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The origin of gastric cancer
stem cells and their effects
on gastric cancer: Novel
therapeutic targets for
gastric cancer

Ying Yang, Wen-Jian Meng* and Zi-Qiang Wang

Colorectal Cancer Center, Department of General Surgery, West China Hospital, Sichuan University,
Chengdu, China
Gastric cancer (GC) is one of the most prevalent malignancies and the most

common causes of cancer-related mortality worldwide. Furthermore, the

prognosis of advanced GC remains poor even after surgery combined with

chemoradiotherapy. As a small group of cells with unlimited differentiation and

self-renewal ability in GC, accumulating evidence shows that GC stem cells

(GCSCs) are closely associated with the refractory characteristics of GC, such

as drug resistance, recurrence, andmetastasis. With the extensive development

of research on GCSCs, GCSCs seem to be promising therapeutic targets for

GC. However, the relationship between GCSCs and GC is profound and

intricate, and its mechanism of action is still under exploration. In this review,

we elaborate on the source and key concepts of GCSCs, systematically

summarize the role of GCSCs in GC and their underlying mechanisms.

Finally, we review the latest information available on the treatment of GC by

targeting GCSCs. Thus, this article may provide a theoretical basis for the future

development of the novel targets based on GCSCs for the treatment of GC.
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1 Introduction

Globally, gastric cancer (GC) is the fourth-leading cause of cancer-related deaths

worldwide and was responsible for an estimated 769,000 deaths in 2020 (1). Some risk

factors for GC, such as Helicobacter pylori (HP) infection, have also been confirmed by

most studies. In fact, there are significant differences in risk factors, carcinogenicity and

epidemiological patterns between GC located in cardia and GC located in non-cardia

regions (1). A major cause of non-cardia GC is chronic HP infection, and this bacterium

is responsible for almost all non-cardia GC (2, 3). In addition, poor dietary habits, such as
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drinking alcohol, smoking, eating salted foods, low intake of

fruits and a high-fat diet, have also been linked to an increased

risk of non-cardia GC (4, 5). The risk factors for gastric cardia

cancer are similar to those for esophageal adenocarcinoma, such

as acid reflux disease lesions, compared to non-cardia GC (1).

However, the exact pathogenesis of GC remains unknown.

In recent decades, with the rapid development of cancer

stem cells (CSCs) research, it is becoming appreciated that CSCs

(also known as tumor-initiating cells) with high oncogenicity are

the source of the development, recurrence, metastasis and drug

resistance of tumors (including GC) (6–9). Clinically, decision

making for GC treatment is usually based on the tumor TNM

stage and overall health status of the patients. For patients with

resectable GC without metastasis, multimodality therapy can

improve the prognosis. However, despite continuous

improvement in treatment regimens, the outcome of patients

with advanced GC remains poor (10). Therefore, it is

particularly important to develop new and more effective

therapies for the advanced GC. CSCs are a small fraction of

tumor cells with the characteristics of self-renewal, clonal

tumorigenesis potential, differentiation and long-term

repopulation (11, 12). They are closely related to tumor

heterogeneity and play a key role in clinical phenomena such

as recurrence after the initial success of chemoradiotherapy,

tumor dormancy, tumor metastasis and drug resistance (13–15).

Similarly, gastric cancer stem cells (GCSCs) are responsible for

GC progression, recurrence, metastasis, and drug resistance (16,

17). However, the origin of GCSCs and the exact mechanism by

which GCSCs may promote the progression, recurrence,

metastasis and drug resistance of GC remain unclear.

Therefore, this paper will summarize the key concepts, sources

and characteristics of GCSCs and discuss the role of GCSCs in

GC and its underlying mechanisms. It also provides up-to-date

information about targeting GCSCs to treat GC. It is expected

that this study will provide valuable information and direction

for the development of effective treatment to GC in the future.
2 The origin of GCSCs

Since CSCs were first identified in acute myeloid leukemia

and then in numerous other cancers, they have gradually

become a hot topic in the field of cancer research (18). In

2009, CSCs were identified for the first time in human GC cells

by using the cell surface marker CD44 (19). Many studies on

identifying GCSCs from GC by using other cell surface markers,

such as aldehyde dehydrogenase (ALDH), CD133, CD166 and

C-X-C chemokine receptor type 4 (CXCR4), have been reported

(20–22). These studies demonstrate that GCSCs do exist in GC.

In addition, knowing the origin of GCSCs will be helpful to

understand the role of GCSCs in gastric carcinogenesis and its

mechanism. However, the exact source of GCSCs is still

unknown. Currently, the main sources of GCSCs include
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mutant gastric stem cells (GSCs) and bone marrow-derived

cells (BMDCs) (Figure 1).

GSCs are adult pluripotent stem cells that exist in gastric

tissue and can differentiate into various types of gastric mucosal

cells (23). At present, GSCs are mainly located in the isthmus

and bottom of the gastric pit, and they form various glands and

mucosal epithelial cells of the stomach by differentiation into

progenitor cells. Some of these newly formed progenitor cells

can migrate to the upper portion of the glandular duct and

gradually differentiate into pit cells, while others can move to the

base of the gastric gland, differentiating and maturing into

parietal cells, chief cells, mucus cells and endocrine cells, thus

forming a complete gastric duct (24, 25). These GSCs were

transformed into GCSCs after undergoing oncogenic mutation,

resulting in atypical hyperplasia of the gastric mucosa and the

formation of GC (26). The anatomy of the stomach is composed

of the cardia, fundus, body of the stomach and pylorus, and

GSCs exist in different anatomical regions of the stomach and

express their specific markers.

Villin, first discovered in the pylorus, is a calcium-regulated

actin-crosslinking protein. Qiao et al. (27) confirmed that
FIGURE 1

The origin of gastric cancer stem cells. The two primary sources
of gastric cancer stem cells (GCSCs) are gastric stem cells (GSCs)
and bone marrow-derived cells (BMDCs). Following carcinogenic
mutation GSCs are converted into GCSCs. When stomach suffer
oncogenic stimulation (e. g. HP infection), BMDCs, including
bone marrow-derived mesenchymal stem cell cells, are
recruited in the damaged area of the gastric mucosa, potentially
serving as a source of GCSCs.
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although rare, Villin possessed great potential to differentiate

into many types of gastric mucosal cells. Park et al. established

the GC cell line NCC-S1 (S1) and its metastatic variant cell line

NCC-S1M (S1M) from a Villin-cre (transgenic mice expressing

Cre recombinase from the villin promoter). And S1M exhibit

characteristics of CSCs, such as strong carcinogenicity and drug

resistance. They identified stem cell antigen 1 (Sca-1) as a cell

surface marker whose expression was significantly increased in

S1M. Compared with the cells with low Sca-1 expression, the

cells with high Sca-1 expression were more tumorigenic and

resistant to cisplatin chemotherapy by activating the TGF-b
pathway and inhibiting the Wnt pathway (28). In addition,

mouse models of GC established from a Villin-Cre have been

shown to possess properties of CSCs in other studies (29).

Another gastric epithelial stem cell that appears in the pylorus

is Lgr5+ cells (leucine-rich repeat-containing G protein-coupled

receptor 5) located at the base of the gastric glands. Lgr5, also

known as G protein-coupled receptor 49, was first identified by

Aaron J. W. Dr Hsueh’s team, and the overexpression of Lgr5

has been reported in a variety of cancers, such as breast cancer

(30). And it has been shown to be the origin of CSCs. When

stimulated by carcinogenic damage, these Lgr5-marked gastric

epithelial stem cells become the source of GCSCs and GC (31–

33). The Troy+ chief cells located at the base of the gastric corpus

are thought to have the potential to differentiate into all gastric

epithelium. When the tissue is stimulated by external injury, the

Troy+ chief cells are able to act as gastric epithelial stem cells to

differentiate into gastric cells that need to be repaired. When

stimulated by carcinogens, Troy+ chief cells may become a

source of GCSCs and promote gastric cancer formation (24,

34). Similarly, mist1+ GSCs located at the isthmus of the corpus

gland are also considered the origin of all gastric epithelial cells.

Generally, more than 98% of mist1+ isthmus stem cells are

quiescent, while only 1.1% of mist1+ stem cells are Ki67+. When

Kras mutation occurs, the percentage of Ki67+ mist1+ cells in

the mist1+ isthmus stem cells increases so that these mist1+

isthmus stem cells attain the properties of CSCs. This in turn

leads to intestinal metaplasia (IM) and dysplasia of the gastric

epithelium. Thus, mist1+ isthmus stem cells are thought to be

the origin of Kras-induced IM and hypoplasia. Further studies

confirmed that they can serve as a cellular origin for all histologic

types of GC, including intragastric-type and diffuse-type (35).

BMDCs have been considered as another possible source of

GCSCs. BMDCs possess strong properties of plasticity and

mobility. When stimulated by infection or injury, BMDCs are

recruited to the site of infection or tissue damage to repair

following inflammatory damage (36). In the meanwhile, some

BMDCs are also recruited into the progenitor cell region, leading

to gastric metaplasia and heterosis (the characteristics of CSCs)

(37). Varon et al. showed that mice infected with different strains

of HP developed intestinal metaplasia and dysplasia

accompanied by the recruitment and accumulation of BMDCs

in the gastric epithelial mucosa. And nearly 25% of the dysplastic
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lesions contained BMDC-derived cells (38). In addition, bone

marrow-derived mesenchymal stem cells (BM-MSCs) are also

considered to be involved in the occurrence and progression of

HP-associated GC. They have been confirmed to be involved in

the progression of GC by secreting thrombospondin-2 (39) and

upregulating c-Myc (40). And BM-MSCs can also induce the

formation of new tumor blood vessels in HP infection-associated

GC by regulating the THBS4/integrin a2 axis and activating the

PI3K/AKT pathway in endothelial cells (41). These findings

suggest that BMDCs may be a source of GCSCs. However, more

rigorous and adequate evidence is needed to support

this conclusion.
3 The effect of GCSCs on GC

In recent years, CSCs have become a vital research area in

tumor biology. CSCs are considered to be a small subset of

tumor cells with the capacity for self-renewal, unlimited

proliferation and relative dormancy and are thought to be

involved in tumor progression, immune escape, recurrence,

metastasis, and drug resistance. A growing body of research

confirms the existence of GCSCs and their role in GC

progression, immune escape, recurrence and metastasis (42).

Han et al. isolated and cultured GCSCs and CAFs from resected

GC specimens obtained from GC patients. They found that

NRG1 secreted by CAFs promoted GC progression through

modulating the self-renewal of GCSCs (43). Yes-associated

protein (YAP) is involved in the progression of many

malignancies and is thought to enhance the expression of

GCSCs surface markers and self-renewal GCSCs via TGF-b-
activated kinase 1 (44) or by inhibiting the expression of

lipocalin-type prostaglandin D2 synthase (L-PTGDS) and

prostaglandin D2 receptor 2 (PTGDR2) (45).And the

increased expression of GCSCs markers and renewal of GCSCs

will in turn promote the progression of GC and the self-renewal

of GC cells (45).
3.1 GCSCs and the immune evasion
of GC

In the initial period of tumor development, the human

immune system is able to effectively identify, attack and

destroy tumor cells. However, an increasing number of studies

suggest that CSCs (including GCSCs) can effectively evade the

surveillance of the immune system and its killing effect through

different mechanisms (42, 46, 47). There is a close interaction

between GCSCs and the immune system. On the one hand,

GCSCs can contribute to giving rise to an immunosuppressive

tumor microenvironment to avoid immune surveillance and
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killing; on the other hand, the immune cells surrounding GCSCs

can convert non-GCSCs into GCSCs and maintain their

properties of CSCs.

The number of tumor-infiltrating macrophages is closely

related to the progression and prognosis of the tumor, and these

tumor-infiltrating macrophages are named tumor-associated

macrophages (TAMs). In GC, TAMs can be divided into the

immunosuppressive M2 phenotype (TAMs-2) and the

proinflammatory M1 phenotype (TAMs-1). And the former

shows anti-inflammatory properties associated with the

progression of tumors, while the latter exhibits proinflammatory

and antitumor properties associated with the suppression of

tumor s ( 48 ) . GCSCs can influence the immune

microenvironment of GC by recruiting TAMs, while TAMs, in

turn, can play a key role in maintaining CSC characteristics. Li

et al. reported that GC mesenchymal stem cells were able to

induce TAMs polarization into a TAMs-2 phenotype through the

secretion of IL-6 and IL-8 by the JAK2/STAT3 signaling pathway.

Meanwhile, these TAMs-2 can promote the epithelial-

mesenchymal transition (EMT) process of GC, which in turn

increases the migration and invasiveness of GC (49). In a study

exploring the role of GCSCs markers in the prognosis and

immunologic infiltration of GC patients, Lin et al. found that

the overexpression of CXCR4 (a GCSCs marker) was related to

the poor prognosis of GC patients, while EPCAM and TFRC (two

GCSCs marker) were positively associated with the prognosis of

GC patients. These GCSCs markers were associated with the

infiltration and activation of different tumor-infiltrating immune

cells, such as TAMs, of which CXCR4 was strongly positively

correlated with TAMs. Therefore, GCSCs markers may maintain

their tumor stem cell-like properties by recruiting distinct tumor-

infiltrating immune cells such as TAMs in the tumor

microenvironment (50).

Moreover, some studies (51) (52)have shown that cancer-

associated fibroblasts (CAFs) play an important role in

maintaining and enhancing the capabilities of CSCs in GCSCs.

In a study, Hasegawa et al. attempted to clarify the effects of

CAFs on the properties of CSCs in GC by using scirrhous gastric

cancer cell lines (OCUM-12 and OCUM-2MD3) and non-

scirrhous gastric cancer cell lines (MKN-45 and MKN-74).

They found that CAFs may be able to maintain and enhance

the tumor stem cell-like properties of GCSCs by modulating the

TGF-b signaling pathway (51). Maeda et al. established 12 pairs

of gastric CAFs and their corresponding non-CAFs from

surgical specimens of GC and conducted genome-wide DNA

methylation and H3K27me3 analyses in these specimens. The

results of this study showed that H3K27me3 is responsible for

the tumor-promoting ability of CAFs. Deletion of H3K27me3

enables CAFs to secrete some multiple stem cell niche factors,

including WNT5A, GREM1, NOG and IGF2. Among these

factors, WNT5A may promote the invasive ability of GCSCs.

And inhibition of WNT5A secreted by CAFs can further inhibit

GC cell proliferation and migration (52).
Frontiers in Oncology 04
Immune checkpoint inhibitors have become a hot spot in the

field of tumor therapy. The immune checkpoint is an important

mechanism to prevent the immune system from attacking the

body’s normal cells. Tumor cells also use this mechanism to

evade immune surveillance and to suppress the immune attacks

of T cells. At present, cytotoxic T lymphocyte antigen 4 (CTLA4)

and programmed cell death 1 (PD-1)/PD1 ligand 1 (PD-L1)

inhibitors are the main immune checkpoint inhibitors on the

market (53). For example, B7-H1 is a ligand of PD-1

conventionally believed to convey inhibitory signals to T cells

to suppress immune responses. Yang et al. reported that

compared with B7-H1- GCSCs, B7-H1+ GCSCs showed

stronger proliferative ability. Further study showed that

stimulation of B7-H1 increased the level of Ki67 in GCSCs of

LGR5+/B7-H1+, which in turn increased the ability of

proliferate in B7-H1+/Lgr5+ GCSCs (54). However, the

number of studies on the interaction between immune

checkpoint inhibitors and GCSCs is relatively small.
3.2 GCSCs and drug resistance, relapse
and metastasis of GC

Drug resistance is a major obstacle in the treatment of GC

and a key reason for the poor prognosis of GC. In recent years,

increasing evidence suggests that GCSCs are involved in the

formation of drug resistance in GC patients (Figure 2). Zhang

et al. demonstrated that PIN1 suppressed chemotherapy

resistance of GC cells by targeting GCSCs and multiple

signaling molecules and biomarkers in GC (55). Yoon et al.
FIGURE 2

The effect of GCSCs on GC. GCSCs in a “dormant state” can
escape the lethal effects of conventional chemoradiotherapy and
survive after chemoradiotherapy. These surviving GCSCs act as
“seeds” that drive GC recurrence and metastasis.
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found that the RhoA signal is able to promote and maintain the

CSCs phenotypes in Lauren diffuse type gastric adenocarcinoma

(DGA) cells. The activity of RhoA was negatively correlated with

overall survival in DGA patients. Furthermore, inhibiting the

RhoA signaling pathway can reverse the resistance to

chemotherapy in DGA mouse xenograft models and in DGA

CSCs (56). And another signaling pathway, RAC1 activity, also

plays an important role in maintaining the CSCs phenotype of

gastric adenocarcinoma (GA). Similarly, targeted inhibition of

the RAC1 pathway also prevented EMT and CSCs phenotypes of

GA, which in turn inhibited the progression, metastasis, and

drug resistance of GA (57).

Relapse and metastasis of patients with GC following

combined modality therapy are primary poor prognostic

factors in patients with GC. CSCs underlie the development

and progression of cancer and are also responsible for driving

tumor recurrence and metastasis (Figure 2). The STAT3

signaling pathway is thought to promote the acquisition of

tumor stem cell-like characteristics and EMT in cancer (58).

Jiang et al. reported that IL-17 fosters more aggressive

development of GCSCs by promoting the activation of its

downstream STAT3 transcription factor pathway, and invasive

GCSCs are closely related to the occurrence and metastasis of

GC by promoting EMT. Stattic (a STAT3 specific inhibitor) can

significantly reduce the invasiveness of GCSCs, thereby

inhibiting the occurrence and metastasis of GC (59). Yoon

et al. explored the effect of KRAS on the EMT and CSCs

phenotype of GA in patient-derived GA cell lines (AGS and

KATOIII) and in a mouse model of GA with loss of p53 and

Cdh1 that added oncogenic KRAS (a.k.a. Tcon mice). They

found that activation of KRAS signaling could promote the EMT

of GA cells and enable GA to acquire the phenotype of CSCs,

both in Tcon mice and in cell lines of AGS and KATOIII, which

then enhanced the invasive and metastatic potential of GA. And

inhibiting or knocking down KRAS could reduce the EMT and

CSCS phenotypes of GA, which in turn attenuated the

invasiveness of GA and reduced the occurrence of

experimental pulmonary metastasis (60).
4 Potential therapeutic strategies for
GC: Targeting GCSCs

In recent years, despite significant progress in therapy of GC,

the overall effects of the available systemic therapies for advanced

GC patients remain limited. An increasing number of studies have

shown that when used to treat tumors, including GC, traditional

antitumor treatments, such as chemoradiotherapy, usually attack

and kill rapidly proliferating cancer cells (61). However, CSCs,

including GCSCs, are considered as tumor cells initiating cells and

are usually in a quiescent/dormant state. Therefore, the dormant

CSCs can survive anti-tumor therapy and be restored to rapidly
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proliferating tumor cells through cellular plasticity, thereby

eventually resulting in recurrence and metastasis after tumor

treatment (62). In addition, conventional tumor therapies suffer

from lacking specificity to tumors, which may cause serious damage

to normal tissues, further reducing the quality of life of patients with

GC. In order to completely eliminate all GC cells and prevent

recurrence and metastasis after treatment, it is crucial to specifically

kill GCSCs responsible for tumor initiation, progression,

recurrence, metastasis and drug resistance. Therefore, targeted

elimination of GCSCs, which lead to cancer cell growth and

maintain their progression, is considered to be one of the most

promising solutions to improve the treatment efficiency of GC

patients. With the deepening of research on GCSCs, the current

methods of targeted therapy for eradicating GCSCsmainly focus on

three methods: targeting cell surface markers, signaling pathways

and microRNAs (miRNAs) (Figure 3). However, methodological

dilemmas also exist for the current targeted therapy of eradicating

GCSCs, such as methods to specifically identify and isolate GCSCs.

This article summarizes the existing research on the specific

methods of targeted therapy for GCSCs, and this information

may provide theoretical support for the future development of

highly specific therapeutics targeting GCSCs. Table 1 summarizes

the key GCSCs-related cell surface markers and signal pathways.
4.1 Targeting surface markers of GCSCs

One strategy to eradicate GCSCs mainly focuses on targeting

GCSCs specific surface markers. CD44 was the first cell surface
FIGURE 3

The potential therapeutic strategies targeting GCSCs.
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marker identified as a potential GCSCs-specific cell surface

marker (47). Studies have shown that CD44, CD133 and

CD90 are GCSCs markers and are associated with properties

of GCSCs, such as the capacity of self-renewal and promoting

tumor progression (84–88). Gamma-secretase inhibitor IX (GSI)

was confirmed to effectively inhibit the proliferation, migration

and invasiveness of GC cells and induce apoptosis of GC cells by

targeting CD44+ GCSCs. Barat et al. further found that GSI

concomitantly inhibited the Notch and Wnt/b-catenin signaling

pathways by specifically targeting CD44+ GCSCs, thereby

suppressing the progression of GC (78). Using three

complementary models, including 2D and 3D in vitro culture

systems as well as tumor xenografts in mice, Nguyen et al. sought

to explore the interaction between all-trans-retinoic acid

(ATRA) and GCSCs and its mechanism. And they found that

ATRA was able to inhibit the self-renewal and tumorigenic

properties of GCSCs by targeting GCSCs markers such as CD44

and ALDH (89). Furthermore, Lgr5, an identification marker of

CSCs, plays a critical role in tissue development and the

maintenance of adult stem cells in the gastrointestinal tract.

And Lgr5 is also considered as another potential marker of

GCSCs and a downstream target inWnt/b-catenin signaling that

is responsible for the progression of GC (32, 90). Wang et al.

found that Lgr5 was intimately associated with the stemness

regulators and the EMT inducers of GCSCs (91). And Lgr5
Frontiers in Oncology 06
promoted by regulatory T cells is also thought to confer poor

prognosis in GC through TGF-b involved in activation of the

Wnt signaling pathway (90).

Although targeting GCSCs with a surface marker may be a

promising therapeutic strategy for eradicating GCSCs, some

questions of traditional approaches to targeting CSCs remain

to be addressed, including poor water solubility, poor

pharmacokinetics, and poor stability of CSC-specific agents

(92, 93). In fact, delivering drugs to CSCs, which account for a

tiny fraction of tumor tissue, is a huge challenge. In recent years,

drug delivery methods based on nanocarriers have offered the

following advantages, including controlled drug release and

improved biodistribution, providing an effective targeted

therapy strategy for successfully targeting CSCs, including

GCSCs (93). Studies have shown that targeting CSCs therapy

based on nano-delivery systems was able to eliminate CSCs more

efficiently with lower toxicity than targeting CSCs therapy

without nanocarrier delivery (92–94). And this conclusion is

also true for targeting GCSCs therapy. On the other hand, the

accurate delivery of nanomedicine to GCSCs by targeting the

surface markers of GCSCs is also a promising therapeutic

strategy. Chen et al. successfully delivered nanoparticles to

CD133+ and CD44+ GCSCs by targeting CD133 and CD44

with CD133 and CD44 antibodies. Compared with single

targeting (targeting CD44 or CD133) and without targeting
TABLE 1 The role and regulation of GCSCs-related cell surface markers and signal pathways in GC.

Drug/Molecule Cell surface markers/Signal
pathways

Effect on
Signal

pathways

Major outcomes Refs

– CD44+,CD44v,Combined CD44+/CD54+,
Combined EpCAM+/CD44+

Wnt/b-
catenin
pathway

Higher tumorigenicity and Spheroid formation (19,
63–
65)

– Combined CD44+/CD24+ Notch
pathway

Higher tumorigenicity (66)

– CD71- – have high tumorigenicity, multipotency, and invasiveness abilities (67)

– CD133 – Promote the expression of ki-67 of GC cells (68)

– Lgr5 – Play a role in the development and progression of GC (69)

– ALDH1+ – Showe higher tumorigenic potential, self-renewal, and produce
heterogeneous cell populations

(70)

ICG-001, RNF43, RORb,
Ibuprofen

Wnt/b-catenin Down Inhibit GCSCs characteristics, the growth, chemoresistance and
metastasis of GC cells

(71–
74)

NANOGP8, Frizzled 7 Wnt/b-catenin Up Enhance proliferation, migration, invasion, sphere-forming and
clonogenic capacity, and chemoresistance of GC cells

(75,
76)

RO4929097(a selective
inhibitor of g-secretase)

Notch Down SD in 6 of 33 evaluable metastatic CRC patients (18.2%) (77)

GSI Notch and Wnt/b-catenin Down Inhibit the aggressiveness and tumorigenicity of GC (78)

Vismodegib Hh Down does not promote the efficacy of standard therapy for metastatic CRC (79)

sulforaphane Hh Down Inhibit the proliferation of GCSCs (80)

apatinib SHh Down Inhibit tumor formation, cell proliferation and the expression of
GCSCs markers

(81)

PTPRU Hippo/YAP Down Inhibit the stemness of GCSCs (82)

SCD1 Hippo/YAP – Promote GCSC stemness (83)
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GCSCs markers, nanomedicines targeting both CD133 and

CD44 can inhibit the growth of GCSCs more effectively (87).

As a member of the ubiquitin-specific proteases (USPs), USP22

is considered to be related to tumor invasion and metastasis, and

also participates in maintaining the characteristics of CSCs.

Yang et al. developed a drug delivery system, USP22-NLs-

CD44, to enhance the targeted therapy for GSCCS of USP22

siRNA by combining CD44 antibody with USP22 siRNA-loaded

nanoliposomes. USP22-NLs-CD44 was confirmed to be able to

specifically deliver USP22 siRNA to CD44+ GCSCs, and it could

eradicate CD44(+) GCSCs more effectively than nanoliposomes

without targeting CD44 (95). Yao et al. developed a novel

therapeutic siRNA nanoparticle by targeting glioma-associated

oncogene homolog 1 (Gli1) and CD44 of GCSCs. And this

siRNA nanoparticle exhibits significant inhibition of the

characteristics of GCSCs via specifically downregulating

Hedgehog (Hh) signaling both in vitro and in vivo (17).
4.2 Targeting signaling pathways of
GCSCs

Signaling pathways (e.g., Notch, Hedgehog, Wnt/b-catenin)
are essential for maintaining normal stem cell physiology and

self-renewal. The abnormality or dysregulation of these signaling

pathways is also a key factor in tumor occurrence, development

and maintenance of tumor stem cell-like properties. Therefore,

targeting these signaling pathways that regulate the biological

properties of GCSCs may become a promising therapeutic

strategy for targeting GCSCs.

4.2.1 Wnt/b-catenin signaling pathway
Wnt/b-catenin signaling pathway is considered to be critical

for tissue repair and stem cell renewal. Wnt/b-catenin signaling

pathways are generally categorized into canonical and non-

canonical signaling pathways according to whether b-catenin
is activated (96). In the process of carcinogenesis, the canonical

Wnt/b-catenin pathway participates in the maintenance and

proliferation of GCSCs, while the non-canonical Wnt/b-catenin
pathway is associated with EMT and the initiation of GCSCs

(97). Liu et al. showed that ICG-001 significantly inhibited the

stem cell-like properties of GCSCs and the growth,

chemoresistance and metastasis of GC cell lines by blocking

the Wnt/b-catenin signaling pathway (71). DOCK6, a guanine

nucleotide exchange factor (GEF) for Rac1 and CDC42, has been

shown to be capable of promoting the stemness of GCSCs by

modulating the Wnt/b-catenin signaling pathway. While the

stemness of GCSCs in turn promotes the progression,

chemoresistance and radioresistance of GC (98). Conversely,

as a member of the transmembrane E3 ubiquitin ligase family,

ring finger protein 43 (RNF43) has been shown to weaken the

stemness of GCSCs by regulating the Wnt/b-catenin signaling
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pathway. And RNF43 was also confirmed to be related to the

progression of GC. While this trend can be reversed to some

extent by activating the Wnt/b-catenin signaling pathway

through the Wnt pathway activator (72). In the study of the

effect of knockdown of Placental growth factor (PIGF) on cell

apoptosis in GCSCs, Akrami et al. found that PIGF can induce

apoptosis in GCSCs via influencing the Wnt signaling pathway

(99). Wen et al. reported that retinoic acid−related orphan

receptor b (RORb) inhabited the ability of tumor formation

and the stemness of GCSCs by suppressing the Wnt/b−catenin
signaling pathway activity in vivo. In addition, overexpression of

RORb attenuated the activity of GC cells and induce the

apoptosis of GC cells via upregulation of Bcl−2 like protein 11

(a pro−apoptotic gene) (73). Ibuprofen was demonstrated by

Akrami et al. that it might diminish the proliferation of GC cells

and attenuate the CSCs properties of GCSCs by blocking the

Wnt/b−catenin signaling pathway (74). According to Jung et al.,

human epidermal growth factor 2 (HER2), which has a

significant influence on breast CSCs, has also been found to

affect GCSC activity via modulating the Wnt/-catenin signaling

pathway. And GC cells with HER2 overexpression were

intimately associated with the stemness and invasion of

GCSCs by regulating the Wnt/b-catenin signaling pathway

(100). Ma et al. found that NANOGP8 was not only a key

regulator of maintaining the CSCs properties of GC cells and

enhancing Wnt signal transduction, but was also closely related

to EMT, chemoresistance and other malignant characteristics of

GC cells (75). Frizzled 7 (FZD7), a member of the Frizzled

family, is closely related to the proliferation and invasiveness of

many tumors. In GC, the expression of FZD7 was upregulated

and FZD7 promoted GC progression, including GC

proliferation, invasion and migration. In 2018, Li et al.

revealed a potential mechanism that FZD7 promotes GC

progression. The expression of FZD7 significantly promotes

the CSCs-like properties and EMT of GC by activating the

canonical Wnt/b-catenin signaling pathway (76). HP infection

is considered to be a major pathogenic factor of non-cardia GC.

And Yong et al. found that HP infection-associated GC exhibited

CSCs properties, such as increased expression of Nanog and

Oct4 (two CSCs specific surface markers). Further research

demonstrated that HP-induced upregulation of Nanog and

Oct4 increased the CSCs properties of GC via the Wnt/-

catenin signaling pathway (101).

4.2.2 Notch signaling pathway
The Notch signaling pathway is critical for the maintenance

of the cancer stem or progenitor cell compartment required for

tumorigenesis in GC. Notch signaling is one of the most

activated pathways in gastric tumorigenesis and plays a critical

role in the links between gastric carcinogenesis and gastric stem

(progenitor) cell proliferation (102). Barat et al. reported that

GSI-mediated targeted therapy of CD44+ GCSCs exhibited
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inhibitory effects on the aggressiveness and tumorigenicity of

GC by suppressing the Notch and Wnt/b-catenin signaling

pathways (78). Autophagy is thought to be involved in tumor

progression. A growing body of evidence suggests that

autophagy can assist tumors in dealing with external pressures,

such as hypoxia, nutrient shortage or cancer treatment, and then

promote tumor progression (103, 104). Similarly, under the

environment of external stress, GCSCs have also been

confirmed to sustain their cell activity through the autophagy

system (105). Therefore, autophagy inhibitors are also

considered as one of the potential therapeutic agents for

cancer including GC. And the maintenance effect of autophagy

on the cell viability of GCSCs is related to the abnormality of

Notch signaling pathway. Li et al. reported that chloroquine, an

autophagy inhibitor, exhibited an inhibitory effect on the cell

viability of GCSCs, and its inhibitory effect was significantly

enhanced when combined with 5-fluorouracil. Further studies

showed that autophagy can regulate the drug resistance of

GCSCs by regulating the Notch signaling pathway (106).

4.2.3 Hedgehog signaling pathway
The Hh signaling pathway plays a crucial role in embryonic

development and maintenance of tissue homeostasis, and it is

also involved in the self-renewal and stemness maintenance of

CSCs (107). In addition, the Hh signaling pathway has also been

considered as a key pathway to maintain the stemness of GCSCs

(80). Sulforaphane, an extract of broccoli/broccoli sprouts, has

been shown to possess antitumor activity. Ge et al. found that

sulforaphane inhibited the proliferation of GCSCs and induced

their apoptosis by inhibiting the activity of the Hh signaling

pathway (80). Dysregulation of the sonic Hh (SHh) signaling

pathway, a type of Hh signaling pathway, plays an important

role in maintaining the properties of GCSCs. Apatinib, an oral

small-molecule tyrosine kinase inhibitor, has been used to treat

advanced GC in China. Cao et al. found that apatinib inhibited

tumor formation, cell proliferation and the expression of GCSCs

markers. Moreover, it also significantly inhibited tumor growth

and the CSCs properties of GCSCs in a xenograft tumor model.

The anti-tumor and anti-GCSCs properties of apatinib were

mediated by drastically lowering the protein expression of SHh

pathway molecules, such as family zinc finger (GLI1) and GLI2.

And the use of paramorphine, an activator of the SHh signaling

pathway, enhanced GC progression and the CSCs properties of

GCSCs. When apatinib was combined with paramorphine, the

inhibitory effect of apatinib on tumor growth and GCSCs

properties would be attenuated (81). As a transcription factors

of the Hh signaling pathway, aberrant expression of GLI2 has

been associated with a variety of malignancies. Lu et al. found

that high expression of miR-144-3p significantly inhibited the

proliferation and invasiveness of GC and stemness of GCSCs.

This inhibitory effect was also observed in xenografted tumor

mice. It was also discovered using tumorsphere formation assays
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GC development and GCSC stemness was achieved through

controlling the expression of GLI2 (108).

4.2.4 Other potential signaling pathways
Similar to Wnt/b-catenin, Hippo/YAP is a highly conserved

signal transduction pathway that contributes to the regulation of

self-renewal and differentiation of CSCs while also being

implicated in cancer development and maintenance. As a

signaling regulator that modulates various cellular processes,

PTPRU was shown to attenuate the stemness of GCSCs by

inhibiting the expression of YAP and thereby inhibiting the

Hippo/YAP signaling pathway. And PTRPU knockdown

strengthens the stemness of GCSCs (82). Stearoyl-CoA

desaturase-1 (SCD1) is thought to be responsible for the stem

cell-like properties of tumors. Similarly, Gao et al. reported that

SCD1 increased the stem cell-like properties of GCSCs through

the Hippo/YAP signaling pathway, which is a key “seed” for GC

tumorigenesis, chemoresistance, and metastasis. Conversely,

inhibition or knockdown of SCD1 by siRNA attenuated the

stem cell-like properties of GCSCs (83). By using GC cell lines

(SGC-7901, MKN-45) to study the effect of GLI2 on the

expression of PDGFRB and the effect of Gli2 and PDGFRB on

the characteristics of GCSCs, Wang et al. found that GLI2

evaluated the expression of PDGFRB at both the mRNA and

protein levels. Additionally, knocking down either Gli2 or

PDGFRB lowered the expression of CSCs related genes, such

as CD44, in GC cells. Therefore, the GLI2-PDGFRB axis may be

a potential signaling pathway for targeted therapy of GCSCs

(109). FOXO1 is a transcription factor closely related to the

progression and metastasis of GC. Choi et al. reported that

FOXO1 could inhibit the tumorigenic ability of GC cells and

regulate the stemness of GC cells by interacting with the GCSCs

marker Lgr5. Thus, they believe that the FOXO1/Lgr5 signaling

pathway may be a potential target for GC therapy by modulating

the stemness of GCSCs (110). Ran et al. reported another

signaling pathway, the JNK signaling pathway, related to the

CSCs properties of GCSCs. They found that GREM2 exhibited

great potential to regulate the proliferation, migration,

invasiveness and apoptosis of GCSCs by regulating the JNK

signaling pathway. Inhibition of the GREM2 or JNK signaling

pathway not only suppresses the proliferation and invasiveness

of GCSCs and promotes the apoptosis of GCSCs in vitro but also

suppresses the tumor formation and lymph node metastasis of

GCSCs in vivo (111). Zhang et al. found that SLC34A2, as a key

regulator of miR-25 transcription, could regulate the

tumorigenesis and self-renewal properties of CD44+ GCSCs.

And they also showed that miR-25 directly targets Gsk3b in

CD44+ GCSCs by luciferase assays. Therefore, they believe that

the SLC34A2-miR-25-Gsk3b pathway is a possible pathway

regulating the properties of GCSCs and GC progression and is

expected to be a potential target for the treatment of GC (112).
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In conclusion, GCSCs-related signaling pathways may

become potential therapeutic targets for the eradication of

GCSCs in the future. However, one point to note is that the

current research on targeting GCSCs for GC therapy viaGCSCs-

related signaling pathways is almost all preclinical theoretical

research. Therefore, the application of this therapeutic strategy

in the treatment of GC still has a long way to go.
4.3 MicroRNAs (miRNAs)

MicroRNAs (miRNAs) may be important modulators of the

characteristics of GCSCs. For instance, miR-598 was shown to

inhibit the growth and invasiveness of GC cells by attenuating

the self-renewal properties of GCSCs (113). CD44 is an

important surface marker of GCSCs, Lee et al. found that

miR-193a-3p was overexpressed by/CD44(+) GC cells

compared with CD44(-) GC cells. And the expression of

SRSF2, the target gene of miR-193a-3p, was downregulated in

CD44(+) GC cells. Further research revealed that the expression

of anti-apoptotic genes such as Bcl2 and Bcl212 was upregulated,

whereas pro-apoptosis genes such as Bax and cytochrome c were

downregulated in CD44(+) GC cells. Furthermore, increasing

the expression level of miR-193a-3p stimulated the progression

of cisplatin resistance in CD44(+) cells of GC patients. Inhibition

of miR-193a-3p expression increases the expression of SRSF2

and alters the expression level of multiple apoptosis-related

genes, which further reduces cell activity and increases cell

apoptosis in CD44(+) cells (86). Pan et al. found that the

expression of miR−196a−5p was significantly upregulated in

CD44(+) GC cells compared to CD44(-) cells by miRNA

microarray analysis. MiR−196a−5p inhibited the expression of

Smad4, which was positively related to the TNM stage and

aggressiveness of GC. And overexpression of Smad4 also

significantly suppressed EMT stimulated by miR−196a−5p in

GCSCs. Therefore, miR−196a−5p may play a significant role in

the EMT and invasiveness of GCSCs by targeting Smad4 (114).

Zhao et al. reported that miR-6778-5p could positively regulate

SHMT1 expression by targeting YWHAE in Drosha-silenced

GC cells. And SHMT1 plays a crucial role in maintaining the

CSCs properties of GCSCs by regulating cytosolic one-carbon

folate metabolism. Furthermore, targeted inhibition of miR-

6778-5p or SHMT1 attenuated GCSC spherical formation and

increased therapeutic sensitivity to 5-fluorouracil in Drosha-

knockdown GC cells (115). MiR-375 has been shown to reduce

the stemness of GC cells in vitro and in vivo by directly targeting

SLC7A11, which could trigger SLC7A11-dependent ferroptosis

(116). Studies have shown that miRNAs may affect the

properties of GCSCs by regulating GCSCs-related signaling

pathways. Xin et al. showed that elevated expression of miR-7-

5p reduced the invasiveness of GCSCs by targeting Smo and

Hes1 and subsequently blocking Notch and Hedgehog signaling

pathways in vitro. Likewise, upregulation of miR-7-5p
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(117). Shao et al. reported that miRNA-19b/20a/92a promoted

the self-renewal of GCSCs by activating the Wnt/b-catenin
signal transduction pathway. Similarly, Fan et al. found that

miR-501-5p could significantly promote the CSC properties of

GC cells by activating the Wnt/b-catenin signaling pathway via

targeting DKK1, NKD1 and GSK3b (118). In addition to

regulating the stemness of GCSCs, miRNAs can also affect the

drug resistance of GC cells. Zhan et al. demonstrated that miR-

98 not only inhibited the stemness of GCSCs but also increased

the sensitivity of GC cells to cisplatin treatment by targeting

branched-chain aminotransferase 1 (119). Similarly, the

increased expression of miR-132 in Lgr5+ GCSCs has been

shown to contribute to cisplatin resistance of GC by regulating

the SIRT1/CREB/ABCG2 signaling pathway (120). Taken

together, these studies suggest that miRNAs may be promising

potential targets for targeted therapy of GCSCs (121).
4.4 LncRNAs

As another class of non-coding RNA, many lncRNAs have

been confirmed to be dysregulated in GCSCs. Recent research

sheds light on the crucial roles that lncRNAs play in regulating

cell proliferation, drug resistance, interaction with key signaling

pathways, and GCSC-associated gene expression (122, 123). Sun

et al., found that lncRNA LOXL1-AS1 was overexpressed in

tissues and cells of GC and the upregulation of LOXL1-AS1 was

associated with poor prognosis in GC. Their results showed that

LOXL1-AS1 induced cell proliferation, migration, EMT, and

stemness, which greatly facilitated the progression of GC.

Additionally, the expression of USF1 was higher in GC than in

healthy controls and LOXL1-AS1 worked as a ceRNA to

upregulate USF1 by sponging miR-708-5p. They further

verified that LOXL1-AS1 promote carcinogenesis and stemness

in GC by regulating miR-708-5p/USF1 pathway (124). Similarly,

Song et al., demonstrated that lncRNA THOR facilitates the

stemness of GC cells by improving the stability of SOX9 mRNA

(125). A lncRNA called ADAMTS9-AS2 plays a role in the

genesis and progression of several malignancies, including GC.

By combining bioinformatics analysis, Wang et al., discovered

that ADAMTS9-AS2 positively linked with the expression of

SPOP in GC tissues. Additionally, they revealed that

ADAMTS9-AS2 hinder the progression of GC and sphere-

forming capability by modulating SPOP expression (126).

LncRNAs have also been confirmed to be involved in the

process of MSCs promoting the development of drug

resistance in gastric cancer. He et al. revealed that MSCs

induced lncRNA MACC1-AS1 expression in GC cells via

secretion of TGF-b1, while MACC1-AS1 enhanced FAO-

dependent stemness and chemoresistance of GC cells through

inhibiting miR-145-5p. Furthermore, in vivo MSC-induced

FOLFOX treatment resistance was reduced by pharmacological
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FAO inhibition with etomoxir (ETX) (127). Likewise, lncRNA

HCP5 induced by MSCs was reported to trigger FAO via miR-

3619-5p/AMPK/PGC1/CEBPB axis boost stemness and chemo-

resistance of GC, showing that inhibiting HCP5 was a novel way

to improving the efficacy of chemotherapy in GC (128). These

results contributed to our understanding of crosstalk between

LncRNAs and GCSCs and may introduce a novel therapeutic

target for GC therapy.
5 Discussion

5.1 Challenges and barriers of GCSCs-
targeted therapies

Despite a growing body of research on targeting GCSCs for

the treatment of GC, there are still some nonnegligible

challenges and obstacles in targeting GCSCs for the therapy

of GC.

Firstly, accurate identification and isolation of GCSCs is

crucial for conducting GCSCs-related research. The incorrect

identification of CSC subpopulations sometimes leads to

incorrect findings. However, a major technical challenge in the

field is to specifically identify and isolate GCSCs. It has been

reported that CSCs are extremely rare in tumor cells, accounting

for <1% of tumor cells (129). This makes it difficult to identify

and isolate CSCs. At present, the primary strategy for identifying

and isolating GCSCs is to use cell surface markers of GCSCs

such as CD44 and CD133. And novel techniques such as single-

cell sequencing methods may also help identify GCSCs (47).

However, these methods cannot isolate GCSCs specifically. For

example, some GCSCs do not express the cell surface markers

found so far, whereas some non-GCSCs do express some GCSCs

related surface markers (130).

Secondly, although dysregulation of many signaling

pathways has been reported in GCSCs, these pathways are also

critical to the maintenance of normal stem cell physiology.

Therefore, agents targeting these signaling pathways may not

only affect GCSCs, but also have some adverse effects on the

normal physiological activities of stem cells. Therefore, more

efforts should be made in the future to specifically target GCSCs

without targeting normal stem cells.

Finally, the current therapeutic strategies targeting GCSCs

are still in the preclinical phase of theoretical research. And most

of these studies were performed in vitro or in animal models.

Virtually no studies on GCSC-targeted therapy in GC have been

reported. In-depth knowledge of the effective dose and side

effects of this treatment should be well defined before it is

applied to clinical practice. However, the current study does

not speak to this point. In addition, the exact mechanisms that
Frontiers in Oncology 10
GCSCs participate in the progression, drug resistance,

recurrence and metastasis of GC are still being explored.
5.2 Conclusion and future perspectives

In recent years, accumulating evidence suggests that GCSCs

are the “seeds” that drive GC progression and play an important

role in GC resistance, recurrence, and metastasis. Therefore,

therapeutically targeting GCSCs represents a promising

therapeutic strategy for the treatment of GC, ushering in a new

era of GC therapy. Current studies suggest that targeting GCSCs-

related markers, signaling pathways, and microRNAs (miRNAs)

may be a promising therapeutic strategy to eliminate GCSCs.

However, due to the intricate interactions between GCSCs and

GCs, as well as the underlying mechanisms, more studies are still

needed in the future to reveal the biological characteristics of

GCSCs, such as the exact origin of GCSCs. In addition, there are

still some unresolved puzzles in the field of GCSCs research.

Future studies should focus on identifying specific GCSCs and in-

depth knowledge of the pathogenic mechanisms of GCSCs in GC

and thus deliver on its promise to revolutionize the therapy of GC.

In summary, targeted therapy to eradicate GCSCs in combination

with current antitumor therapy, including chemoradiotherapy

and surgery, may be able to treat GC more thoroughly and

provide a better prognosis in the future.
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Glossary

ATRA all-trans-retinoic acid

BMDCs bone marrowderived cells

BM-
MSCs

bone marrow-derived mesenchymal stem cells

CAFs cancer-associated fibroblasts

CSCs cancer stem cells

CXCR4 C-X-C chemokine receptor type 4

DGA Lauren diffuse type gastric adenocarcinoma

FZD7 Frizzled 7

GA gastric adenocarcinoma

GC gastric cancer

GCSCs gastric cancer stem cells

GEF guanine nucleotide exchange factor

GLI family zinc finger

Gli1 glioma-associated oncogene homolog 1

GSCs gastric stem cells

HER2 human epidermal growth factor 2

Hh Hedgehog

HP Helicobacter pylori

Lgr5 leucine-rich repeat-containing G protein-coupled receptor 5

L-PTGDS lipocalin-type prostaglandin D2 synthase

PlGF Placental growth factor

PTGDR2 prostaglandin D2 receptor 2

RNF43 Ring finger protein 43

RORb retinoic acid−related orphan receptor b

Sca-1 stem cell antigen 1

SCD1 Stearoyl-CoA desaturase-1

SHh sonic Hh

TAMs tumor-associated macrophages

USPs ubiquitin-specific proteases

Villin-cre transgenic mice expressing Cre recombinase from the villin
promoter

YAP Yes-associated protein
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