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In this study, a novel negative electrode material was prepared by aligning α-Fe2O3

nanorods on a hierarchical porous carbon (HPC) skeleton. The skeleton was derived

from wheat flour by a facile hydrothermal route to enhance conductivity, improve

surface properties, and achieve substantially good electrochemical performances.

The α-Fe2O3/HPC electrode exhibits enhanced specific capacitance of 706 F g−1,

which is twice higher than that of α-Fe2O3. The advanced α-Fe2O3/HPC//PANI/HPC

asymmetrical supercapacitor was built with an expanded voltage of 2.0 V in 1M Li2SO4,

possessing a specific capacitance of 212 F g−1 at 1A g−1 and a maximum energy

density of 117 Wh kg−1 at 1.0 kW kg−1, along with an excellent stability of 5.8%

decay in capacitance after 5,000 cycles. This study affords a simple process to

develop asymmetric supercapacitors, which exhibit high electrochemical performances

and are applicable in next-generation energy storage devices, based on α-Fe2O3

hybrid materials.

Keywords: α-Fe2O3 (Hematite), biomass porous carbon, asymmetric supercapacitors (ASCs), aqueous electrolyte,

high energy density

INTRODUCTION

Supercapacitors are efficient energy storage devices, and are clean and renewable with high
efficiency, fast charge/discharge capability, and good cycling stability, which meet the increasing
demands in various portable electronic devices (Zhai et al., 2011; Yu et al., 2015; Chen et al., 2020).
Supercapacitors might be more practical when they obtain high-energy density at the same time to
retain high specific power. It can increase the work voltage or the specific capacitance to enhance
the energy density (Ike et al., 2015; Liu et al., 2016). Organic electrolytes or non-aqueous electrolytes
with wider working voltages (3–4V) suffer from lower ion conductivity and solvated ion size, which
limits their future application (Meng et al., 2019; Zhang et al., 2019). Therefore, considerable efforts
have to focus on fabrication of asymmetric supercapacitors (ASCs) based on the desirable negative
and positive electrode with good electrochemical characteristics.

Various positive electrode materials have been used in ASC devices, such as carbon materials,
transition metal oxides, and especially conducting polymers, with facile synthesis, low cost, and
environmentally benign properties (Benzigar et al., 2018; Gao et al., 2019; Luo et al., 2019; Hong
et al., 2020). In addition, multiscale porous carbon composites with conducting polymers have
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emerged as attractive electrodes in ASC devices owing to their
high conductivity, abundant redox reactions, and mechanical
stability (Yu M. H. et al., 2016; Meng et al., 2017; Jin
et al., 2018). Recently, polyaniline nanorods directly grown on
porous carbon derived from wheat flours demonstrated excellent
supercapacitive performance (Wu et al., 2015; Yu P. P. et al., 2016;
Yu et al., 2019), and thus may serve as a good cathode for ASCs.

Compared with the extraordinary advancement of anode
nanomaterials that rely on high activity and large potential
ranges, the lack of highly performing cathodes is still a bottleneck
for making progress in advanced ASCs. Carbon materials play
a role as negative electrodes, using the electrical double layer to
accumulate energy, while the specific capacitance is trapped at
an intermediate level of 100–200 F g−1 (Zhu et al., 2011; Sahu
et al., 2017; Wang et al., 2019). Recent studies have reported
that pseudocapacitive anodes can deliver higher charge storage
capacities than carbon materials, such as MoO3 (Zhang et al.,
2019), V2O5 (Guo et al., 2015), WO3 (Yun T. G. et al., 2019), TiN
Sun et al., 2020, Fe3O4 (Arun et al., 2019), FeOOH (Chen et al.,
2016), and Fe2O3 (Yun X. et al., 2019; Le et al., 2020; Zhang et al.,
2020). Among them, α-Fe2O3 is chosen as a potential candidate
for ASCs because of its natural abundance, eco-friendly nature,
excellent physicochemical stability, large theoretical capacitance
(∼3,625 F g−1), and high hydrogen evolution potential in
aqueous solution (Han et al., 2014; Nithya and Arul, 2016;
Li et al., 2019). Its pseudocapacitive properties arise from the
redox behaviors of the Fe3+/Fe2+ peaks (Han et al., 2018).
However, agglomerating easily into large particles of α-Fe2O3

with low conductivity (10−14 S cm−1) increases the electron
transfer resistance during repeated ion charge/discharge cycles,
showing a large effect on supercapacitance (Chen et al., 2014).
These drawbacks will result in a reduction in the rate capacity
and lifespan due to volume expansion, impeding the practical
application as a negative electrode. By constructing integrated
hybrid electrodes, α-Fe2O3 is directly deposited onto conductive
skeletons of carbonaceous materials. Carbon nanotubes (Dong
et al., 2018; Yue et al., 2018), porous carbon (Arun et al., 2019),
and graphene (Xu et al., 2019) can overcome this vexing issue
of low conductivity, which indeed demonstrates that integrated
hybrid electrodes show better electrochemical performances than
individual components because of the synergistic effect between
the α-Fe2O3 nanostructure and the carbon configurations.
Thus, far, the unsatisfactory dispersion and small surface area
of α-Fe2O3 still causes a relatively low specific capacitance.
Therefore, superior α-Fe2O3/carbon composites with excellent
electrochemical performance are desired as negative electrodes,
posing a major challenge for the preparation and design of ASCs
with good electrochemical properties.

In this study, porous α-Fe2O3 nanowires were deposited
onto conductive biomass hierarchical porous carbon (HPC)
composites (Figure 1) by synthesizing via a hydrothermal
process, and the nanowires acted as a Faradaic cathode with
a pseudocapacitive anode (PANI/HPC) to assemble the ASC.
HPC derived from wheat flour offers high conductivity and
large surface area in both electrodes and thus improves the
dispersion and stability of α-Fe2O3 and PANI nanowires,
resulting in a good rate capacity. Porous α-Fe2O3 nanowires

were well-arranged on the HPC surface directly, ensuring
superior utilization and reduction in the ion diffusion length.
The obtained α-Fe2O3/HPC//PANI/HPC ASC exhibited high
energy/power density and electrochemical stability, indicating a
wide prospect in future practical applications.

EXPERIMENT SECTION

Materials
All chemicals were used as achieved without treatment.
Wheat flour was purchased from the Jingdong supermarket.
KOH, Na2SO4, urea, Fe(NO3)3·9H2O, aniline, and ammonium
persulfate were purchased from Sinopharm Chemical Reagent
Co., Ltd.

Synthesis of α-Fe2O3/HPC Composites
HPC was synthesized via a previously reported synthesis process
(Yu P. P. et al., 2016). Briefly, the waste wheat flour (5 g), KOH
(5 g), and urea (5 g) were mixed by stirring in 100ml of distilled
water (DI) before calcination in N2 flux at 800◦C for 1 h. The
obtained HPC was washed with 5% HCl and DI water and then
dried at 80◦C.

Typically, the yellow solution in a stainless-steel autoclave
(100ml) consisted of 1.75mM Fe(NO3)3·9H2O, Na2SO4

(1.75mM), and 50 g of deionized water. The mixture with
uniformly dispersed HPC was heated in the autoclave to 120◦C
for 9 h. The obtained α-Fe2O3/HPC composites were added to
DI water, collected by centrifugation, dried in vacuum at 60◦C,
and annealed under atmosphere at 300◦C for 2 h. The α-Fe2O3

accounted for 35.4% of the weight of α-Fe2O3/HPC. The bare
α-Fe2O3 was prepared via the same process without HPC.

Synthesis of PANI/HPC Composites
Aniline monomers (0.07M) and HPC (150mg) were sequentially
added to 1M H2SO4 under strong stirring; then, the uniform
ammonium persulfate (0.07M) 1M H2SO4 solution was quickly
loaded in the above solution with stirring for 10min. The mixed
solution was placed at −2◦C for 14 h. Finally, the resulting
PANI/HPC composites were washed and dried at 60◦C. The
loaded PANI was 26.2% in PANI/HPC.

Material Characterization
X-ray diffraction (XRD; Rifaku, Cu Kα radiation, 10–80◦) and
X-ray photoelectron spectroscopy (XPS; ESCA PHI 5000C)
were used to analyze the crystalline and bonding energy of
the samples. The morphology and structure were examined
by scanning electron microscopy (SEM, Hitachi, SU8010) and
transmission electron microscopy (TEM; JEOL JEM-2011). The
Brunauer–Emmer–Teller (BET) specific surface area and pore
size distribution of the composites were measured using a
surface area analyzer (ASAP 2020, USA) and the Barrett–Joyner–
Halenda (BJH) method.

Electrochemical Measurements
A uniform paste was made by mixing HPC, α-Fe2O3/HPC,
and PANI/HPC/carbon black/polytetrafluoroethylene at a ratio
of 90/5/5, and was used to coat a 1.0-cm2 piece of titanium
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FIGURE 1 | Schematic illustration of the fabrication of α-Fe2O3/hierarchical porous carbon (HPC) composites.

mesh as the working electrode. A three-electrode cell consisting
of a saturated calomel electrode (SCE) and Pt foil was used
to test the above sample paste. The ASCs were assembled by
a negative electrode of α-Fe2O3/HPC and a positive electrode
of PANI/HPC, and the separator was a Celgard 3501. The
loaded mass of α-Fe2O3/HPC and PANI/HPC composite was
about 2.1 and 2.5mg, as per the charge balance theory.
Electrochemical studies of all electrodes were performed using
a CHI electrochemical workstation (660D) in 1M Li2SO4

electrolyte. The specific capacitance (Csp) of HPC, α-Fe2O3/HPC,
and PANI/HPC electrodes can be calculated depending on
Equation (1):

Csp =
It

mV
(1)

where 1t (s), I (A), 1V (V), and m (g) stand for the discharge
time, the current, the voltage difference, and the weight of the
active materials.

The specific capacitance (Casy) of α-Fe2O3/HPC//PANI/HPC
ASC is obtained from Equation (2),

Casy =
It

MV
(2)

where M is the total mass of the electrode materials.
Energy density (E,Wh kg−1) and power density (P,W kg−1) of

α-Fe2O3/HPC//PANI/HPC ASC are according to the equations:

E =
CasyV

2

2× 3.6
(3)

P = 3600×
E

t
(4)

RESULTS AND DISCUSSION

Figure 2a shows an interconnected hierarchical porous structure
of HPC, similar to an open sponge with 100- to 200-nm thickness
of carbon walls. The three-dimensional HPC served as a scaffold
with high surface area and good conductivity for depositing α-
Fe2O3 nanorods via a simple hydrothermal reaction. The α-
Fe2O3 nanorods were directly and uniformly grown on the

entire HPC surface (Figures 2b,c). The interior structure of α-
Fe2O3/HPC was further tested via TEM (Figures 2d–f). The α-
Fe2O3 nanorods, with diameters and lengths of ∼10 and 50–
100 nm, were vertically deposited on the scaffold of HPC to form
a branched structure (Figure 2e), helping the fast transport of
electrolyte ions. Moreover, the α-Fe2O3 nanorods have some
pores (highlighted in the block diagram), resulting in a good
specific surface to increase the number of accessible active sites
for electrolyte ions. Meanwhile, high-resolution TEM (HRTEM)
examination (Figure 2f) demonstrates the clear lattice fringes of
the (110) plane of α-Fe2O3 with a spacing of 0.25 nm, indicating
the high crystallinity of the α-Fe2O3 nanorods (Chen et al., 2015;
Le et al., 2020).

Figure 3A shows XRDmeasurements to explore the structural
and compositional properties of HPC, α-Fe2O3, and α-
Fe2O3/HPC. The broad peaks of HPC at 2θ = 25◦ and 43.9◦

indicate the (002) and (101) planes of graphitized carbon (Yu P.
P. et al., 2016; Liu et al., 2019). The other relevant characteristic
diffraction peaks are very consistent with α-Fe2O3 (JCPDS 33-
0664), which does not change in the α-Fe2O3/HPC composite.
The detailed surface chemical composition of α-Fe2O3/HPC was
evaluated by XPS measurements. Figure 3B demonstrates the
coexistence of C (283.5 eV), O (527.6 eV), and Fe (Fe 2p peaks
at 724.6 and 711 eV) (Yun X. et al., 2019; Racik et al., 2020). The
high-resolution Fe 2p XPS spectrum exhibits typical Fe 2p1/2 and
2p3/2 peaks along with 719.5 eV of satellite peak corresponding
to Fe3+ in α-Fe2O3 (Figure 3C) (Liang et al., 2018).

Figure 3D shows the N2 adsorption/desorption isothermal
analysis of HPC and α-Fe2O3/HPC. The inset image shows
the corresponding pore size distribution. The HPC and α-
Fe2O3/HPC both exhibit IV type curves along with an H3 type
hysteresis loop, which indicates the existing micropores and
mesopores. Compared to HPC (977 m2 g−1), α-Fe2O3/HPC has
a lower surface area of 700 m2 g−1, but is still superior to the
reported carbon/α-Fe2O3 composites. The pore size distributions
of α-Fe2O3/HPC were analyzed from the desorption isotherm,
and a sharp peak was in the 1.0- to 4.0-nm range (inset of
Figure 3D). This result is also confirmed by SEM and TEM
images showing an interconnected multiple size porous structure
to contribute to the large value of surface area, which ensures a
good accessible electrolyte ion and facilitates ion transport.

The electrochemical properties of HPC, α-Fe2O3, and
α-Fe2O3/HPC electrodes were investigated through cyclic
voltammetry (CV) curves, galvanostatic charge/discharge (GCD)
plots, and electrochemical impedance spectroscopy (EIS) plots
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FIGURE 2 | (a) Scanning electron microscopy (SEM) image of HPC, SEM images (b,c), and transmission electron microscopy (TEM) images (d,e) of α-Fe2O3/HPC

with the inset in (e) exhibiting the EDS spectrum. (f) High-resolution TEM (HRTEM) image of α-Fe2O3 from the red-marked region in (e).

using 1M Li2SO4 electrolyte in a three-electrode configuration.
Figure 4A shows the compared CV curves of HPC, α-
Fe2O3, and α-Fe2O3/HPC recorded at 50mV s−1. A Nearly
symmetrical rectangular shape demonstrates an ideal double-
layer capacitor characteristic of the HPC electrode. Remarkably,
the α-Fe2O3/HPC electrode shows a larger CV curve area
than HPC and bare α-Fe2O3 nanorods, demonstrating a large
enhancement in capacitive behavior owing to the synergistic
effect on the double-layer capacitor characteristics of the HPC
electrode and the pseudocapacitor of the α-Fe2O3 nanorods.
There are no obvious anodic/cathodic peaks in the α-Fe2O3

and α-Fe2O3/HPC CV curves because of the pseudo-constant
rate of charging/discharging throughout the entire voltammetric
cycle, accompanied by a fast Faradic reaction between alkaline
cations (Na+). This phenomenon results from the enhanced
electrical conductivity and hierarchical porous structure resulting
in fast ion diffusion under charge/discharge cycles. At 200mV
s−1, α-Fe2O3/HPC maintains a shape similar to that of the CV
curves, demonstrating good capacitive performance (Figure 4B).
Nearly symmetrical GCD profiles at the current density

range of 1–10A g−1 indicate the high coulombic efficiency
(Supplementary Figure 1), which is consistent with CV curves.

Figure 4C shows the GCD plots of HPC, α-Fe2O3,
and α-Fe2O3/HPC electrodes collected at 1A g−1. Longer
discharge time of the α-Fe2O3/HPC electrode indicates a higher
capacitance than the HPC and α-Fe2O3 electrodes, convincingly
revealing enhanced conductivity from HPC for the disposition
of active α-Fe2O3 nanorods, which is consistent with the above
CV curve analysis. This phenomenon demonstrates that the
skeleton of HPC can improve the capacitance performance of
α-Fe2O3, reduce the internal resistance between the interfacial
and HPC, and offer more active sites for pseudocapacitors.
Figure 4D shows the calculated Csp values of HPC, α-Fe2O3,
and α-Fe2O3/HPC electrodes under different current densities.
Compared to the values of bare Fe2O3 nanorods (370A g−1)
and HPC (323A g−1) electrodes at 1A g−1, the maximum Csp

of the α-Fe2O3/HPC hybrid electrode is 706 F g−1, indicating
a larger capacitive property. This result is superior to other
recently reported iron oxide-based electrodes at the same current
density, such as Fe2O3/graphene (226 F g−1) (Wang et al., 2013),
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FIGURE 3 | (A) X-ray diffraction (XRD) patterns of HPC, α-Fe2O3, and α-Fe2O3/HPC. (B) X-ray photoelectron spectroscopy (XPS) spectra of α-Fe2O3/HPC,

(C) high-resolution Fe 2p XPS spectra. (D) The N2 adsorption–desorption (inset: pore size distributions) of HPC and α-Fe2O3/HPC.

Fe2O3/CNT (204 F g−1) (Yue et al., 2018), Fe2O3/N-doped CNT
(264 F g−1) (Gnana Sundara Raj et al., 2020), α-Fe2O3/C (280 F
g−1) (Dong et al., 2018), and Fe2O3/hemp straw (256 F g−1)
(Jiang et al., 2020). At 10A g−1, the Csp of α-Fe2O3/HPC is
410 F g−1, showing a decrease as the current density increases.
This value retains 58% of the initial capacitance, exhibiting a
high-rate capability of α-Fe2O3/HPC, which is comparable to
other reported electrodes such as Fe2O3/graphene (40% at 10A
g−1) (Wang et al., 2013), Fe2O3 nanospheres/diatomite (42%
at 10A g−1) (Jiang et al., 2018), and SiC@ Fe2O3 (51% at 12A
g−1) (Zhao et al., 2018). EIS analyses of HPC, α-Fe2O3, and
α-Fe2O3/HPC electrodes were conducted. The charge transfer
resistance of α-Fe2O3/HPC (0.91Ω) was much smaller than that
of bare α-Fe2O3 (1.63Ω) and higher than that of pure HPC
(0.52Ω), indicating the enhanced conductivity of α-Fe2O3/HPC
after adding the high conductive HPC as the scaffold (Figure 4E).
The α-Fe2O3/HPC electrode has a more ideal straight line with
small Warburg resistance, leading to fast transfer of electrolyte
ions into hybrid electrode. Figure 4F shows the corresponding

cycling stability of HPC, α-Fe2O3, and α-Fe2O3/HPC, evaluated
at 1A g−1. Notably, the cycling stability of the α-Fe2O3/HPC
electrode is 95.8% of its original capacitance over 5,000 cycles,
which is higher than 68% of the bare α-Fe2O3 electrode.

To further evaluate the possibility of α-Fe2O3/HPC electrode
materials in practical applications of energy storage, the ASC
device was built with α-Fe2O3/HPC and PANI/HPC as the
cathode and anode, respectively, to achieve a high voltage range
in 1M Li2SO4 electrolyte. PANI nanorod arrays were aligned
on interconnected porous surfaces of HPC through in situ
polymerization (Supplementary Figures 2A,B), which shows a
Csp of 506 F g

−1 at 10mV s−1 measured in 1M Li2SO4 electrolyte
(Supplementary Figure 2C). The Csp of PANI/HPC dropped
to 343 F g−1, presenting capacitance retention of 67.8% at
200mV s−1 (Supplementary Figure 2D). The optimized mass
ratio of the α-Fe2O3/HPC (380 F g−1)/PANI/HPC (441 F g−1)
electrode was ∼0.85, according to the corresponding Csp value
at 50mV s−1 to maintain charge balance (Figure 5A). Based on
the separate potential window, the α-Fe2O3/HPC//PANI/HPC
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FIGURE 4 | (A) Cyclic voltammetry (CV) curves of HPC, α-Fe2O3, and α-Fe2O3/HPC at 50mV s−1. (B) CV curves of α-Fe2O3/HPC at different scan rates. (C) The

galvanostatic charge/discharge (GCD) curves at a current of 1 A g−1, (D) gravimetric specific capacitance vs. current densities, (E) the Nyquist plots, and (F) cycling

stability at 1 A g−1 of HPC, α-Fe2O3, and α-Fe2O3/HPC.

ASC can still exhibit an ideal capacitive characteristic at 2.0-V
work voltage.

The CV profiles of the α-Fe2O3/HPC//PANI/HPC ASC
deviate only slightly from the quasi-rectangular shape as
the scan rate increases (10–200mV s−1), which indicates
good reversibility (Figure 5B). A couple of redox peaks
in each CV curve is attributed to faradaic reactions of
the electrolyte ions insertion/extraction. Nearly symmetric

GCD curves were observed at 1–10A g−1 (Figure 5C),
indicating an excellent coulombic efficiency and superior
capacitance of the α-Fe2O3/HPC//PANI/HPC ASC. The
maximum Casy of α-Fe2O3/HPC//PANI/HPC ASC is 212 F
g−1 at 1A g−1 (Figure 5D), superior to these published α-
Fe2O3/C//MnO2 (Dong et al., 2018), Fe2O3/N-CNT//CuCo2O4

(Gnana Sundara Raj et al., 2020), and CF (carbon fiber)-
rGO/Fe2O3//CF-MnOx (Serrapede et al., 2019), comparable
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FIGURE 5 | (A) CV curves of α-Fe2O3/HPC and pseudocapacitive anode (PANI)/HPC at 50mV s−1. Electrochemical properties of α-Fe2O3/HPC//PANI/HPC

asymmetric supercapacitors (ASC). (B) CV curves at various scan rates, (C) GCD curves, and (D) capacitance curves against current densities, (E) cycling stability at

1 A g−1, and (F) Ragone plots.

to that of α-Fe2O3@C//CNTs-COOH (Xu et al., 2019)
(Supplementary Table 1). Figure 5E shows the Casy vs.
cycle number plot of the α-Fe2O3/HPC//PANI/HPC ASC,
conducted at 1A g−1, which is only 5.8% decay of the original
capacity after 5,000 cycles. Supplementary Figure 3 displays
the Nyquist plot of the α-Fe2O3/HPC//PANI/HPC ASC at the
first cycle and after the 5,000th cycle. The corresponding charge
transfer resistances are 8.1 and 14�, respectively. These small

resistance values indicate that the as-assembled ASC has good
conductivity. Moreover, Figure 5F shows the Ragone plot of
the α-Fe2O3/HPC//PANI/HPC ASC suggesting a relationship
of energy density (E) vs. power density (P). The as-fabricated
α-Fe2O3/HPC//PANI/HPC ASC has a gravimetric E value of 117
Wh kg−1 at 1.0 kW kg−1. At the highest P-value of 9.3 kW kg−1,
the E value is maintained at 102 Wh kg−1. The E and P values
were compared with previously published devices, as listed in
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Supplementary Table 1, such as Fe2O3@PPy//MnO2 (Liang
et al., 2018), porous Fe2O3/N-CNT//CuCo2O4 (Gnana Sundara
Raj et al., 2020), α-Fe2O3/G//CoNi-layer double hydroxide/CNT
(Chen et al., 2015), α-Fe2O3//ZnCo2O4@MnO2 (Ma et al., 2015),
Fe2O3@PPy//MnO2 thin film (Le et al., 2020), and Fe2O3//MnO2

thin film (Gund et al., 2015).
Based on these results, the α-Fe2O3/HPC//PANI/HPC ASC

exhibits superior electrochemical behaviors arising from the
synergistic interaction of the components. The HPC, as a
robust scaffold, performs an important function to accommodate
the volume variation of α-Fe2O3 or PANI and impedes the
erosion and deformation of the as-prepared electrode. The high
conductivity of HPC can enhance the integrated conductivity of
α-Fe2O3/HPC and provide rapid electron transmission channels,
resulting in a small charge transfer resistance. Furthermore, the
well-ordered α-Fe2O3 or PANI nanorod arrays were decorated in
the porous surfaces of HPC to enhance the pseudocapacitance
and cycle stability resulting from effective avoidance of
swelling/shrinking after long-term cycling. Therefore, the α-
Fe2O3/HPC//PANI/HPC ASC presents exceptional capacitor
properties and is therefore an attractive candidate in commercial
energy storage devices.

CONCLUSIONS

In summary, a facile hydrothermal route was used to fabricate
the α-Fe2O3/HPC electrode. Compared to α-Fe2O3 (370 F g−1),
the enhanced Csp value of the α-Fe2O3/HPC anode is 706 F g−1.
Furthermore, assembled α-Fe2O3/HPC//PANI/HPC ASC device
delivers a maximum E value of 117 Wh kg−1 at 1.0 kW kg−1

and retains 102 Wh kg−1 at 9.3 kW kg−1, accompanied with
excellent capacity retention by 5.8% loss in original capacitance.
This study offers a plausible way to assemble α-Fe2O3 ASCs with
excellent electrochemical properties as next-generation energy
storage devices.
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