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Abstract

In many areas of the brain, both spontaneous and stimulus-evoked activity can manifest as

synchronous activation of neuronal assemblies. The characterization of assembly structure

and dynamics provides important insights into how brain computations are distributed

across neural networks. The proliferation of experimental techniques for recording the activ-

ity of neuronal assemblies calls for a comprehensive statistical method to describe, analyze

and characterize these high dimensional datasets. The performance of existing methods for

defining assemblies is sensitive to noise and stochasticity in neuronal firing patterns and

assembly heterogeneity. To address these problems, we introduce a generative hierarchical

model of synchronous activity to describe the organization of neurons into assemblies.

Unlike existing methods, our analysis provides a simultaneous estimation of assembly com-

position, dynamics and within-assembly statistical features, such as the levels of activity,

noise and assembly synchrony. We have used our method to characterize population activ-

ity throughout the tectum of larval zebrafish, allowing us to make statistical inference on the

spatiotemporal organization of tectal assemblies, their composition and the logic of their

interactions. We have also applied our method to functional imaging and neuropixels record-

ings from the mouse, allowing us to relate the activity of identified assemblies to specific

behaviours such as running or changes in pupil diameter.

Author summary

Characterization of the structure and dynamics of population activity can provide insight

into how computations are distributed within neural networks. Here we develop a new

statistical method to describe patterns of synchronous activity in neural population

recordings. Our method can accurately describe how neurons are organized into co-active

populations (assemblies) and reveals dynamic features of assemblies such as their firing

pattern, firing duration, and the degree of synchronous and asynchronous firing of their

constituent neurons. We demonstrate how our technique can be used to dissect complex

neuronal population recording data into its behaviorally relevant components.

This is a PLOS Computational Biology Methods paper.
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Introduction

Donald Hebb proposed that neural circuits are specifically built to enable the generation of

sequential activity patterns and that through synaptic plasticity, coactive neurons would be

bound together into Hebbian assemblies—groups of neurons that tend to be coactive. Recent

advances in multineuronal recording techniques such as calcium imaging and neuropixels

probes have revealed that a hallmark of population activity is indeed the organization of neu-

rons into assemblies [1–6]. Furthermore, activation of specific assemblies has been shown to

correlate with diverse aspects of brain function from encoding of sensory stimuli to generation

of motor output [6–8]. Thus, neural assemblies are increasingly believed to be the units of

brain computation [9, 10]. The characterization of assembly structure and dynamics may

therefore provide crucial insights into how brain computations are distributed across neural

networks.

However, quantitatively identifying and extracting features of assemblies based on popula-

tion firing statistics is challenging. Neurons can fire independently of the assembly of which

they are a member and not all neurons within an assembly are recruited when the assembly

fires. Assemblies can also exhibit temporal overlap or hierarchical organization, which makes

it difficult to distinguish them from one another. Neurons may not participate in assembly

activity at all, in which case their activity contributes to noise in the data. Finally, assemblies

themselves may be of different sizes, have different activity rates, and neurons within them

may be recruited over different timescales.

In the absence of a quantitative definition of neuronal assemblies, previous works applied

heuristic methodologies such as dimensionality reduction techniques (e.g. principal compo-

nent analysis, PCA) combined with factor analysis and graph-theoretic methods to character-

ize assemblies [5, 6, 8, 11–15]. Common to all these approaches is that they generate an

abstract representation of the data. For example PCA describes the data in terms of principal

components while spectral clustering requires embedding activity patterns in a network (see

Materials and methods for details). These approaches present significant problems when try-

ing to determine the correct number of assemblies present in neuronal recordings. PCA-based

methods assume that this number is equal to the number of principal components required to

describe the variance of the data that cannot be explained by chance according to theoretical

bounds or null models obtained by shuffling the data. Graph-theoretic approaches rely on the

fidelity of a graph representation and the equivalence of neuronal assemblies to network com-

munities in the graph. However the construction of the representative network requires several

arbitrary decisions (number of nearest neighbours and similarity matrix, for instance) which

are not directly related to biological features. In instances where the data are clearly structured

into synchronous events and there is minimal noise these methods can perform well [16].

However, these methods can lead to erroneous conclusions about how neurons are organised

into assemblies as noise and data complexity increase [16]. The poor performance of some of

the current analysis pipelines is perhaps not surprising given that standard clustering algo-

rithms are mainly used as exploratory tools and not for statistical inference. Importantly,

because information about the level of structure in the data is generally not known a priori, the

accuracy of these estimations is also not known. Furthermore, because these methods are not

based on statistical inference, their conclusions cannot be supported by statistical evidence.

In order to address these problems we have developed a method that is specifically tailored

to neuronal data where data features such as noise, level of within-assembly synchrony and

assembly activity are directly estimated from the data and simultaneously used to cluster neu-

rons into assemblies. We have developed a hierarchical model of neuronal activity and used

Bayesian inference to fit the observed synchrony among neurons with our model. The method

Bayesian inference of neuronal assemblies

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007481 October 31, 2019 2 / 31

zebrafish tectum are publicly available on figshare:

https://doi.org/10.6084/m9.figshare.9994799.v1.

Funding: Martin Meyer was financially supported

by a Wellcome Trust Investigator Award

MPM:204788/Z/16/Z (https://wellcome.ac.uk). The

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1007481
https://doi.org/10.6084/m9.figshare.9994799.v1
https://wellcome.ac.uk


allows us to obtain information about assembly structure and dynamics from the recorded

population activity, without the need of dimensionality reduction or similarity measures. By

employing statistical inference, neurons are grouped into assemblies based on the most likely

scenario that is consistent with the data and the model assumptions. Our method generates

probabilistic estimates of assembly ON/OFF states over time and within-assembly statistical

features such as synchronous and asynchronous firing probabilities. A common issues in all

existing methods is the difficulty of determining how many assemblies are present in neuronal

population activity data. In our Bayesian method, this number is also estimated from the data

by introducing the Dirichlet process, which allows us to treat the number of assemblies as any

other model parameter.

In our method all the assumptions underlying the definition of neuronal assemblies are

transparent and explicitly stated as parameters in the model. Furthermore, because our model

is grounded on Bayesian inference, all our conclusions are supported by statistical evidence.

Earlier works have used Bayesian estimation of neural connectivity in the context of realistic

models of neural dynamics such as the leaky integrate-and-fire model [17, 18]. However, the

complexity of these models introduces scalability issues when applied to large datasets.

To determine the range of applicability of our method we tested it on simulated data and

compared its performance against existing techniques over a broad range of sample size,

assembly number and assembly features. We demonstrate that (1) our method outperforms

existing techniques over a broad range of conditions and (2) our method provides optimal

inference when testing data are simulated from the same generative model used for inference.

Using our method we have characterized neuronal assemblies from large-scale functional

imaging data obtained from zebrafish tectum and mouse visual cortex, and from a neuropixels

probe located in mouse visual cortex, hippocampus and thalamus [19]. We demonstrate that

our method can provide a statistically rigorous approach to identifying assemblies, their intrin-

sic dynamics, interactions and coordinated activation and deactivation during behavior.

Results

Bayesian statistics

Given a model which describes observations in terms of a set of unobserved (latent) features Z
and model parameters θ, the aim of Bayesian statistics is to quantify the probability distribu-

tion of parameters and latent variables conditional to the data using the Bayes’ theorem

PðZ; yjdataÞ / Pðdata;ZjyÞ
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{

data likelihood

� PðyÞ
zffl}|ffl{
prior

ð1Þ

which expresses this probability in terms of the likelihood of observing the data (given the

model parameters) and the prior distribution of the parameters which represents our a priori

knowledge about the model. In the context of neuronal activity, the latent variables Z describe

how neurons are organized into assemblies. Therefore, to perform statistical inference, we first

need to introduce a model which allows us to calculate the likelihood of both observed neuro-

nal activity and the latent configuration representing assembly structure.

The generative model

In this section we outline our approach to characterize neuronal activity of N neurons orga-

nized into A assemblies for M time frames. We assume that each neuron belongs to one assem-

bly and denote their memberships by vector of integer labels {t1, � � �, tN} between 1 and A. The

state of all assemblies over time is specified by a binary matrix ω (0 = “off”, 1 = “on”) of size
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M × A. In the following we will adopt the shorthand notation μ = {i 2 {1, � � �, N}: ti = μ} to indi-

cate the set of neurons assigned to the same assembly μ. Vectors of parameters will be denoted

by dropping their indexes, e.g. p� {p1, � � �, pA}. The neuronal memberships and the assembly

activity matrix are unobserved variables that we want to estimate from the observed neuronal

activity data.

Our model is specified by the following three generative steps: (1) draw neuronal member-

ship ti from a categorical distribution with probabilities nμ, μ = 1, . . ., A; (2) draw indepen-

dently the activity states ωkμ = {0, 1} of assembly μ at time k from a Bernoulli distribution with

assembly-specific probabilities pμ� P(ωkμ = 1); (3) draw the activity of all neurons at all times,

denoted by the binary matrix sik, from the conditional probability

lti
ðzÞ � Pðsik ¼ 1jokti

¼ zÞ ð2Þ

which depends on the state z 2 {0, 1} of the corresponding assembly ti. The parameters λμ(1)

and λμ(0) represent the probabilities of any of the neurons belonging to the assembly μ to fire

when the assembly is active or inactive respectively. From here onward we will refer to λμ(0) as

the level of asynchrony in the assembly and to λμ(1) as assembly synchrony, characterizing the

propensity of the assembly’s constituent neurons to fire synchronously.

The model parameters θ = {n, p, λ} provide a full characterization of the assemblies based

on their statistical properties, including firing frequency, size, synchrony and asynchrony lev-

els. As discussed in the following sections, our approach allows us to estimate the model

parameters from the data together with the latent variables of the model.

Likelihood

From the generative rules outlined in the section above, we can calculate the joint probability

of neuronal membership t, the assembly activity matrix ω and the neuronal activity matrix s
conditional to the model parameters θ (likelihood) as

Pðt;o; sjyÞ ¼
YN

i¼1

nti

 !

�
YA

m¼1

YM

k¼1

pokm
m
ð1 � pmÞ

1� okm

 !

�

�
YN

i¼1

YM

k¼1

½lti
ðokti
Þ�

sik ½1 � lti
ðokti
Þ�
ð1� sikÞ

 ! ð3Þ

Next, we need to define the distributions used as priors on the model parameters, as indicated

in Eq (1). In particular, we use a beta distribution for the assembly activation probabilities p’s

and the synchronous/asynchronous firing probabilities λ’s whereas for the relative sizes of

each assembly n’s we employ a Dirichlet distribution which imposes the normalization condi-

tion ∑μ nμ = 1. Our prior distributions are then summarized as

pm � BetaðaðpÞ
m
; b
ðpÞ
m
Þ; ð4Þ

lmðzÞ � BetaðaðlÞz;m ; b
ðlÞ

z;mÞ; ð5Þ

fn1; � � � ; nAg � DirðaðnÞ1 ; � � � ; a
ðnÞ
A Þ ð6Þ

where the standard notation x* P means that x is drawn from the distribution P. α’s and β’s

are the (hyper-)parameters describing our prior knowledge on the model parameters such as

the expected temporal sparsity of the synchronous activation of neuronal populations. This

model can be represented graphically as in S1 Fig (panel A).
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The present formulation of the generative model could be used directly to draw posterior

samples of parameters and latent features by deriving their full conditional distributions

(Gibbs sampling). However, this strategy would introduce several problems in dealing with a

variable number of assemblies, as continuous features (such as the vector n of relative size for

instance) would have variable dimensionality. We can derive a more efficient sampler by inte-

grating out the continuous parameters θ and obtaining the marginal probability P(t, ω, s). This

procedure leads to the “collapsed” model depicted in S1 Fig (panel B) which in general reduces

the uncertainty associated with the estimation of the remaining variables. To proceed our deri-

vation we first introduce the summary variables

Gm ¼
XN

i¼1

dm;ti ð7Þ

Hm ¼ a
ðpÞ þ

XM

k¼1

okm;
�Hm ¼ b

ðpÞ
þ
XM

k¼1

ð1 � okmÞ ð8Þ

T̂ zz0
S;mk ¼

X

i2S

dz;okm
dz0;sik

; Tzz0
S;m
¼ gzz0 þ

XM

k¼1

T̂ zz0
S;mk ð9Þ

gz1 ¼ a
ðlÞ

z ; gz0 ¼ b
ðlÞ

z ð10Þ

where δij is the Kronecker delta function and S is any subset of indexes in the range 1 to N. To

simplify the notation we also introduce additional matrices derived from Eq (9)

T̂ mk ¼ T̂μ;mk; Tm ¼ Tμ;m
ð11Þ

T̂ mni;k ¼ T̂μni;mk; Tmni ¼ Tμni;m; ð12Þ

T̂ i;mk ¼ T̂ fig;mk; Ti;m ¼ Tfig;m ð13Þ

For each assembly μ, Gμ is the assembly size, Hμ and �Hm denote (up to an additive constant)

the number of active and inactive events over time respectively, while the matrix Tzz0
S;m counts

how many times the state (ωkμ, sik) = (z, z0) is observed across time and the neurons in the set S
(up to an additive constant).

Due to the conjugate character of the prior distributions (see Materials and methods for

details) the integration over θ can be carried out analytically, leading to the marginal likeli-

hood

Pðt;o; sÞ ¼
Z

dy Pðt;o; sjyÞPðyÞ ¼

¼
BðGþ aðnÞÞ

BðaðnÞÞ

YA

m¼1

BðHm;
�HmÞ

BðaðpÞ; bðpÞÞ
�
Y

z2f0;1g

BðTz1
m
;Tz0

m
Þ

BðaðlÞz ; b
ðlÞ

z Þ

( ) ð14Þ

where B(�, �) is the Euler beta function and B is defined as the product of gamma functions

Bðfa1; � � � ; angÞ �

Q
kGðakÞ

Gð
P

kakÞ
: ð15Þ

After integrating out θ we can rewrite the joint probability in Eq (14) as the product between
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the likelihood

Pðt; sjoÞ ¼
BðGþ aðnÞÞ

BðaðnÞÞ
�
YA

m¼1

Y

z2f0;1g

BðTz1
m
;Tz0

m
Þ

BðaðlÞz ; b
ðlÞ

z Þ
ð16Þ

and the prior on the latent variables

PðoÞ ¼
YA

m¼1

BðHm;
�HmÞ

BðaðpÞ; bðpÞÞ

( )

: ð17Þ

We will employ this “collapsed” formulation of the model to make inference on cell member-

ship and assembly activity.

Inference

Given the data on neural activities in the form of a binary matrix s, we can use the generative

model described above to make inference on neuronal identities and assembly activity along

with the model parameters. Within our probabilistic framework, we can estimate these quanti-

ties by evaluating their expectations with respect to the conditional distribution P(t, ω|s).
These averages can be computed via Monte Carlo methods by generating random samples

from the joint distribution.

We first consider the case where the number of neuronal assemblies A is known. To obtain

samples from P(t, ω, s) in Eq (14) we can use a Gibbs sampler where cell membership and

assembly activities are drawn sequentially from the conditional distributions P(t|ω, s) and P(ω|

t, s) respectively (Algorithm 1).

Algorithm 1 Collapsed Gibbs sampling
1: Initialize t
2: while convergence criteria do
3: for each assembly μ 2 {1, � � �, A} time k 2 {1, � � �, M} do
4: draw ωkμ * P(ωkμ|t, s)
5: for each cell i 2 {1, � � �, N} do
6: draw ti * P(t|ω, s)
7: draw θ * P(θ|t, ω, s)

The conditional distribution of the membership of the ith data point ti can be written as

Pðti ¼ mjt� i;o; sÞ / ðGm þ a
ðnÞ
m
Þ
Y

z2f0;1g

BðTz1
m
;Tz0

m
Þ

BðTz1
mni;Tz0

mniÞ
ð18Þ

where we used the notation t−j = {t1, � � �, tj−1, tj+1, � � �, tN}.

The conditional probability for the assembly activation matrix ω is given by

Pðokm ¼ 1jt;o� km; sÞ ¼
1

1þ rkm
ð19Þ

rkm ¼
Hm þ a

ðpÞ

�Hm þ b
ðpÞ �
Y

z

BðTz1
m
;Tz0

m
Þjokm¼0

BðTz1
m
;Tz0

m
Þj
okm¼1

; ð20Þ

sampling the parameters θ from the posterior distribution P(θ|t, ω, s) is easy thanks to our

choice of the corresponding priors. The posterior distributions of pμ, λμ and nμ retain the same
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functional form as in Eqs (4, 5 and 6) with updated hyper-parameters

~aðpÞ
m
¼ Hm;

~bðpÞ
m
¼ �Hm ð21Þ

~a
ðlÞ

0;m ¼ T01

m
; ~b

ðlÞ

0;m ¼ T00

m
ð22Þ

~a
ðlÞ

1;m ¼ T11

m
; ~b

ðlÞ

1;m ¼ T10

m
ð23Þ

~aðnÞ
m
¼ aðnÞ

m
þ Gm ð24Þ

where we have added an extra label μ to the posterior hyperparameters corresponding to dif-

ferent assemblies. Having obtained the analytical expression of the marginal likelihood for the

collapsed model in Eq (14) we have designed a Gibbs Monte Carlo sampler which allows us to

make inference on latent features and model parameters. However, so far we have kept the

number of assemblies A fixed. In the next section we will discuss how to extend the current

sampling strategy to accommodate a variable number of assemblies, providing a way to esti-

mate this number directly from the data.

Inference of the number of neuronal assemblies

Since in general the number of assemblies is not known a priori, we need to extend the frame-

work described in the previous section in order to estimate this number from the data. This

can be achieved by introducing a scheme in which the number of assemblies is treated as a

latent feature for which we need to draw posterior samples analogously to the other parameters

of the model.

Estimating the number of components in a mixture is a common issue in unsupervised

machine learning. In the context of our model we employ the Dirichlet process(DP) [20] as a

prior on the mixing measure describing the composition of the data (see panel C in S1 Fig for

a graphical representation). The DP prior can be implemented by introducing specific Metrop-

olis-Hastings acceptance rules to increase or decrease the number of components [21], which

generalize the inference problem to an arbitrary number of assemblies.

Here we adapted the algorithm described in Neal [21] to our generative model of neuronal

assemblies. In particular, during each iteration of the sampler, when assigning a given neuron i
to an assembly, the rule proposed by Neal corresponds to draw a new membership μ� from the

proposal

qðm�Þ ¼
Gð� iÞ
m�

aþN� 1
m� ¼ 1; � � � ;A

a

aþN� 1
m� ¼ Aþ 1

8
<

:
ð25Þ

where α is the concentration parameter of the Dirichlet process. Existing assemblies are drawn

proportionally to their occupancy Gð� iÞ
m

(calculated from all membership except the current μ0,

see Ref. [21] for details). If a new assembly is proposed, μ = A+ 1, then we draw a correspond-

ing binary vector ωkμ from the prior distribution in Eq (17). The proposal is accepted with

probability

aðm�; m0Þ ¼ min 1;
Y

z2f0;1g

½BðTz1
m�
;Tz0

m�
ÞBðTz1

m0
;Tz0

m0
Þ�ti¼m�

½BðTz1
m� ;Tz0

m� ÞBðTz1
m0
;Tz0

m0
Þ�ti¼m0

( )

: ð26Þ
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With this Metropolis-Hastings rule we have introduced transitions in the number of neuro-

nal assemblies. By integrating this rule to the collapsed Gibbs sampler we obtain a new sam-

pling scheme (Algorithm 2) which allows us to infer the number of neuronal assemblies from

the data.

Algorithm 2 Metropolis-Hastings sampling with Dirichlet process prior
Initialize t
while convergence criteria do
for each assembly μ 2 {1, � � �, A} time k 2 {1, � � �, M} do
draw ωkμ * P(ωkμ|t, s)

for each cell i 2 {1, � � �, N} do
draw μ� * q(μ)
if μ� = A + 1 then
draw ωkμ� * P(ω)
A ! A + 1
Accept new μ� with probability a(μ�, μ0)
if Gm0

¼ 0 then
delete assembly μ0
A ! A − 1

draw θ * P(θ|t, ω, s)

Validation

To validate the method we generated random neuronal activity matrices s from our model by

fixing synchrony, asynchrony and activity for each neuronal assembly, then we used the

Monte Carlo algorithm 2 outlined in the previous section to infer parameters and latent vari-

ables. In Fig 1 we illustrate a sample of the activity matrix s obtained from the model with five

assemblies with cells sorted by membership (Fig 1A). At the initialization step we assigned ran-

dom membership to each cell uniformly between 1 to N, generating an initial number of

assemblies of order N. In Fig 1C we display the course of the reassignment for each neuron at

four different stages of the sampling. In particular, the early phase where initial groups are

formed is followed by the merging of equivalent assemblies which eventually converge to the

true assigned membership. Fig 1B displays the convergence of the log-likelihood (top panel)

and the membership transition rate, defined as the number of cells reassigned to a different

assembly divided by the total number of cells (bottom panel). When the data display a strong

organization in terms of synchronous activity, deviations from the maximum likelihood con-

figuration are suppressed. Therefore once cells are assigned to their ground truth label (up to

permutation) they are unlikely to be reassigned after the sampler has reached convergence.

Next, we explored a broad range of synchrony and asynchrony to describe the regime of

applicability of our method. We performed inference on random activity matrices generated

from the model with asynchrony and synchrony in the range between 0.05 and 0.95. The dia-

gram depicted in Fig 2A shows the separation between regions where all cell memberships are

exactly recovered (detectable phase, red) from regions where full recovery of cell membership

is not achievable (non-detectable phase, blue). In particular, assembly recovery is possible

whenever the absolute difference between asynchrony and synchrony |λ(1) − λ(0)| is suffi-

ciently high. Indeed, the condition λ(1) = λ(0) corresponds to the degenerate case where the

firing probability is independent of the assembly state, in which case s does not provide any

statistical information about cell membership. The width of the non-detectable region depends

on assembly activity pμ’s; at fixed time M higher assembly activity provides more information.

Therefore, when the activity increases the size of the non-detectable region is reduced (S2 Fig).

The detectable phase is separated in two symmetric regions. λ(1) > λ(0) corresponds to “on”

assemblies where neuron activity is correlated with assembly activity. The detectable region

Bayesian inference of neuronal assemblies
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with λ(1) < λ(0) corresponds to “off” assemblies where member neurons are anti-correlated

with assembly activity. This regime describes the scenario where a population of highly active

neurons is characterized by synchronous transitions to “off states”. The average membership

transition rate can be viewed as an order parameter for the detectable/non-detectable phase

transition. In fact, unlike the detectable phase where the membership transition rate vanishes,

in the non-detectable phase this quantity reaches a non-zero limit, as shown in Fig 2B, indicat-

ing that maximum-likelihood fluctuations are no longer suppressed. In this regime, the infor-

mation provided by the activity matrix s is not sufficient to assign neurons to an assembly.

Comparison with k-means, dimensionality reduction and spectral

clustering methods

In this section we compare the performance our technique with other methods widely

used for clustering. The data used to test the performance of the various methods were

simulated according to a different generative model from the one used for inference. This

Fig 1. Validation. (A) Simulated activity of N = 500 neurons organized in A = 5 assemblies. Time sequences of length M = 1000 for all neurons

have been generated from the model with λμ(0) = 0.08, λμ(1) = 0.6 and pμ = 0.1 for asynchrony, synchrony and activity equal for all assemblies.

We used this activity matrix as input to our inference algorithm to recover the five assemblies. (B) (top) log-likelihood over the course of 300

iterations of the Monte Carlo sampler and (bottom) number of transitions per iteration divided by the number of neurons N (different colors

correspond to different initializations of neuronal memberships). (C) Assignments of cells to assemblies at four stages of the sampling. Cells

initially assigned to OðNÞ assemblies are progressively grouped until the original assemblies are recovered.

https://doi.org/10.1371/journal.pcbi.1007481.g001
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was done to deviate from the optimal scenario where testing data are generated from the

same model used for inference (which would necessarily make our method outperform the

others). Specifically, 20% of all the neurons were allowed to belong to multiple assemblies

(< 3) and can be recruited by any assembly they are part of according to synchrony and

asynchrony levels in each assembly (i.e. the probabilities λ(z) to be active conditional to the

assembly state z). To compare the membership assignments obtained from each method we

defined a measure of performance as follows. For any assignment map i! τ(i) defining the

membership for all neurons i = {1, � � �, N} we can construct the pairwise assignment matrices

IðtÞij indicating whether the pair of neurons i, j have been assigned to the same assembly

(IðtÞij ¼ 1) or not (IðtÞij ¼ � 1). A measure of performance can be obtained as a correlation

between the original pairwise assignment matrix and the one obtained from τ which can be

written as

rt ¼
1

K

X

i<j

IðtÞij IðorigÞ
ij ð27Þ

where IðorigÞ
ij is the pairwise assignment matrix obtained from the ground-truth assignment (see

Materials and methods for details on the generalization to the case of multiple membership).

The number of pairs K = N(N − 1)/2 is used for normalization. We compared the performance

of our method to k-means, PCA and spectral clustering (see Materials and methods for

details). We analyzed simulated neuronal activity for 1000 time frames at increasing levels of

asynchrony, number of neurons and assemblies (Fig 3A–3C). In all comparisons k-means was

instructed with a number of assemblies estimated with the silhouette method. For the PCA-

based method we selected the number of significant components by comparing with circularly

Fig 2. Phase diagram. The ability to identify assemblies in a dataset depends on the model parameters. When synchrony and asynchrony levels

are too similar, the recording time might not be sufficient to capture small differences in firing patterns. (A) Raster plot displaying detectable

(red) versus non-detectable (blue) regimes of as a function of synchrony and asynchrony parameters of the model (we used 5 randomly

generated assemblies for each configuration of synchrony and asynchrony). (B) Raster plot representing the number of neurons reassigned, on

average, for every random sample of the Markov chain. The average transition rate can be viewed as an order parameter characterizing the

transition between detectable and non-detectable phases.

https://doi.org/10.1371/journal.pcbi.1007481.g002
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Fig 3. Comparison of Bayesian inference performance to k-means, PCA and spectral clustering. (A) Performance

comparison across levels of asynchrony. Dots correspond to independently generated data sets while solid lines show

the average performance for each method over all simulated data. (B) Comparison across number of neurons. (C)

Comparison across number of assemblies. (D-F) Standard deviation of the performance across simulated data per

parametric condition. Unless specified otherwise, surrogate datasets were generated using 400 neurons and 1000 time

frames distributed over 5 assemblies with assembly activity of 5%, synchrony 50% and asynchrony 10%. For k-means

we used a number of clusters estimated according to the silhouette method. The number of significant principal

components in PCA clustering was obtained by the circular shuffling method whereas for the spectral clustering we

used the Newman-Reinart graph-theoretic community detection method [22] (see Materials and methods). The

performance was measured according to Eq (27) by comparing each set of assignments with ground truth assignments.

https://doi.org/10.1371/journal.pcbi.1007481.g003
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shuffled data as a null model, while for spectral clustering we used a community detection

algorithm to estimate the number of assemblies (see Materials and methods for details). As

reported in previous studies, k-means is not suitable for detecting neuronal assemblies as

shown by the low performance in all conditions due to the high dimensionality of the data

[16]. Such low performance stems from the difficulty in detecting the right number of assem-

blies. PCA and spectral clustering have good performance for asynchrony levels below 20%.

For the specific testing datasets used in our comparisons, below 15% asynchrony and low

number of assemblies, the spectral method can cope better with multi-membership, leading to

higher performance. The spectral clustering method hinges on the graph representation of the

neuronal activity (see Materials and methods). Depending on the type of data, this representa-

tion can lead to systematic under- or over-estimation of the number of assemblies, requiring

additional procedures [5, 16] in the pipeline. In a broad range of model parameters, Bayesian

inference outperforms all the other methods. Next we considered performance variability

across simulated data. In the range of parameters analyzed, Bayesian inference displayed a

minimal variability compared to other methods, showing that our technique provides a very

reliable inference of neuronal membership and it is robust across asynchrony, number of neu-

rons and assemblies (Fig 3D–F).

In general, performance of different clustering methods depend on the generative rules

used to simulate the testing data. For example, the performance of all methods tested here

improves when neurons belong to only one ensemble (see S8 Fig). Therefore, when analysing

real neuronal data, it is important to be aware of the hypotheses underlying the methods used

for clustering. Our method is specifically tailored for neuronal recordings and it makes mini-

mal assumptions on how neuronal activity is hierarchically structured into synchronous and

asynchronous assembly activity and uses these as defining features.

Analysis of assemblies in the zebrafish tectum

We used our method to infer the structure and dynamics of neural assemblies within the optic

tectum of the larval zebrafish. For these experiments we used zebrafish with pan-neuronal

expression of a nuclear localized calcium indicator, Tg(elavl3:H2B-GCaMP6s) [23] (see Mate-

rials and methods). Using two-photon volumetric calcium imaging, we monitored activity in

the tectum of immobilized zebrafish larvae kept in total darkness. In all experiments we

recorded calcium activity for 1 hour throughout 5 planes, 15μm apart with an acquisition fre-

quency of 4.8Hz per volume (Fig 4A, S1 Video and Materials and methods). Volumetric

images were preprocessed using registration and segmentation software to extract the time

sequences from thousands of tectal cells in both tectal hemispheres (Fig 4B and Supplementary

Information). Consistent with previous reports we find that the tectum displays significant lev-

els activity in the absence of visual stimulation [5, 6])

In order to match the data with our generative model we extracted the onset times of each

calcium transient from all tectal cells in the form of a binary matrix (Fig 4C). To do so we sepa-

rated calcium transient signals from baseline activity by using a hidden Markov model

(HMM) where the neuronal activity (hidden) state st at time t is represented by a Bernoulli

process, the background bt is a Gaussian Markov process and the calcium transients are drawn

from a normal distribution when st = 1 or follow a deterministic exponential decay when st = 0

(Fig 4D and 4E). More realistic models have been developed to describe the fluorescence levels

of the calcium indicator [24, 25]. However, since our purpose is to capture the synchronous

events among cells and not to infer the number of spikes within a calcium transient we can

use a simplified model to select events where the activity deviates significantly from the
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background. The HMM approach can be used to obtain estimates of signal and background

(see Materials and methods) allowing for fast preprocessing of the calcium traces.

Estimates of the binary activity for each neuron were then combined into matrices of

dimension [N cells] × [M time frames] where M = 17460 frames for all experiments and a

number of neurons N of order 103 dependent on how many cells were segmented for each

fish. To build the activity matrix s used for inference we considered all time frames with more

than 15 active cells. This threshold was used to select for synchronous activity events that had

low probability (p< 0.02) of being random, obtained by shuffling neuronal activity indepen-

dently over time. We applied our method to each binary activity matrix by running Algorithm

2 until convergence. The advantage of our method is that assembly features (activity, levels of

asynchronous and synchronous activity) are simultaneously estimated together with neuronal

membership. This allows the user to select particular assemblies for further analysis. Here, we

have discarded assemblies composed of cells which were almost never active during the 1 hour

recording period. Similarly, groups of poorly correlated neurons firing asynchronously can be

combined into assemblies where levels of asynchrony and synchrony are very similar and

therefore potentially outside the detectable regime. This allows us to automatically separate

neurons which do not belong to coherent assemblies from neurons where the level of syn-

chrony is significantly larger than the level of asynchrony (S6 Fig shows that neurons not

assigned to an assembly ‘free neurons’ are only weakly correlated with assembly activity). To

focus on the most coherent populations we selected assemblies with activity larger than 0.5%

Fig 4. Imaging of the zebrafish tectum. (A) Volumetric 2-photon imaging of both tectal hemispheres showing anterior/

posterior (A/P) and right/left (R/L) axis of the zebrafish optic tectum. We monitored activity in the tectum of immobilized

zebrafish larvae kept in total darkness. In all experiments we recorded calcium activity for 1 hour throughout 5 planes, 15μm

apart with an acquisition frequency of 4.8Hz per volume. (B) Raw images (top) were segmented (bottom) to obtain the temporal

dynamics of calcium of thousands of neuron in the tectum (see also S1 Video). (C) Raster plot showing calcium activity of all

neurons over 1h recording. (D) Raw fluorescence is described in terms of a Hidden Markov model (HMM) where periods of

increased activity are indicated by a binary process ({s}) triggering the onset of calcium transients ({c}). The recorded

fluorescence is obtained as the sum of calcium level and a Wiener process to account for the low-frequency baseline modulation

({s}) (see Materials and methods). (E) Example of raw fluorescence and estimation of hidden variables of the HMM using a

sequential maximum-likelihood algorithm (see Materials and methods).

https://doi.org/10.1371/journal.pcbi.1007481.g004
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(corresponding to�1 event per minute), size larger than 5 neurons, synchrony larger than 5%

and asynchrony lower than 5%.

By comparing the analysis of n = 7 fish using our technique, we obtained a number of neu-

ronal assemblies (Fig 5A) which varied between 30 and 50 per larva. All assemblies features

Fig 5. Stereotyped features of neuronal assemblies across fish. (A) Number of neuronal assemblies estimated for each

fish. (B) Fraction of neurons assigned to assemblies with 99% confidence. The efficacy of our method in capturing neuronal

assemblies is illustrated by separating the activity matrix of assembly neurons from neurons which are not part of a

coherent assembly. (C) When sorting the activity matrix by membership, neurons that are part of an assembly generate

bands of synchronous activity whereas neurons that are not assigned to an assembly display independent random firing

events. (D) Comparison of synchrony, asynchrony, activity and assembly sizes for all experiments. Synchrony and

asynchrony correspond to the model parameters λ(1) and λ(0), as the probabilities of a neuron to fire with its assembly

(synchronous activation) and independently of it (asynchronous activation). The activity corresponds to the probability of

an assembly to be active at any time during the 1 hour recording period. (E) Representative assemblies from single fish with

high synchrony and activity display spatial compactness within left or right tectal hemispheres. Labels A/P and R/L indicate

anterior/posterior axis and right/left optic tectum respectively. Assembly maps are obtained by projecting in 2D the

positions of all member neurons across the five imaging planes.

https://doi.org/10.1371/journal.pcbi.1007481.g005
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displayed non-significant variations across fish (Fig 5C). In particular, the average level of

assembly synchrony across fish was 0.19 (SD = 0.11), corresponding on average to a 19%

chance for a member neuron to be recruited during assembly activation. In addition, we have

found typical asynchrony levels of 0.007 (SD = 0.005), meaning that there is a 0.7% chance of a

neuron to be active at any time point where its assembly is off. The low level of synchrony is

apparently low due to its definition in the model as a measure of coincident activity of member

neurons at equal times (within the temporal resolution of the recording). However, assembly

activity is characterized by sustained periods of activation during which most member neurons

are recruited gradually rather than instantaneously.

Our inference method allows us to accommodate this feature as illustrated in Fig 6A where

the assembly activity matrix displays extended periods of activity. Therefore, in spite of the

local definition of synchrony in our model, windows of sustained activity emerge naturally as

the optimal way to explain neuronal activity patterns in terms of assembly dynamics. This

Fig 6. Networks of assemblies in the zebrafish tectum. (A) Raster plot of assembly activity ordered according to subnetwork

membership as shown in C. (B) Raster plot of the time correlation matrix (Pearson’s) between all pairs of assemblies averaged

across posterior samples and sorted according to subnetwork membership. (C) Subnetwork graphs representing the time

correlations among neuronal assemblies (see Materials and methods). Each assembly is a node, shorter edges reflect higher

temporal correlations. Note the absence of edges between assemblies located in ipsilateral anterior and posterior tectum (see S3

Video). (D) Scatter plot showing the relationship between time correlation and physical distance between neuronal assembly

centers (1pixel� 0.9μm). (E) Fraction of assembly pairs with correlation larger than λ as a function of λ. Ipsilateral pairs of

assemblies located at opposite sides in the anterior-posterior axis display a significant reduction in correlation compared to

neighboring assembly pairs (anterior-anterior and posterior-posterior). (F) Locations of all assemblies from a single larva (see S2

Video for the assembly distributions in 3D). Each assembly is color-coded according to subnetwork memberships shown in C.

https://doi.org/10.1371/journal.pcbi.1007481.g006
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property does not depend on how the raw neuronal activity is binarized. Instead, it is due to

the hierarchical structure of our model.

Next we examined how the assemblies selected according to their features are distributed in

the tectum. We found that over 90% of all detected assemblies were spatially compact within

one of the two tectal hemispheres (Figs 5E and 6 and S7 Fig) and in their 3D distribution (see

S2 Video). In some of the assemblies we observed the presence of a small number of “satellite”

cells which were spatially separate from the assembly core and which were located either in the

ipsilateral or contralateral tectum. Up to 66% of the active neurons were assigned to one of the

selected assembly with 99% of confidence (Fig 5B), showing that neuronal assemblies recruit

over a half of the tectal population over 1 hour of recording (Fig 5D).

The estimated assembly activity over time (Fig 6A) provides a coarse-grained description of

the on-going activity in the optic tectum (see S3 Video). Although we did not assume any cor-

relation among the assemblies, we can use the assembly time sequences inferred from the data

to explore their relationships in the form of network graphs. The (Pearson’s) time correlation

between neuronal populations (Fig 6B, see also Supplementary Information) revealed the

presence of subnetworks of assemblies (Fig 6C). These subnetworks are largely composed of

neighboring ipsilateral assemblies with rarer edges between assemblies in opposite tectal hemi-

spheres. This is shown in Fig 6C by representing the Pearson’s correlation matrix between

assembly time sequences as a graph with nodes corresponding to the neuronal assemblies and

edges representing a positive correlation (with 95% confidence). Shorter edges reflect higher

time correlation. Inspection of these graphs reveals that edges between assemblies located in

anterior and posterior regions of a tectal hemisphere are almost never observed, as shown by

the decrease of time correlation at large spatial separation between ipsilateral pairs of assem-

blies (Fig 6D and 6E). These results suggest functional segregation of anterior and posterior

tectal networks. Moreover, the degree of correlation between assemblies located in opposite

tectal hemispheres (even at a similar topographic location) is generally lower than the correla-

tion between ipsilateral assemblies.

Analysis of functional imaging data from the mouse cortex

To illustrate the general applicability of our method we also carried out analysis of neuronal

assemblies in the mouse cortex (Fig 7A). We analyzed a dataset generated by Stringer et al. [19,

26] where the activity of over 10,000 neurons in the mouse visual cortex were recorded in

head-fixed mice that were free to run on a air-floating ball. As we did for the zebrafish tectal

data, we first applied our HMM technique (see Materials and methods) to extract calcium

transients from the raw fluorescence of each recorded neuron to obtain the binarized neuronal

activity matrix. Then we applied our Bayesian model to detect neuronal assemblies from the

binary activity and infer their properties. Fig 7B displays the assembly activity over time for all

assemblies satisfying the same selection criteria of activity, size, synchrony and asynchrony

used for the zebrafish tectum. The majority of the cortical assemblies are distributed across the

volume imaged (see S4 Video representing assembly 24). Some assemblies however, are orga-

nized into columns spanning through the z-axis (S5 Video, assembly 43) or are limited to ven-

tral or dorsal planes (S6 Video, assembly 23). We analyzed the time correlation between

assembly activities obtained with our method and some of the behavioral features (running

speed and pupil area) which were simultaneously monitored during functional imaging in

Ref. [19]. Several assemblies are characterized by a remarkably positive or negative correlation

with running speed, consistent with the finding in Ref. [19] that the first principal component

of the neuronal activity is highly correlated with arousal. In particular, the activity of the most

populated assembly (assembly 24, Fig 7C) is anti-correlated with running speed, as opposed to
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assembly 15 shown in Fig 7C and 7D which tends to be active during periods of running.

Assemblies can be correlated with running speed at different time points or differ in activity

and synchrony (see S5 Fig for a comparison between assemblies 15 and 32), suggesting that

arousal is associated with the coordinated activation of multiple assemblies. By using the time

Fig 7. Neuronal assemblies from functional imaging of the mouse cortex. (A) 2D spatial distribution of neurons recorded

from the mouse visual cortex from Ref. [19]. The color code represents selected assemblies obtained with our method. (B)

Assembly activity matrix. (C) Correlation between the activity of each assembly and (from left to right) the time course of

running speed, pupil area and the (binarized) pupil contraction. (D) Correlation and anti-correlation of neuronal assemblies

with respect to running speed. (E) Assembly correlated with pupil contraction.

https://doi.org/10.1371/journal.pcbi.1007481.g007
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course of the pupil area we constructed a binary vector indicating the events of pronounced

pupil contraction. One of the detected assemblies (assembly 13, Fig 7C) is highly correlated

with pupil contraction events, as shown in Fig 7E. The striking correlation or anticorrelation

of assembly activation with various behaviors suggest that our method is detecting assemblies

that are behaviorally-relevant.

Identification of assemblies in neuropixels recordings in mouse

Neuropixels electrode arrays permit large-scale electrophysiology by recording from hundreds

of neurons simultaneously. We have analyzed the data from Ref. [27, 28] where a neuropixels

probe was used to record the activity from the visual cortex, hippocampus and parts of the

thalamus in a head-fixed mouse with forepaws resting on a wheel that could move laterally.

The dataset contains 242 isolated neurons for which we analyzed the assembly structure using

our Bayesian method.

In order to carry out the analysis of the assemblies from large-scale electrophysiological

recordings, we need the neuronal activity matrix as input of our inference method. Although it

would be natural to define the state of a neuron according to the presence or absence of a spike

at any given time point, this definition is not suitable in this context because the synchronous

activation of a neuronal population occurs at a much slower time scale than a single spike.

Here we define the state of a neuron based on the firing rate instead of single spikes. Periods of

increased firing rate due to reverberating activity of recurrent networks can indeed last for

tens of seconds, matching the time scale of assembly activity [29].

We extracted the transients of high firing frequency for each neuron by counting the spikes

in bins of 0.6s along the recording and then applying the HMM method to detect exponen-

tially-decaying transients (Fig 8A). By applying our inference method to the binary activity

matrix representing the states of all 242 neurons over time (Fig 8B), we found that 33% of

those neurons can be assigned with 99% confidence to four assemblies satisfying the same con-

straints on activity, synchrony and asynchrony as applied to calcium imaging data. In particu-

lar assemblies 1 and 3 displayed a significantly positive correlation with wheel velocity

(reflecting lateral mouse movement) and assembly 2 was weakly anti-correlated with wheel

velocity (Fig 8E and 8F). The observation of neuronal assemblies either positively or negatively

correlated to the motor output is consistent with the analogous results obtained by analyzing

functional imaging data of the mouse cortex.

Discussion

In this work we introduced a model-based approach to detect neuronal assemblies. Our

method is novel in a number of respects. Firstly, it is specifically designed to analyze neuronal

population activity by directly making use of features that are known to exists in such datasets

(levels of within-assembly synchrony and asynchrony and variation in assembly size and activ-

ity patterns) as criteria for grouping neurons into assemblies. Secondly, assignment of neurons

to assemblies and characterization of assembly features such as activity rate, and the degree of

synchronous and asynchronous firing are estimated simultaneously. Thirdly, because our

method is grounded on statistical inference, the level of uncertainty about each of these esti-

mates is quantified. Fourthly, arbitrary definitions of time frames that characterize synchrony

are not required because our inference method can extend the time window in which an

assembly is active, accounting for sustained periods of activity. This allows us to accommodate

assemblies where synchrony occurs over varying periods of time rather than single time points.

Finally, we show that within the testing datasets used in this work, our method outperforms a
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number of existing techniques over a broad range of sample size, assembly number and assem-

bly features.

Our method defines assemblies of varying size, activity rate and levels of synchronous and

asynchronous activity, enabling users to use these features to select assemblies for further anal-

ysis. For instance, in our analysis of the zebrafish tectum we focused on assemblies with a high

level of synchrony with at least 5 neurons. While there is potential for significant diversity in

the assemblies that meet these criteria we show instead that there is a high level of biological

Fig 8. Assemblies from neuropixels recording of mouse cortex. (A) Identification of exponentially decaying activity transients

from spike counts using bin size of 0.6s. (B) Binary activity matrix obtained by combining transient events from 242 neurons. (C)

Raster plot of the assembly activity. (D) Raster plot of the time correlation matrix between neurons sorted by assembly

membership. (E) Time correlation between each assembly activity and the absolute wheel velocity. Boxplots represent the

distribution of correlation across posterior samples. (F) Comparison between correlated and anti-correlated assemblies with

respect to wheel motion.

https://doi.org/10.1371/journal.pcbi.1007481.g008
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reproducibility when comparing assembly features across fish. An additional finding is that

the majority of the assemblies are spatially compact and can be grouped into segregated sub-

networks restricted to either the anterior or posterior half of a tectal hemisphere. These find-

ings are consistent with data showing that stimulation of anterior or posterior tectum drives

different (approach- and avoidance-like) behaviors. Therefore, the functional segregation of

subnetworks of assemblies may be relevant for understanding how activation of different tectal

locations leads to mutually exclusive behaviors [30–32]. The assembly activity matrix, obtained

from our method, can also be used to identify temporal patterns of assembly activation

sequences [33] that might be more relevant than single assembly firing events for understand-

ing tectally-mediated behavior.

Our analysis also reveals that a large fraction of the tectal neurons could not be assigned

into a specific neuronal assembly. These neurons may be part of assemblies which were inac-

tive during our recording period. This may be due to chance or there may be some tectal

assemblies which are only recruited during sensory stimulation and/or behavior. Alternatively,

some of these neurons might not belong exclusively to one assembly. Although our generative

model assumes that each neuron belongs exclusively to one assembly, the multimodality in the

posterior membership distributions may reflect the presence of such “promiscuous” neurons.

A final interpretation is that these neurons are only weakly coupled to population firing. Such

neurons have been identified in the mouse and macaque visual cortex where they contrast

with neurons whose firing is strongly coupled to the overall firing of the population [34].

We illustrated the general applicability of our inference method by analyzing neuronal

assemblies present in functional imaging data and neuropixels recordings from mouse. By

exploiting the behavioral information recorded alongside neuronal activity, we have found

that some of the assemblies detected with our method were correlated or anti-correlated with

specific motor outputs such as running or pupil contraction. These findings agree well with

those of the Stringer et al [19, 26], who show using principal component analysis that the first

principal component correlates with arousal (as indicated by running speed). Our method

builds on these findings by revealing the specific neural assemblies that deferentially correlate

with arousal at different time points.

Our method takes binarized neuronal activity as input to estimate the underlying assembly

structure. To analyze calcium imaging data and neuropixels recordings we employed a hidden

Markov model to extract the onset of activity transients, however the application of our

method for detecting assemblies is independent of the binarization step. Users can use differ-

ent techniques to detect events of increased neuronal activity which depends on the biophysics

of the probe or the experimental settings used, and then apply our method to detect assembly

structure in the data.

In general, all clustering techniques make specific assumptions on the data features which

define classes. Our approach is based on defining those features specifically for neuronal data

within a generative model that accommodates minimal hypotheses on the structure of neuro-

nal activity. We believe that any clustering analysis should be grounded on prior hypotheses.

The conceptual workflow used in this work involves (1) the development of a generative

model where all data assumptions are explicit, (2) the use of a non-parametric method to

accommodate variable number of groups and (3) the application of MCMC sampling method

to estimate model variables from the posterior distribution. This workflow will likely serve as a

model for future generalizations of our technique.

We have shown that our technique can be used as a general tool to study neuronal popula-

tion data from various species acquired using various methods but we identify some key

areas where the method may be particularly valuable. Firstly, because our method accurately

assigns neurons to an assembly with statistical confidence it will be particularly useful for
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understanding how identified neurons or neuronal types participate in, and contribute to pop-

ulation activity. Furthermore, our method simultaneously quantifies key features of assembly

dynamics such as assembly on- and off states, and levels of synchronous and asynchrounous

firing, which together reflect the degree of functional coupling between an assembly and its

constituent neurons. We anticipate that these measures may be used to quantify how within-

and between-assembly interactions are remodeled as a function of development, experience,

internal states, and neurological disorder.

Materials and methods

Ethics statement

This work was approved by the local Animal Care and Use Committee (King’s College Lon-

don) and was performed in accordance with the Animals (Scientific Procedures) Act, 1986,

under license from the United Kingdom Home Office Licence number P9090AEFD. All pri-

mary data included in the manuscript came from the use of zebrafish larvae. All procedures

were non invasive and classified as mild according to the Animals Act 1986 and as defined

by the United Kingdom Home Office, in order to minimize animal suffering. At the end of

regulated procedures animals were culled using a schedule 1 method (terminal dose of

MS222).

Zebrafish larvae

For functional imaging experiments we used transgenic zebrafish, Tg(elavl3:H2B-GCaMP6s),
expressing the nucleus-targeted calcium indicator GCaMP6 under the elavl3 promoter, which

provides near-panneuronal expression [23] (gift from Misha Ahrens, Janelia Research Cam-

pus). Larvae were raised at 28.5˚C in Danieau solution and were exposed to a 14 hour ON/10

hour OFF light/dark cycle. Larvae were fed daily from 5 dpf using live rotifiers. To maximize

optical clarity for imaging Tg(elavl3:H2B-GCaMP6s) larvae were crossed with compound roy;
nacre double homozygous mutants (casper) larvae which lack melanocyte and iridophore pig-

mentation. This work was approved by the local Animal Care and Use Committee (King’s Col-

lege London), and was carried out in accordance with the Animals (Experimental Procedures)

Act, 1986, under license from the United Kingdom Home Office.

Volumetric calcium imaging

At 7 days post fertilization (dpf) zebrafish were mounted in 2% low melting point agarose in

Danieau water with their dorsal side facing up on a custom built imaging slide and were sub-

merged in Danieau water. These fish were left for 1 hour in the light so that the fish could set-

tle, reducing drift while imaging. Prior to imaging the fish were placed under the microscope

objective in total darkness for 30 minutes to allow the fish to adjust to the imaging conditions.

On-going activity was monitored by imaging the calcium dynamics of thousands of neurons

in both tectal hemispheres for 1 hour with a custom built 2-photon microscope (Independent

NeuroScience Services, INSS). Excitation was provided by a Mai Tai HP ultrafast Ti:Sapphire

laser (Spectraphysics) tuned to 940nm. Laser power at the objective was kept below 15 mW for

all fish. Emitted light was collected by a 16x, 1 NA water immersion objective (Nikon) and

detected using a gallium arsenide phosphide (GaAsP) detector (ThorLabs). Images (256 x 256

pixels) were acquired at a frame rate of 60Hz by scanning the laser in the x-axis with a resonant

scanner and in the y-axis by a galvo-mirror. To enhance signal-to-noise every 2 frames for

each focal plane were averaged. The focal plane was adjusted in 15μm steps using a piezo lens
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holder (Physik Instrumente). This allowed for volumetric data consisting of 5 focal planes to

be collected at a volume rate of 4.8Hz. Scanning and image acquisition were controlled by

Scanimage Software (Vidrio Technologies).

Image registration

Any volumetric stacks where large numbers of neurons in the imaging plane drifted out of

view were discarded. All other stacks were corrected for x-y drift by aligning each every frame

in each slice in the stack independently. First every frame for each slice was aligned to its first

frame, then they were aligned again to the mean of these images. This registration was per-

formed using a non-rigid body alignment algorithm contained within the SPM8 package for

MATLAB (http://www.fil.ion.ucl.ac.uk/spm/software/spm8).

Segmentation of tectal cells

After image registration, images were processed using custom-made C++ software of cell

segmentation based on a flooding algorithm. For each plane in the volume, we generate the

time average of the image and apply a Gaussian filter to smooth the spatial details below the

size of a cell. Next, we applied the following segmentation algorithm to extract single cell time

sequences. Starting from the top fluorescence f (max) we sequentially label voxels according to

the nearest segmented cell within a radius compatible with the size of a cell. To take time corre-

lations into account we introduced a distance between voxels h(V, V0) which combines physi-

cal separation and time correlation as

hðV;V 0Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðVx � V 0xÞ
2
þ ðVy � V 0yÞ

2
þ ZCVV0

q

ð28Þ

where the parameter η introduce some flexibility in the importance of the Pearson’s time cor-

relation CVV0 between the time sequences of V and V0. Whenever a new label is assigned, the

corresponding voxel becomes the representative of the new cell and the distance between a

voxel V and a cell is obtained by Eq (28) by replacing V0 with the voxel which representing the

cell.

Algorithm 3 Segmentation algorithm
1: Set f = f(max)

2: while f � f(min) do
3: for each voxel V with fluorescence � f do
4: Calculate the distance h between V and its nearest cell accord-
ing to Eq (28)
5: if h < h(max) then
6: Assign V to the nearest cell
7: else
8: Assign V to a new label
9: f = f − Δf

Detection of calcium transients

Let us consider the fluorescence trace fXkg
M
k¼0

where k denotes the time index running from 0

to M. As discussed in the main text, we decompose fluorescence traces into the sum of calcium

transient ck, baseline activity bk and a source of Gaussian noise. The hidden Markov model is
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summarized by the set of equations

sk � BernoulliðqdtÞ ð29Þ

bkjbk� 1 � N ðbk� 1; sB

ffiffiffiffiffi
dt
p
Þ ð30Þ

ckjck� 1; sk �

(
N ðck� 1e� ldt; sCÞ sk ¼ 1

dðc � ck� 1e� ldtÞ sk ¼ 0
ð31Þ

xk � N ðbk þ ck; sxÞ ð32Þ

where calcium transients decay exponentially with decay constant λ while their onset is speci-

fied by the latent variable sk representing the hidden on/off state of a neuron, modeled as a Ber-

noulli process with rate q. δt is the time interval between samples. To obtain an estimate of the

hidden variables at all times we maximize iteratively the probability of the latent state at time k,

given the state at k − 1 and the observed value xk

fŝk; ĉk; b̂kg ¼ argmax
fsk;ck;bkg

Pðsk; ck; bk ĵsk� 1; ĉk� 1; b̂k� 1; xkÞ ¼

¼ argmax
fsk;ck;bkg

Pðsk; ck; bk ĵsk� 1; ĉk� 1; b̂k� 1Þ � Pðxkjck; bkÞ

¼ argmax
fsk;ck;bkg

PðskÞPðckjsk; ĉk� 1ÞPðbkjb̂k� 1Þ � Pðxkjck; bkÞ:

ð33Þ

where all the probabilities can be obtained from the definition of the model

Pðxkjck; bkÞ ¼
1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ps2

xdt
p exp �

ðxk � ck � bkÞ
2

2s2
x

� �

ð34Þ

Pðbkjbk� 1Þ ¼
1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ps2

Bdt
p exp �

ðbk � bk� 1Þ
2

2s2
Bdt

� �

ð35Þ

Pðckjsk; ck� 1Þ ¼

1ffiffiffiffiffiffiffiffiffi
2ps2

Cdt
p exp � ðck � ck� 1e� ldtÞ2

2s2
Cdt

n o
if sk ¼ 1

dðck � ck� 1e� ldtÞ if sk ¼ 0

8
><

>:
ð36Þ

Pðsk ¼ 1Þ ¼ qdt ð37Þ

We can obtain analytical expression for the estimated calcium and baseline at each time by

considering separately the two cases sk = 0 or sk = 1.

• case sk = 0. To maximize the probability we need to maximize the function

g0ðbkÞ ¼
1
ffiffiffiffiffiffiffiffiffiffi
2ps2

x

p
1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ps2

Bdt
p exp �

ðxk � c�k � bkÞ
2

2s2
x

�
ðbk � bk� 1Þ

2

2s2
Bdt

� �

ð38Þ

where we defined c�k ¼ ck� 1e� ldt . By setting
d log g0

dbk
¼ 0 we get

1

s2
x

ðxk � c�k � bkÞ �
1

s2
Bdt
ðbk � bk� 1Þ ¼ 0 ð39Þ
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therefore the values of ck and bk which maximize the log-likelihood when sk = 0 are

ĉð0Þk ¼ c�k ð40Þ

b̂ð0Þk ¼

1

s2
x
ðxk � c�kÞ þ

bk� 1

s2
Bdt

1

s2
x
þ 1

s2
Bdt

ð41Þ

• case sk = 1. In the case of a calcium transient we need to maximize the function

g1ðck; bkÞ ¼
1
ffiffiffiffiffiffiffiffiffiffi
2ps2

x

p
1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ps2

Bdt
p

1
ffiffiffiffiffiffiffiffiffiffi
2ps2

C

p e
�
ðxk � ck � bkÞ

2

2s2
x

�
ðbk � bk� 1Þ

2

2s2
Bdt

�
ðck � c�

k
Þ2

2s2
C ð42Þ

analogously to the case sk = 0, by maximizing log g1 with respect to both ck and bk to zero we

get

ĉð1Þk ¼ c�k þ
xk � c�k � bk� 1

1þ
s2

Bdt
s2

C
þ

s2
x
s2

C

ð43Þ

b̂ð1Þk ¼ bk� 1 þ
s2

Bdt
s2

C

ðĉð1Þk � c�kÞ ð44Þ

By combining the two conditions we have

fŝk; ĉk; b̂kg ¼

(
f0; ĉð0Þk ; b̂

ð0Þ

k g if ð1 � qdtÞ � g0ðb̂
ð0Þ

k Þ > qdt � g1ðĉ
ð1Þ

k ; b̂
ð1Þ

k Þ

f1; ĉð1Þk ; b̂
ð1Þ

k g if ð1 � qdtÞ � g0ðb̂
ð0Þ

k Þ < qdt � g1ðĉ
ð1Þ

k ; b̂
ð1Þ

k Þ

ð45Þ

To complete the iterative algorithm we have to assign values to the initial calcium and base-

line level. A simple choice for the initial state is b0 = x0 and c0, s0 = 0 however other criteria

may be more effective if transients are expected to occur at the beginning of the recording.

This procedure can be applied to any time sequence to estimate the onset of exponentially

decaying transient, however it requires the variance parameters σx, σB and σC as well as the

decay constant λ and the Bernoulli rate q. Furthermore, using the same set of parameters for

all traces might lead to estimation biases. To account for parameter variation across cells we

employed a “plug-in” refinement method similar to the k-means algorithm. Starting from an

initial guess of the parameters we apply the two steps

1. uenerate estimates of {sk, ck, bk} using Eq (45)

2. Use {sk, ck, bk} to obtain new parameters according to

s2

B ¼
1

M

XM

k¼1

ðbk � bk� 1Þ
2

dt
ð46Þ

s2

C ¼
1

M1

X

k:sk¼1

ðck � c�kÞ
2
; M1 ¼

X

k

sk ð47Þ
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s2

x ¼
1

M

X

k

ðxk � ck � bkÞ
2

ð48Þ

q ¼
M1

Mdt
ð49Þ

Because calcium and baseline estimated according to Eq (45) are an approximation of the true

maximum-likelihood trajectory, repeating these two steps might lead to singular values of the

parameters. The first iterations of this plug-in method however provide a better decomposition

than using fixed parameters. The binary activity matrices used as input for our inference

method were generated by iterating twice the steps 1 and 2.

Conjugate beta priors

To calculate the marginal likelihood in Eq (14) we exploit the conjugate character of the beta

priors on the continuous parameters with respect to the model likelihood. This feature allows

us to easily solve integrals of the form

Z 1

0

pN1ð1 � pÞN2Betaðp; a; bÞ ¼

Z 1

0

1

Bða; bÞ
pN1þa� 1ð1 � pÞN2þb� 1

¼

¼
BðN1 þ a;N2 þ bÞ

Bða;bÞ

ð50Þ

where B(�, �) is the Euler beta function.

Dirichlet process through Metropolis-Hastings rule

In the main text we employed the Metropolis-Hastings rule introduced by Neal in Ref. [21] to

introduce the Dirichlet process prior as part of a Monte Carlo sampler. The general model dis-

cussed by Neal is

yijyi � Fyi
ð51Þ

yijG � G ð52Þ

G � DPðG0; aÞ ð53Þ

where θ1, � � �, θn are the parameters specifying the conditional distribution F of each data point

y1, � � �, yn. G is a measure drawn from the Dirichlet process (DP) with base measure G0 and

concentration α. With this setting, when reassigning the value yi from the old cluster μ0 to the

proposed cluster μ�, the Metropolis-Hastings rule reads

aðm�; m0Þ ¼ min 1;
Fm� ðyiÞ

Fm0
ðyiÞ

 !

: ð54Þ

For our model of neuronal assemblies, each data point yi corresponds to the entire time

sequence of neuron i, si1, � � �, siM while the parameters correspond to the time sequences of the

corresponding assembly ωti1, � � �, ωti M. The ratio in Eq (54) corresponds to the likelihood

ratio between assigning the data point yi to the new group or the old one. In the collapsed ver-

sion of our model, i.e. after integrating out the continuous parameters, the data (neuronal

states si over time) are no longer conditionally independent given their cluster parameters
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(assembly states ω) as they are in Eq (51). However, we can still calculate the analog of the like-

lihood ratio of Eq (54) by considering the second factor in Eq (16) (excluding the multinomial

component which is replaced by the Dirichlet process prior)

Pðsjt;oÞ ¼
YA

m¼1

Y

z2f0;1g

BðTz1
m
;Tz0

m
Þ

BðaðlÞz ; b
ðlÞ

z Þ
; ð55Þ

from which we can obtain the ratio in Eq (26).

Generalization of pairwise assignment matrices to multiple membership

The pairwise assignment matrices I used to quantify the performance of different methods are

defined as

IðtÞij ¼
1 if tðiÞ ¼ tðjÞ

� 1 if tðiÞ 6¼ tðjÞ
:

(

ð56Þ

For neurons with multiple memberships the assignments τ(i) are sets of assemblies. We gener-

alized the pairwise assignment matrices in Eq (56) by setting to 1 elements corresponding to

pair of neurons sharing at least one assembly membership, and -1 otherwise, namely

IðtÞij ¼
1 if tðiÞ \ tðjÞ 6¼ ;

� 1 if tðiÞ \ tðjÞ ¼ ;
:

(

ð57Þ

Standard clustering algorithms

In the main text we discuss the comparison between our Bayesian inference method and three

clustering algorithms based on commonly used techniques such as: k-means, PCA and spectral

clustering. We have used the k-means clustering algorithm implemented in R. For each condi-

tion of asynchrony, number of cells and assemblies we used 20 different initializations of k-

means to avoid local maxima and kept the classification that maximized the between cluster

variance. To estimate the number of clusters we used the commonly used silhouette method.

For the PCA-based clustering method we first obtained a “shuffled model” of the data by

applying a random time shift to each neuron (circular shuffling) drawn from a uniform

distribution between 0 and 200 and then extracting the eigenvalues of the covariance matrix

across shuffled neurons. By repeating this procedure 200 times we compared the eigenvalues

obtained from PCA analysis of the original neuronal activity matrix with the average eigenval-

ues of shuffled data. We consider principal components significant when the corresponding

eigenvalue was 2 standard deviation above the shuffled model. The number of significant com-

ponents is used as an estimate of the number of neuronal assemblies. We then applied the vari-

max rotation on these significant principal components and assigned neuronal memberships

by labeling each neuron with the index of maximum absolute loading in the varimax-rotated

components. Only neurons with maximum loading one standard deviation above the mean

loading were assigned to an assembly, while the remaining were considered as independent

(free neurons).

We adapted the pipeline introduced in Ref. [5] to our testing datasets. This pipeline

employs spectral clustering with graph-theoretic estimation of the number of assemblies. In

the main text we refer to this method as spectral clustering but the analysis involves several

steps. (1) Select synchronous activity frames by requiring the overall activity to be 2 standard
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deviation above a shuffled model obtained by permuting over time each neuronal activity;

(2) build a k nearest neighbor graph of synchronous frames from their cosine similarity;

(3) use the Newman-Reinart method to estimate the number of communities K in the graph

based on the degree-corrected stochastic block model [22]; (4) perform spectral clustering

with K clusters; (5) count the times at which each neuron participates to any of the synchro-

nous frames in each cluster and extract neuronal identities as the cluster index with larger

counts. Neurons with affinity lower than 20% were considered as not belonging to an assembly

(free neurons).

Graph theoretic analysis of Pearson’s correlations

To carry out the time correlation analysis between assemblies in the fish tectum, for each pos-

terior sample of the matrix ω representing the activity of each assembly by row, we calculated

the Pearson’s correlation between all rows. The graph describing the assembly interaction was

constructed by adding an edge between all pair of assemblies which had a positive correlation

in over 95% of the posterior samples. The Girvan-Newman algorithm [35] implemented in the

igraph [36] R package (edge.betweenness.community function) was used to identify

the components of the correlation graph.

Runtime of the Gibbs sampler

The CPU time required to analyze a data set of approximately 1000 neurons for 1000 time

frames is 2-3 hours on a regular desktop machine. All our analyses were done using an iMac

with CPU intel(R) core(TM) i7-3770 3.40GHz. Larger data sets with twice as many neurons

and time frames can take up to 12h.

Supporting information

S1 Fig. Graphical representation of the generative model. (A) Full model. Nodes in the net-

work represent model variables, and edges denote statistical dependency, (B) collapsed model

where assembly activation probability (p) and conditional probability of neuronal activation

(λ) are integrated out, (C) collapsed model with Dirichlet process prior on the number of

assemblies.

(TIFF)

S2 Fig. Increasing assembly activity reduces the volume of the non-detectable phase. We

repeated the analysis represented in Fig 2 to determine the effect of assembly activity on the

phase diagram of assembly detectability. When assembly activity increases, the non-detectable

regime shrinks towards the line λ(0) = λ(1), corresponding to the limit where the data are non

longer informative about neuronal identity.

(TIFF)

S3 Fig. Distribution of activity, synchrony and asynchrony levels. (A) Scatter plot represent-

ing the distribution of synchrony and asynchrony levels within one fish. Green (dashed) lines

display the thresholds applied to activity (0.005, corresponding to�1 event per minute) and

coherence (0.05). (B, C) Distribution of synchrony and asynchrony levels versus activity for all

assemblies from all fish.

(TIFF)

S4 Fig. Assembly vs cell activity. Comparison between the binary activity of all tectal neurons

belonging to assembly 48 in Fig 6 (top), the activity of the assembly (middle) and the fraction
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of active cells within the specific assembly over time (bottom).

(TIFF)

S5 Fig. Differences between highly correlated assemblies. Comparison between assemblies

of cortical neurons 15 and 32 from Fig 7. Although both assemblies correlate with running

speed, member neurons are separated in two groups due to their different levels of activity,

synchrony and asynchrony.

(TIFF)

S6 Fig. Correlation analysis of assembly and free neurons. Comparison between the statis-

tics of the time correlation between each assembly neuron and the assembly it belong to

(orange), and the maximal correlation between free neurons and the assemblies determined

with our method (blue). The correlations of assembly neurons is significantly shifted to higher

values with respect to free neuron maximal correlations.

(TIFF)

S7 Fig. Assembly compactness. Comparison between the distribution of assembly spatial

extension across each fish data (orange) against a null distribution obtained from random

groups of neurons of equal size (green). This analysis confirms that tectal assemblies are signif-

icantly more compact (reduced extension) than random groups of neurons. The assembly spa-

tial extension was calculated as the area E of the ellipse fitting the assembly 2D distribution,

E ¼ p
ffiffiffiffiffiffiffiffiffi
x1x2

p
, where ξ1 and ξ2 are the two eigenvalues of the covariance matrix of the XY neu-

ronal coordinates within the assembly.

(TIFF)

S8 Fig. Comparison of Bayesian inference performance to k-means, PCA and spectral clus-

tering using testing datasets with single membership neurons. (A) Performance comparison

across levels of asynchrony. Dots correspond to independently generated data sets while solid

lines show the average performance for each method over all simulated data. (B) Comparison

across number of assemblies. (C) Comparison across number of neurons. (D-F) Standard

deviation of the performance across simulated data per parametric condition. Unless specified

otherwise, surrogate datasets were generated using 400 neurons and 1000 time frames distrib-

uted over 5 assemblies with assembly activity of 5%, synchrony 50% and asynchrony 10%. For

k-means we used a number of clusters estimated according to the silhouette method. The

number of significant principal components in PCA clustering was obtained by the circular

shuffling method whereas for the spectral clustering we used the Newman-Reinart graph-theo-

retic community detection method [22] (see Materials and methods). The performance was

measured according to Eq (27) by comparing each set of assignments with ground truth

assignments.

(TIFF)

S1 Video. Zebrafish tectum. Recording of calcium activity from the zebrafish tectum through-

out 5 planes at 15μm apart with an acquisition frequency of 4.8Hz per volume.

(AVI)

S2 Video. Assembly distributions. Visualization of 3D distributions of tectal assemblies

obtained from one fish.

(AVI)

S3 Video. Assembly dynamics. Assembly dynamics within a single plane with color coded

neurons according to assembly membership.

(AVI)
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S4 Video. 3D distributions of cortical assemblies. Most common 3D distribution distributed

across the cortical volume.

(AVI)

S5 Video. Column distributions of cortical assemblies. Representative cortical assembly

spanning through the z-axis.

(AVI)

S6 Video. Ventral assemblies in the cortex. Representative cortical assembly limited to ven-

tral planes.

(AVI)
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