
and alcohol or drug use) and with higher-quality diet data
than the self-recorded publicly available food logs used in
their study, where data were collected outside a scientifically
controlled setting and liable to bias. That Wang et al. (5)
could predict obesity using gut flora data is interesting
to PN because of the known relationship between diet
and microbiota composition. Because the microbiota is
involved in various health conditions (92), its targeting by PN
interventions could be fruitful in subsets of individuals.

Malnutrition has been targeted by PN in various ways.
Current screening tools for malnutrition in inpatients, for
example, suffer a lack of agreement and poor adherence from
hospital staff, suggesting that automatized approaches may be
appreciated (93). The decision system of Yin et al. (94) sought
to realize this by applying k-means to hospital record data to
separate patients based on nutritional status. Well-nourished
and mild, moderate, and severely malnourished clusters were
identified, the characteristics of which formed the basis for a
logistic regression classifier to assign unseen data points to
1 of the 4 clusters with perfect performance (AUROC: 1).
Subramanian et al. (95) characterized a “healthy” microbiota
index in children, from which RF could predict chronological
age (AUROC: 0.73). Severe acute malnutrition could subse-
quently be predicted by deviation from the index for a given
age, since malnourished children have a relatively immature
microbiota when compared with healthy children of the same
age. This approach allows targeted intervention in children at
risk of malnutrition-induced growth stunting. Malnutrition
can also be predicted with ML from demographic data in
developing countries, which is attractive since such data are
routinely collected and available to health organizations (96–
98).

ML is helpful not only for generating PN outcomes but
also for collecting PN data. Current dietary assessment
methods have serious limitations such that estimated intakes
can vary wildly from true intakes (99, 100). However,
ML-assisted dietary intake monitoring could make more
convenient and accurate the process of collecting intake data,
the benefits of which would extend beyond PN to the broader
nutrition domain. Indeed, examples in which ML has been
used in dietary assessment include image-, smart watch–,
piezoelectric-, and audio-based methods [see Table 4 in Kirk
et al. (11)]. Although some of these instances are relatively
primitive and often confined to controlled settings, it can be
imagined that their successors will be refined and convenient
in real-world settings. Natural language processing (NLP)
can also be valuable in dietary assessment. NLP is a specific
field in computer and linguistic sciences that has the goal
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to interpret written and spoken text in such a way that
its meaning is understandable by a computer. In PN, this
can automate the processing of food diaries (101) and
consolidate multiple data sets (data integration) and food
tables (102). Eventually, NLP can communicate messages to
users of health-tracking apps to offer personalized advice and
provide support, omitting the need for such advice to come
exclusively from health professionals, which is expensive
and time-consuming. Activity tracking is relevant to PN
outcomes by providing information on the exercise and
sedentarism of individuals. ML has been used to classify
activity patterns (103–106) and estimate energy expenditure
(33, 34, 107) based on accelerometer data, which can improve
the quality of activity data acquisition, thus increasing its
value as a feature in PN approaches.

Omics is a discipline that derives its name from the
suffix of components from which it is composed: genomics,
transcriptomics, epigenomics, proteomics, metabolomics,
and occasionally others (microbiome, lipidomics, etc.)
(108). Figure 3 shows the main omics components and their
proximity to the genotype and phenotype. Data captured on
any of these levels can be valuable in PN, and integrating
their data (i.e., multi-omics) can provide a systems-level view
capable of providing more information than the constituent
parts independently (109). Genetic information has been
used in tandem with ML for predicting obesity (110–112)
and diabetes (113, 114), although, despite the wealth of infor-
mation within the human genome, genetic information often
explains little of the variance in complex health outcomes
(115). Gene expression, transcripts, and the proteins that they
encode can all be modified by environmental factors such as
food, which can make the genetic sequence encoding them
effectively redundant; hence, epigenomics, transcriptomics,
and proteomics, respectively, exist in response to this. Further
still, the microbiome is increasingly recognized as a key
player in health and disease, at times being responsible for a
significant portion of the variance in predictive health models
(5, 20, 87, 90, 116, 117). The microbiome is of particular
interest to PN because it can act as an input variable and a
target variable to be modified in PN.

It should be emphasized that studies need not be designed
with PN in mind to realize how responses can differ among
individuals within a study. A prime example of this is seen
in the weight loss study of Gardener et al. (118), where
participants followed either a low-carbohydrate or low-fat
diet for 12 months. Whereas the group means suggested that
weight loss was similar, analyzing the data on an individual
basis within the groups told a different story: although some
lost a great deal of weight, others failed to lose or even gained
weight. This highlights a pitfall of research in health sciences
in that, although comparing groups means is convenient,
it can mask individual differences that can be much more
informative.

Despite its potential, ML in PN must still prove itself
able to reduce disease burden when applied in real-world
situations. Most of the aforementioned studies are descrip-
tive, and indeed more experimental studies are required

FIGURE 3 The major components of the omics field and their
proximity to the phenotype.

to prove that PN is more effective than generic healthy
eating recommendations when both are adhered to. Even
if experimental studies can prove a theoretical role for PN
in improving health, PN approaches must be practical. If
the suggested dietary alterations are restrictive or infeasible,
it is unlikely that they will be adhered to in the long
term. For example, although the large-scale study Food4Me
found that personalized advice favorably altered dietary
habits in participants (119), there is insufficient evidence that
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personalized approaches will lead to sufficient adherence to
reap the potential benefits of PN. This was demonstrated
in a recent Korean study where only those in the highest
adherence group saw improvements in the markers of
health that were measured, and in fact, the same markers
deteriorated in the group of lowest adherence (120). Whereas
ML has much potential to help with data generation and
analysis in PN, these approaches must be able to demonstrate
practical application and ultimately a reduction in clinical
burden, both of which require many more studies for their
verification.

Metabolomics
One area of nutrition that has received much attention
in recent times is metabolomics. Metabolomics is closely
related to PN, as a predictor of health outcomes and for
data collection (11), though it also has functions that do
not necessarily relate to PN. Modern technologies are now
enabling the profiling of many metabolites all at once,
within one or a few samples, followed by analysis of their
interactions (121). The profiling of thousands of metabolites
makes for noisy raw data, which requires preprocessing and
analysis, two tasks for which ML is highly suited. Some
examples of metabolomics research using ML in nutrition are
presented in turn.

A popular application of metabolomics is phenotyping,
which overlaps significantly with PN. Metabolites are gener-
ally considered to give a much more representative picture
of a phenotype than other omics varieties since they more
closely reflect the reactions that actually occur in a system
(122). The simultaneous assessment of many metabolites
in an individual enables a form of phenotyping specific to
shared metabolite characteristics known as metabotyping
(115). A randomized controlled trial found no effect of
15 μg of vitamin D supplementation on markers of metabolic
syndrome (123). However, after metabotyping via k-means
clustering, a vitamin D–responsive cluster was found where,
in contrast to the population as a whole, vitamin D sup-
plementation did improve markers of metabolic syndrome.
Also utilizing k-means, O’Donovan et al. (124, 125) used
a range of metabolites to identify healthy and unhealthy
clusters in 2 cohorts, and on both occasions targeted advice
was given based on the defining characteristics of the clusters.
For example, a cluster composed of individuals with elevated
cholesterol was administered personalized advice oriented
toward lowering cholesterol (125). Given the diversity of
metabolic alterations that people can experience despite hav-
ing similar demographic or anthropometric characteristics,
tailoring nutritional recommendations to the individual is a
logical approach.

The concept of “metabolically healthy obese” and whether
it actually exists is another example of phenotyping. It is
indeed curious that approximately 1 in 3 obese individuals
does not show metabolic alterations on commonly investi-
gated clinical parameters (126) and that the exact metabolic
consequences of the remaining two-thirds vary greatly

among individuals (127). The drivers of this divergence re-
main unknown; hence, investigating metabolomic signature
differences between the phenotypes may be revealing. Studies
using ML techniques have found key differences between the
metabolite profiles of healthy and unhealthy obese subjects
(128–130). In a systematic review, BCAAs, aromatic amino
acids, lipids, and acylcarnitines were all found to be elevated
in the unhealthy obese phenotype as compared with the
healthy (131). Due to the high dimensionality of the data sets
in metabolomics, PCA is typically opted for. PCA-reduced
feature sets can then be used to identify differences in
metabolites, amino acids, and lipid patterns (132, 133). Using
ML to understand how and which metabolic aberrations
could develop among obese phenotypes can inform targeted
treatment to minimize obesity-imposed harm.

ML has been applied in metabolomics when studying the
microbiota. Microbiota-derived metabolomics data are com-
plex and high-dimensional, which has motivated researchers
to consider applying ML. Some notable examples include
distinguishing healthy and unhealthy metabolite signatures
following a red wine intervention (134), distinguishing
women with and without food addiction from fecal samples
alone (135), identifying pediatric IBS (136), and comparing
metabolic activity of the microbiota between vegans and om-
nivores (137). The last of these studies is particularly relevant
to the metabolomics field because, although differences in
microbiota composition were minimal, metabolic activity
differed significantly, and an RF classifier could distinguish
the groups with 91.7% accuracy. This shows the importance
of not only the composition but also the metabolic activity of
the microbiota.

Metabolomics is interesting to the nutrition community
as a free-living, objective dietary assessment tool (138,
139). Biomarkers of intake have been found for various
foods, such as bread (140), coffee (141), citrus consump-
tion (142), and meat and fish (143), as well as dietary
components such as polyphenols (144, 145) and fermented
foods (146). Such information can be used not only for
simply monitoring food intake but also for associations
with health and disease outcomes (141, 142, 147). This
function of metabolomics permits estimating adherence to
dietary patterns. Acar et al. (139) used metabolite profiles to
identify participants potentially noncompliant to a particular
dietary pattern through partial least squares discriminant
analysis with a reduced feature set. Aside from identifying
regular noncompliers, they observed that at any given
time approximately 10% of the participants may have been
deviating from their prescribed diets, which, if generalizable,
has clear implications for nutrition intervention studies. The
capabilities of ML make it suitable for finding associations
in metabolomics, as well as identifying new phenotypes or
markers of intake in untargeted approaches. Many processing
steps are required to transform raw metabolomics data into a
form from which information can be derived. This, however,
is essentially feature selection and pattern recognition. To this
end, the competency of deep artificial neural networks, such
as convolutional neural networks in feature selection, could
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be particularly useful, especially given the complexity of data
used in metabolomics (148). Research investigating this in
nutrition, though, is lacking but would be valuable.

In sum, ML can be a useful tool in the data preprocessing
stages of metabolomics and in generating predictive models
on the prepared data. Through clustering and classification,
ML can analyze processed metabolomics data for applica-
tions such as disease prediction and understanding disease
mechanisms, phenotyping, characterizing the metabolic en-
vironment, identifying biomarkers, and dietary assessment.

Framework for Applying Machine Learning in
Nutrition Science
After understanding the advantages of using ML in research,
researchers should be able to know when and how ML can
be applied to a problem. The present section aims to support
decision making in this process by providing a framework
to guide researchers interested in using ML in their work.
The framework takes inspiration from the concept of method
engineering (149), though is adapted with nutrition research
in mind.

Understanding the problem and the data
Whether ML can be used to solve a problem depends
primarily on the problem itself and the data involved. If the
problem is one concerned with predicting an outcome based
on a given data set, ML can be considered. Data sets with
many features and complex, nonlinear interactions suggest
themselves suitable for application with ML because of its
ability to identify patterns among the input variables that
can then map the output variable, thus producing results that
would otherwise go amiss. This is exemplified in cases where
data are clustered without expectation yet new findings are
discovered (52, 123).

ML could be considered in data preprocessing. This
function of ML was evidenced on various occasions in the
present article, such as the use of PCA for dimensionality
reduction, deep learning for feature extraction, and ML
approaches for data collection in PN and for processing
noisy and complicated metabolomics data. “Missing data”
is the often colloquial term denoting a data set in which
not all the data entries that should have values are filled,
regardless of the reason why. In nutrition, due to the
practical challenges of longitudinal data gathering, missing
data are a common issue. It is up to the researcher to
understand the impact of values that are missing in the
data set and how they are to be dealt with. Techniques
exist for their imputation, and sometimes it is appropriate
to remove entire variables or data entries (150). Since each
of these approaches has advantages and disadvantages, the
decision ultimately taken by the researcher should be done
so after deliberation. Resources describing the missing data
problem and its solutions exist (150–154). ML techniques
can also be considered for imputation (155–158). The extent
of the missing data can influence the modeling approach.
Certain approaches in traditional statistics and ML can
handle missing data well, including linear mixed models,

decision trees, kNN, and XGBoost, sometimes even when
missing data are as high as 20% (159, 160). Regardless of
how this is done, the method of handling missing data
should be explained and reported (161). Understanding
the data will provide insight into how exactly ML can be
applied.

Background research and existing solutions.
An understanding of the existing solutions to the problem
at hand is crucial to knowing exactly how ML can be
applied. If existing solutions are already suitable, additional
benefits from ML may be marginal. ML is also incapable
of replacing the human aspect involved in managing health
and nutrition. For example, although an algorithm may
make accurate personalized nutritional recommendations, it
cannot deliver the same information in a way that a trained
professional would, and this aspect may be important for
inducing behavior change.

ML, instead, is better applied when existing methods are
insufficient. This is observed in data with complex relation-
ships where classical statistical methods are incapable or in
situations where domain-specific techniques are inadequate.
Examples of the latter include the prediction of PPGR
(78, 90), for which existing methods have low accuracy.
It may be that current solutions, although accurate, have
other limitations, such as invasiveness, as is the case for
NAFLD detection (39–41). Further still, existing solutions
that have a higher human element naturally suffer from
human limitations such as fatigue or calculation mistakes.
This was exemplified by Kondrup et al. (162), who found
that a major reason why patients in clinical care were not
screened for nutritional assessment was that nurses “just
forgot.” ML in these cases can increase predictive capacity,
improve efficiency, reduce patient risk, and mitigate human
error.

Possible solutions
Of the options within the domain of ML, the eventual
candidate solutions should be tailored to the needs of the
problem, the data, and the ultimate goal of the project.
Primarily, one must think about the task required, as this will
naturally limit the options available since certain algorithms
are capable of only certain tasks. Also important is the
algorithm in relation to the data. For example, naive Bayes
would be an unsuitable choice in data sets with classes that
contain certain values of very low frequency due to the
zero-frequency problem (see Supplemental Material) (163).
Likewise, applying estimators that assume linearity to a data
set that has predictors with nonlinear relationships with the
dependent variable would lead to suboptimal performance.
In this case, performing transformations on the data or
choosing a model with nonlinear capabilities, such as RF or
SVM with a nonlinear kernel, would be preferred.

Another possible solution might be to use dimensionality
reduction techniques. Feature selection and engineering are
valuable methods in ML and can be specifically helpful to
nutrition data sets where collinearity is often present. Such
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techniques must be chosen with care as their improper use
can affect performance, but due to the breadth of their
possible applications, it is not possible to state which should
be used; instead, they should be tailored to the problem.
On a general level, if dimensionality reduction is applied
with collinearity in mind, then the method should be chosen
and applied in a way that preserves or increases the score
on the test set. When dimensionality is applied to reduce
computational strain, one must have preconceptions about
the degree to which error is allowed to increase to enable
decreases in computational time.

The end goal must be kept in mind, which too will dictate
the pool of candidate solutions. For example, if predictive
performance was the primary goal in the detection of cancer
based on medical images, high-performance convolutional
neural networks could be used. Alternatively, when inter-
pretability is needed, algorithms can be selected that provide
coefficients (e.g., regression) or can be easily understood
(e.g., decision trees). Black box models (e.g., RF, XGBoost,
artificial neural networks) can be understood through xAI
techniques (e.g., SHAP, LIME, partial dependence plots), but
such techniques have their pros and cons and should be
considered in the context of the entire problem scope. When
ML approaches are to be deployed or incorporated into an
application, such as using ML for food tracking on a mobile
device, pragmatic factors such as computational time are
relevant. For example, whereas RF would usually outperform
naive Bayes on a classification test, naive Bayes is much faster.
These practicalities must be kept in mind.

Testing the available solutions
One of the advantages of using ML in research is the
capacity to test multiple options in multiple configurations
and converge on an optimal one. This capacity should be
exercised by trying various, if not all, candidate models.
The interpretation of the test data results should be given
more importance than the training data to reduce overfitting.
If possible, hyperparameters of each algorithm should be
optimized with techniques such as grid or random search
(see Hyperparameter Optimization section in Supplemental
Material), and nested CV should always be considered.
Although this can be time-consuming, it will give a fairer
representation of the quality of the possible solutions since
some models perform better in their default parameters than
others.

Trying many solutions is always advisable, even when
the choice might seem obvious beforehand. For example,
although ensemble methods consistently outperform logistic
regression in classification, this is not always the case
(164).

Indeed, one example of this was by Yin et al. (94), where
logistic regression achieved perfect performance predicting
malnutrition in a data set of 14, 000 patients with cancer,
outperforming ensemble and deep learning techniques (94).
Additionally, techniques such as stacking, which involve
combining multiple learners into 1 meta-learner, should

be explored. Packages such as SuperLearner (165) exist to
facilitate this, but it can also be done manually. The process
ensures a result at least as good as, if not better than, the best
single learner alone. Stacking has been used in some nutrition
research (166–168) but is typically underutilized.

Understanding and communicating the results
The evaluation process must be undertaken in the context
of the solution (i.e., the algorithm) and the problem (see
Evaluating Performance). Comparisons of the possible so-
lutions should be made by the most suitable metrics to
enable the optimal solution to be chosen. It is common to
visualize results in various plots, such as AUROC plots for
classification, R2 for regression, silhouette score and cluster
plots for clustering, PCA score plots for PCA, and heat
plots for correlations, among others. Common libraries for
achieving this include ggplot in R and Matplotlib, Seaborn,
and Yellowbrick in Python. If xAI techniques are used, these
results too can be communicated. Feature importance plots,
plots of the SHAP library (waterfall, force plots, bee swarm,
etc.), and partial dependence plots, among others, can allow
visualization of the features most relevant to a decision.

Limitations of Machine Learning in Nutrition
Research
Although the present article has focused on the promise that
ML is demonstrating, it does not come without limitations.
There is an apparent overoptimism in ML research that exists
due to nonrigorous methodologies. Although we described
methods for detecting this, such as CV, it is not uncommon
to see circumstances where these are not made use of.
For example, unless a data set is sufficiently large, different
training-test splits can lead to different results when using
a simple data split for validation. This opens the possibility
to the generation of interesting results based solely on
how the data were split. Further still, it is rare to see
nested CV used in nutrition literature, the consequences
of which were discussed in the Validation section. Another
consideration is that ML algorithms are generally evaluated
on homogeneous data collected in affluent societies; the
performance of these models in distinct populations and with
different data generation techniques is not guaranteed. Both
these considerations compromise generalizability, meaning
that if such models cannot be applied outside the setting
in which they were tested, ultimately their utility is greatly
diminished. Another often overlooked issue is flawed feature
selection and derivation of importance. For example, feature
importances from algorithms such as RF and XGBoost are
readily available and often reported in studies that utilize
them. However, the mechanism by which such methods
estimate importance means that correlated features, though
scoring similarly, appear less important than they are. This,
relatively speaking, also means that the importance of less
important features are inflated. Such similar phenomena
occur with other algorithms and xAI techniques but are
often not checked, for example, by corresponding with
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other feature importance techniques for corroboration and,
instead, are reported as is.

Finally, the application of ML in certain circumstances
has practical drawbacks. There can be substantial costs
for data collection, hardware, ML engineers, infrastructures
(data storage, cloud computing), integration (pipeline devel-
opment and documentation), and maintenance. In certain
applications, data are generated from different sources by
using different programming languages and arriving in
different forms. Unifying this in a multimodal approach can
be very challenging. Similarly, although the ability of ML
to transform unstructured data into data suitable for use in
models represents a stark advantage for ML over traditional
methods, such techniques can be challenging even for those
specialized in the area and thus may not be fruitful for
researchers specialized in nutrition at the time of writing.
In closing, ML is showing much potential in research in
nutrition but still has much to prove to reduce the burden
of nutrition-related ill-health in society.

Conclusion
In conclusion, there is much potential for ML to make
progress in nutrition science. ML can capture the complex
interactions that exist and are increasingly generated with
modern technologies in nutrition and health data. The failure
to be able to use techniques that can analyze complex data,
such as ML, represents an unnecessary barrier to scientific
progress. Although still relatively new, it is evident that
AI approaches have much potential to supplant traditional
and domain-specific methods in predictive capabilities,
efficiency, costs, and convenience. ML can also be helpful in
the data collection and data preprocessing stages in various
fields of nutrition. To realize this potential, researchers must
be familiar with ML concepts, be knowledgeable on when AI
can be suitably applied to a problem and how to use it, and
be willing to branch out of the techniques historically used
in their disciplines. We hope that the intuitive explanation of
ML and the examples of its application in nutrition science in
the current article will facilitate this and be a useful reference
guide to researchers of health and nutrition who would like
to make use of ML in answering their research questions.
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