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Abstract

RNA editing critically regulates neurodevelopment and normal neuronal function. We surveyed 

RNA editing across 364 schizophrenia cases and 383 control postmortem brain samples from the 

CommonMind Consortium, comprising two regions: dorsolateral prefrontal cortex (DLPFC) and 

anterior cingulate cortex. In schizophrenia, RNA editing sites in genes encoding AMPA-type 

glutamate receptors and post-synaptic density proteins were less edited, while those encoding 

translation initiation machinery were more edited. These sites replicate between brain regions, 

map to 3’UTR and intronic regions, share common sequence motifs, and map to binding sites for 

RNA binding proteins crucial for neurodevelopment. These findings cross-validate in hundreds of 

non-overlapping DLPFC samples. Furthermore, ~30% of RNA editing sites associate with cis-

regulatory variants (edQTLs). Fine-mapping edQTLs with schizophrenia GWAS loci revealed co-

localization of 11 edQTLs with 6 GWAS loci. Our findings demonstrate widespread altered RNA 

editing in schizophrenia and its genetic regulation, and suggest RNA editing mechanisms of 

schizophrenia neuropathology.
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INTRODUCTION

Schizophrenia (SCZ) is a severe psychiatric disorder affecting ~0.7% of adults and is 

characterized by abnormalities in thought and cognition1. While the onset of SCZ typically 

does not occur until late adolescence or early adulthood, strong support from clinical and 

epidemiological studies suggests that SCZ reflects a disturbance of neurodevelopment2. 

There is clear and consistent evidence that SCZ is largely a genetic disorder. Large-scale 

mapping of genetic risk variants has identified multiple rare copy number variants3, several 

rare single nucleotide variants4,5, and >100 common genetic loci6, the latter exerting small 

polygenetic effects on disease risk. This observation of a highly polygenic architecture has 

been widely replicated7,8. However, the role of sequence variation arising as a result of post-

transcriptional events, such as RNA editing, remains largely unexplored.

RNA editing is a modification of double-stranded pre-mRNA that introduces codon changes 

in mRNA through insertions, deletions or substitutions of nucleotides and hence can lead to 

alterations in protein function. Adenosine to inosine (A-to-I) editing is the most common 

form of RNA editing, affecting the majority of human genes and is highly prevalent in the 

brain9,10. These base-specific changes to RNA result from site-specific deamination of 

nucleotides catalyzed by adenosine deaminases acting on RNA (ADAR) enzymes, whereby 

a genetically encoded adenosine is edited into an inosine, which is read by the cellular 

machinery as a guanosine. Editing sites in coding regions can be conserved across species 

and are commonly located in genes involved in neuronal function11,12. RNA editing has 

been reported to modulate excitatory responses, permeability of ion channels and other 

neuronal signaling functions13,14. These sites have been shown to be tightly and dynamically 

regulated throughout pre- and post-natal human cortical development15. Aberrant RNA 

editing has also been reported in several neurological disorders, including major 

depression16, Alzheimer’s disease17, and amyotrophic lateral sclerosis18.

In SCZ, the role of RNA editing in serotonin and glutamate receptors has drawn significant 

attention largely due to the serotonergic and glutamatergic hypotheses of mood disorders. To 

this end, RNA editing research in SCZ has focused on targeted approaches of serotonin 2C 

receptor (5-HT2CR)19–22 and two classes of ionotropic glutamate receptors, 2-amino-3-(3-

hydroxy-5-methyl-isoxazol-4-yl)-propanoic acid (AMPA) and kainate receptors23–25. 

Consequently, there is no consensus on the type of editing nor how pervasive altered RNA 

editing is in the brain of SCZ patients. Moreover, the underlying cis-acting genetic variants, 

which are associated with RNA editing levels (edQTLs) in the brain and whether these 

variants are also implicated in disease risk also remain poorly understood.

The primary goal of the current investigation was to clarify the relevance of RNA editing in 

SCZ pathophysiology using an unbiased, genome-wide approach applied to a large cohort of 

SCZ cases and control samples generated from the CommonMind Consortium (CMC), 

which is orders of magnitude larger than prior RNA editing studies. Two brain regions 

implicated in neurodevelopment and SCZ neuropathology were examined, including the 

dorsolateral prefrontal cortex (DLPFC; Brodmann areas 9 and 46) and anterior cingulate 

cortex (ACC). Results from this cohort were then reproduced in a separate, non-overlapping 

DLPFC cohort generated through the National Institute of Mental Health (NIMH) Human 
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Brain Collection Core (HBCC). By applying a multi-step analytic framework and including 

genome-wide characterization of common genetic variation (Figure 1), we generated a 

resource of the genetics of RNA editing in the brain. We use this resource to identify: (1) 

genes and RNA editing sites with significant differences in RNA editing levels between 

subjects with SCZ and control subjects; (2) coordinated editing (co-editing) of RNA editing 

sites implicated in SCZ; and (3) specific effects on RNA editing of genetic variants 

previously implicated in disease risk. In doing so, these findings substantially refine our 

understanding of the RNA editing mediated mechanism involved in the neurobiology of 

SCZ.

RESULTS

Discovery and validation samples

In order to quantify RNA editing events, we leveraged RNA-sequencing data from post-

mortem brain tissue collected and generated on behalf of the CMC. Two brain regions, 

including the ACC (SCZ=225, Controls=245) and the DLPFC (SCZ=254, Controls=286) 

were investigated, and together these samples served as the discovery cohort (Figure S1). 

These samples were also genotyped on the Illumina Infinium HumanOmniExpressExome 

array. In parallel, we also leveraged a completely separate, non-overlapping cohort 

consisting of post-mortem DLPFC tissue (SCZ=100, Controls=217) collected and generated 

on behalf of NIMH HBCC. This second resource served as a validation cohort so as to 

cross-validate the discovery of SCZ-related editing events.

Overall RNA editing levels in SCZ

Overall RNA editing levels were computed for each sample and was defined as the 

percentage of edited nucleotides at all known editing sites (Materials and Methods). Higher 

levels of overall RNA editing in SCZ cases were observed compared to controls in the ACC 

and DLFPC (p=0.0001, p=7.2×10−6, respectively) (Figure 2A). Approximately 10% of the 

variation in overall RNA editing levels was explained by ADAR1 (p=<2.2×10−16) and 

ADAR2 expression explained ~3% of variation in overall RNA editing (p=1.2×10−08) 

(Figure 2B,C). ADAR3 expression had no significant effect on overall editing levels 

(p=0.10) (Figure 2D), although recently demonstrated a negative association with overall 

editing when measured across several brain regions10. Marked increases in overall editing 

levels were observed within definite genic regions, specifically 3’UTR and intergenic 

regions in SCZ, which replicated across the ACC and DLPFC (Figure S2A). Moreover, as 

previous research has quantified RNA editing levels explicitly in serotonergic and 

glutmatergic receptors, we computed overall editing levels in serotonergic and glutmatergic 

receptor activity genes using a priori defined gene-sets (GO:009589 and GO:0008066, 

respectively). Higher levels of overall editing were found in glutamatergic receptors in SCZ 

cases relative to controls in the ACC (p=0.001) and DLPFC (p=2.2×10−5), while no 

significant differences were found in the levels of overall editing in serotonergic receptors 

(Figure S2B). Expression of ADAR1 and ADAR2 were also significantly higher in SCZ 

compared to control samples (Figure S2C–E). Collectively, these observations, apart from 

the expression of ADAR2, were reproduced in our independent DLPFC validation cohort, 
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and collectively highlight higher overall RNA editing levels in SCZ, primarily within 3’UTR 

and intergenic regions, as well as within genes encoding glutamatergic receptors.

To rule out the possibility that these reproducible differences in overall RNA editing levels 

may be driven by medication effects, we examined overall editing levels in postmortem 

DLPFC tissue derived from an RNA-sequencing study of 34 Rhesus macaque monkeys 

treated with high doses of haloperidol (10 mg/kg/d), low doses of haloperidol (4mg/kg/d), 

clozapine (5.2 mg/kg/d), and vehicle. We found no associations between overall RNA 

editing levels with medication or dosage (Figure S3), indicating that antipsychotic 

treatments likely do not have a strong effect on the amount of overall RNA editing observed 

in SCZ cases.

Discovery of altered RNA editing sites in SCZ

To identify RNA editing sites associated with SCZ, a compendium of high quality and high 

confident RNA editing sites was assembled by imposing a series of detection-based 

thresholds (see Materials and Methods). After thorough quality control, we identified a high 

confidence set of 11,242 RNA editing sites in the ACC and 7,594 sites in the DLPFC with 

no systematic differences in the mapping, base quality, and read coverage between SCZ and 

control samples. A significant fraction of these RNA editing events replicated across brain 

regions (∩sites=6,999, OR=21.05, p=<2.0×10−50). A large fraction of the sites were located 

in Alu repeat elements, mapped to 3’UTR regions and were enriched for A-to-I conversions 

(Figure S4).

Following this curation of editing events, differential RNA editing analysis was carried out. 

It is likely that genome-wide RNA editing events, similar to gene expression, may be 

influenced by differences in biological and technical factors. To this end, a linear mixed 

effect model was applied to quantify the total amount of RNA editing variance explained by 

various biological and technical factors, which collectively displayed little influence on 

RNA editing profiles, with individual age having the largest genome-wide effect and 

explained a median 0.79% of the observed variability (Figure S5A). These factors, however, 

explained a much higher amount of median variability in matching gene expression profiles 

than observed RNA editing profiles (Figure S5B). Subsequently, differential editing analysis 

covarying for individual age, RIN, PMI, sample site and sex identified 182 sites in the ACC 

and 194 sites in the DLPFC significantly associated with SCZ (Adj. P < 0.05) (Figure 3A; 

Table S1A–C). Among the top-ranked sites, were those encoding for genes ATRLN1, 

AKAP5 and RPS20 in the ACC and KCNIP4, VPS41 and ZNF140 in the DLPFC. A high 

degree of concordance was observed between the altered RNA editing sites in the ACC and 

DLPFC (R2=0.59) and a significant overlap of differentially edited sites replicated between 

brain regions (∩sites=29, OR=12.6 p=9.6×10−20) (Figure 3B). Differentially edited sites were 

also enriched in genes found to be highly expressed in the ACC (∩sites=42, OR=5.4 

p=2.0×10−13) and DLPFC (∩sites=54, OR=8.6 p=2.7×10−22) and that the majority of genes 

with differential RNA editing sites did not display differential gene expression (Figure S6A–

F). Moderate, yet significant, correlations were also observed between RNA editing levels 

and gene expression, implying RNA editing as a possible posttranscriptional mechanism for 

the regulation of gene expression (Figure S6G–I).
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Validation of altered RNA editing sites in SCZ

Next, we asked whether these differential editing patterns in SCZ replicate within our 

independent DLPFC validation cohort. These samples underwent matching quality-control 

metrics to identify a collection of high confidence RNA editing events, as noted above. A 

total of 15,000 RNA editing events were detected across these validation samples and a 

significant fraction of sites were also detected in the ACC (74%, ∩sites=8354, OR=4.01 

p=5.6×10−251) and DLPFC (87%, ∩sites=6659, OR=7.73 p=4.67×10−248) discovery samples 

(Table S2). Differential RNA editing analysis was carried out on these independent samples 

as previously described and 137 sites (75%) were detected in the ACC and 165 sites (85%) 

in the DLPFC. In order to assess replication, we first measured the concordance between 

directionality of change in editing rates for all RNA editing sites identified in the ACC and 

the DLPFC discovery samples relative to these independent DLPFC validation samples. 

High levels of concordance were observed across all RNA editing sites in both the ACC and 

DLPFC (R2=0.12, R2=0.13, respectively) (Figure 3C–D). Subsequently, two prediction 

models were built based on differentially edited sites from the (1) DLPFC and (2) ACC 

discovery samples using regularized regression models and evaluated their performance to 

predict class labels (i.e. distinguish between SCZ and control samples) on withheld DLPFC 

validation samples. Classification accuracies were reported as area under the receiver 

operative curve on withheld DLPFC samples. When distinguishing between SCZ and 

control samples, classification accuracies reach 78% and 72% on withheld, independent 

DLPFC samples when using differentially edited sites derived from DLPFC and ACC 

discovery samples, respectively (ridge regression outperformed other methods: Figure S7). 

Overall, these results suggest a moderate level of cross-validation of SCZ-related editing 

events across brain regions and independent cohorts.

Characterization of differentially edited sites

Differentially edited sites derived from discovery and validation samples were 

comprehensively annotated. While the majority of differentially edited sites map to 3’UTR 

regions across brain regions and cohorts, a moderate depletion was observed when adjusting 

for the total number of non-differentially edited sites in 3UTRs for each brain region and 

cohort (Figure 3E). Functional enrichment analysis revealed that under-edited sites 

consistently mapped to postsynaptic density genes as well as genes encoding kainate and 

glutamate receptor activity and over-edited sites mapped to genes implicated in protein 

translation and mitochondrial-related terms (Figure 3F–G). We also examined whether these 

differentially edited sites map to genes with specific developmental expression profiles using 

gene expression data from the BrainSpan Project and found that differentially edited sites in 

SCZ consistently mapped to genes that are predominately postnatally biased in expression 

(Figure S8). These genes were found to peak in brain expression during young and middle 

adulthood, developmental windows when SCZ often becomes clinically recognizable. 

Moreover, a substantial fraction of our editing sites (n=612) were also previously found to 

have increasing rates of editing throughout brain development, 11 of which are significantly 

over-edited and 3 significantly under-edited in SCZ (Table S1D).

As these sites share several sequence and functional features, we explored whether 

differential editing sites may share a common sequence motif potentially important for 
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editome recognition (20±nt centered on target A). Consistent enrichment was found for a 10-

nt motif (CGGGATTACA) in region adjacent to most differential and non-differential 

editing sites located in 3’UTR regions (Figure S9, Table S3). Notably, this short sequence 

has been reported to occur frequently within non-coding regions and is also found to overlap 

fragments of Alu repeat elements. Subsequently, we examined whether differentially edited 

sites found to share this sequence motif also mapped to any known human RNA binding 

protein (RBP) binding sites (30±nt centered on target A). A large fraction of these sites 

(>61% in each brain region) significantly coincided with binding sites specific for RBP 

serine/arginine (SR)-rich splicing factor 5 (SRSF5) (Table S4). Interestingly, this protein is 

associated with pyruvate carboxylase deficiency, a disorder that is associated with 

developmental delay and recurrent seizures. Other significant RBP binding sites included 

additional members of the SR-rich family of pre-mRNA splicing factors, such as SRSF2 and 

SRSF3 as well as CUGBP, an RBP found to mediate neuronal toxicity.

Genes enriched with differential RNA editing in SCZ

We examined whether any genes contained an enrichment of differentially edited sites 

beyond what could be expected by chance. As expected, gene length functions as a correlate 

of the total number of RNA editing sites per gene (Figure S10). Therefore, we computed 

over-representation of differential RNA editing sites within each gene by setting a rotating 

background specific to the total number of known RNA editing events for a particular gene 

in order to systematically correct for gene length (Table S5). Genes harboring a significant 

fraction of under edited sites in SCZ primarily mapped to intronic regions (Figure 4A,B), 

while genes harboring 3’UTR sites were over-edited in SCZ (Figure 4B–E). Three genes, 

including KCNIP4, HOOK3 and MRPS16 displayed enrichment for altered editing sites 

across the ACC, DLPFC and our independent validation DLPFC cohort (Figure 4C–E). 

KCNIP4 harbored 13 unique differentially edited sites spread over its first and second 

introns, which were predominately under-edited in SCZ compared to control samples. 

KCNIP4 is a member of the voltage-gated potassium channel-interacting proteins and has 

been shown to interact with presenilins and modulate pacemaker neurons in the reward 

circuitry of the brain26,27. Genome-wide association studies (GWAS) have also found 

KCNIP4 to be associated with SCZ, suicidal ideation and attention-deficit/hyperactivity 

disorder28–30. HOOK3 harbored 22 unique sites and MRPS16 harbored 19 unique sites both 

within their respective 3’UTR regions, which were predominately over edited in SCZ 

compared to control samples. HOOK3 is a microtubule tethering protein essential for 

centrosomal assembly during neurogenesis and brain development31 and MRPS16 is a 

mitochondrial ribosomal protein involved in mitochondrial protein translation32.

Co-editing networks associate with SCZ

Discrete groups of coordinately edited (co-edited) sites were identified and tested for 

association to SCZ using an unbiased network approach. A total of five co-editing modules 

were detected in each brain region and displayed a near one-to-one mapping between the 

ACC and DLPFC (Figure 5A), indicating highly similar co-editing network topology. 

Modules were assessed for over-representation of differential RNA editing sites and two 

modules were identified in the ACC (M1a and M4a) and two modules in the DLPFC (M1d 

and M4d) (Figure 5B). Module eigengene (ME) values for these modules elucidated higher 
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levels of editing in modules M1a and M1d and lower levels of editing in modules M4a and 

M4d in SCZ compared to control subjects (Figure 5C). Functional annotation of over-edited 

modules M1a and M1d revealed strong enrichment for regulation of translation and 

translation initiation, while under edited modules M4a and M4d were enriched for AMPA 

glutamate and ionotropic receptors (Figure 5D). Cell type enrichment analysis revealed 

modules M1a and M1d were enriched for pyramidal neurons while modules M4a and M4d 

were enriched for interneurons (Figure 5E). Notably, these findings were also reproduced in 

our independent DLPFC validation cohort (Table S6, Figure S11, see Supplemental File). 

Moreover, M1a and M1d were positively associated with ADAR1 and ADAR2 expression 

and modules M4a and M4d were negatively associated with ADAR2 expression (Figure 

S12). Upon closer inspection, several sites located within modules M4a and M4d mapped to 

nonsynonymous sites in genes NOVA1, UNC80, GRIA2, GRIA3, GRIA4, GRIK2 and 

ANKD36, and these sites were predominately under-edited in SCZ compared to control 

samples (Figure 5F). Several of these sites, particularly the Q/R and R/G sites in GRIA2, are 

well documented as fully edited sites under normal conditions whereby loss of editing in 

these sites leads to enhanced Ca2+ permeability and cellular dysfunction, and this has been 

suggested to play a role in SCZ23,24. NOVA1 is essential for normal postnatal motor 

function and regulates alternative splicing of multiple inhibitory synaptic targets32. NOVA1 
has been reported to be dysregulated at the gene level in independent SCZ postmortem brain 

samples32 and RNA editing in NOVA1 has been shown to influence protein stability33, but 

has yet to be associated with SCZ.

Identification and characterization of brain cis-edQTLs

Whole-genome genotype data were available for ACC and DLPFC samples used in our 

discovery cohort and were imputed using standard techniques, as previously described7. 

Genotype data were used to detect SNPs that have an effect on RNA editing levels (edQTL, 

editing quantitative trait loci). RNA editing levels from European-ancestry samples (ACC 

N=360; DLPFC N=421) were adjusted to fit a standard normal distribution and to reduce 

systematic sources of variation. Adjusted editing levels were then fit to impute SNP 

genotypes, covarying for individual age, sample site and gender, PMI, RIN and diagnosis, 

using an additive linear model implemented in MatixEQTL. To identify genetic variants that 

could explain the variability of RNA editing, we first ran association tests between editing 

levels and genotypes by restricting the variant search space to only those within the same 

gene as each editing site and found an abundance of low P-values (Figure S13). 

Subsequently, we relaxed this assumption to define a broader window and identified 188,778 

cis-edQTL (i.e. SNP-editing pairs ± 100kb of a site) in the ACC and 156,865 cis-edQTLs in 

the DLPFC at a genome-wide FDR < 5% (Figure 6A). A total of 3224 editing sites in the 

ACC and 2500 editing sites in the DLPFC have edQTLs. Many of the edQTLs for the same 

site were highly correlated, due to linkage disequilibrium, and 70.9% of edQTL SNPs 

(edSNPs) in the ACC and 68.9% of edSNPs in the DLPFC predicted editing of more than 

one site. A high level of concordance was observed for the effect sizes (beta values) of 

edQTLs between the ACC and DLPFC (Figure S14). Notably, edQTLs tend to be present for 

editing sites with greater variance in editing levels (Figure S15). Each max-edQTL (defined 

as the most significant edSNP per site, if any) meeting a genome-wide significance threshold 

was located close to their associated editing site and acting in cis (5kb±nt) (Figure 6B, 
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Figure S15). We reasoned that due to the propensity of edQTLs to be located close to their 

associated editing site, they should also influence additional editing sites nearby. This 

reasoning was strengthened by the observation that editing levels of editing sites within the 

same gene are more closely correlated than editing levels of editing sites in different genes 

(Figure S16).

Max-edQTLs in the ACC and DLPFC were enriched within genic elements and noncoding 

RNAs, particularly within intronic regions, while the corresponding editing sites were also 

enriched in intronic regions and depleted from 3’UTR regions (Figure 6C). Max-edQTLs 

edSNPs were also examined for tissue-specific enhancer specify using data from the 

FANTOM project across 40 different human tissues. edSNPs in the ACC and DLPFC were 

strongly enriched for brain-specific enhancer sequences more so than any other tissue 

(Figure S17). A significant fraction of max-edQTLs edSNPs replicated between the ACC 

(62%) and DLPFC (70%) (∩=34,367, Z-score=17,443, p=0.0009). Among the most 

significant associations identified in both brain regions were those in genes H2AFV and 

PNMAL1, where the edSNP is located immediately upstream of the RNA editing site 

(Figure 6D–G). In both cases, the alternative allele is unable to pair with the opposite base 

within the double-stranded RNA hairpin, introducing two consecutive mismatches in the 

local RNA secondary structure.

In addition, edSNPs were examined for association with gene expression levels by 

calculating the overlap between max-edQTLs and previously computed max expression 

QTL (max-eQTL) summary statistics derived from the ACC and DLPFC. A total of 29,335 

edSNPs (54.4%) in the ACC were also associated with variation in gene expression, for 

which 31.3% were associated with a gene and one or more editing sites within the same 

gene (e.g. SNPx is associated with Geney and one or more editing sites located within 

Geney). Similarly, a total of 27,133 edSNPs in the DLPFC (55.6%) were also associated 

with gene expression variation, for which 30.1% were associated with a gene and one or 

more editing sites within the same gene.

edQTL signatures co-localize with SCZ GWAS associations

It has previously been shown that a substantial proportion of SCZ GWAS associations 

(~20%) may be mediated by differential gene expression regulation7. RNA editing may 

represent an additional biological mechanism through which associated variants exert their 

effects on disease risk. Here, we leverage our edQTL resource to identify RNA editing sites 

that potentially alter SZC risk. Of the 108 SCZ GWAS loci reported previously, 14 harbor 

edQTL eSNPs for one or more RNA editing sites identified in either ACC or DLPFC. 

However, the presence of an edQTL within a GWAS locus does not imply disease causality. 

We therefore implemented coloc2, a Bayesian approach that integrates over statistics for all 

variants within a specified locus and estimates posterior probabilities of co-localization 

between two sets of association signatures, in order to identify RNA editing sites likely to 

contribute to SCZ etiology. We applied coloc2 to our ACC and DLPFC edQTL data in 

conjunction with summary statistics for the 108 genome-wide significant schizophrenia 

GWAS loci. We found evidence for co-localization (posterior probability > 0.5) of ACC 

edQTL and GWAS signatures at four loci comprising four unique edQTL and of DLPFC 
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edQTL and GWAS signatures at four loci comprising seven unique edQTL (Table S7). Two 

of these loci are co-localized in both ACC and DLPFC; therefore, a total of six GWAS 

associations, representing approximately five percent of all genome-wide significant loci, are 

potentially mediated by aberrant RNA editing (Figure S18). Of the six GWAS loci harboring 

SCZ-associated cis-edQTLs, these findings include genes NGEF and ARL6IP4, which 

replicate between brain regions, as well as PCCB and RP11-890B15.3, which are unique to 

the ACC, and genes ENSA and DGKI, which are unique to the DLPFC; co-localization of 

the DGKI locus is highlighted in Figure 7.

DISCUSSION

The recent expansion of RNA sequencing data sets has led to the identification of a huge 

number of RNA editing events, which affect the majority of human genes and are highly 

prevalent in the brain. Many such sites are commonly located in genes involved in neuronal 

maintenance and aberrant editing events have been associated with various neurological 

disorders. However, it has yet to be understood how pervasive RNA editing events are in the 

brain of SCZ patients and what are genetic forces guiding the regulation of these events. The 

ACC and DLPFC have been shown to play an important role in neurodevelopment and have 

been implicated in the pathophysiology of SCZ through abnormal regulation of executive 

function, social cognition, emotion, and self-reference. Here we have used genome-wide 

RNA-sequencing data derived from these tissues to advance our understanding of RNA 

editing mediated mechanisms involved in the molecular etiology of SCZ.

Lower levels of RNA editing were associated with postsynaptic density and glutamatergic 

genes as well as kainate and glutamate receptor activity genes (Figure 3). The majority of 

these sites are A-to-I conversions, are located in Alu elements and map to 3’UTR regions 

and hence the stability of the resulting RNA structure is likely to be reduced34. These genes 

comprise some of the most prominent and well published genes in SCZ biology, including 

GRIA2, GRIA3, GRIK1, GRIK2, for which aberrant RNA editing levels have been 

documented23–25,35, as well as NRXN1 and KALRN, which have been less studied for 

mechanisms related to RNA editing. NRXN1 generates multiple splice variants of the longer 

α-neurexin and shorter β-neurexin proteins, all of which function in synaptic adhesion, 

differentiation, and maturation36,37. KALRN is known to regulate neurite initiation, axonal 

growth, dendritic morphogenesis, and spine morphogenesis and is a key factor responsible 

for reduced densities of dendritic spines on pyramidal neurons in the DLPFC38, as 

previously reported in SCZ39. We also found enrichment for additional postsynaptic density 

and ion channel complex genes, including KCNIP4, which contained several altered RNA 

editing sites spanning its first intron (Figure 4). A major function attributed to KCNIP4 is 

the regulation of the potassium channel Kv4, which are significant contributors to action 

potential activity in neurons. The first intron of KCNIP4 is involved in alternative splicing 

events leading to Var IV of KCNIP4, which has been found to disrupt this current through 

failure to properly interact with presenilins, a component of the γ-secretase complex40,41. It 

is plausible that RNA editing may influence splice-site choice in KCNIP4, lending to 

aberrant neuronal functioning through modulation of Kv4 channel functions.
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Higher levels of RNA editing were observed in genes that are essential for mitochondrial 

protein translation. One of these genes harboring over edited sites in SCZ was RNA Binding 

Motif Protein 8A (RBM8A), which has been shown to control mRNA stability and splicing, 

translation and is located in the 1q21.1 copy-number variation associated autism spectrum 

disorder, SCZ and microcephaly42,43. Moreover, several independent reports indicate 

mitochondrial dysfunction in schizophrenia44, which can severely affect neuronal activity, 

including synaptic connection, axon formation, and neuronal plasticity45. A future concerted 

approach of sites encoding mitochondrial genes will provide a more complete understanding 

of how editing in these genes impact SCZ neurobiology.

We detected that edQTLs are widespread in brain tissue and a substantial portion replicate 

between two brain regions. Approximately 30% of all RNA editing sites were associated 

with one or more nearby cis-regulatory variants. It is expected that the genomics of cis-

edQTLs and their RNA editing sites align with context-specific regulation of editing, as 

indicated through overlap of edSNPs with regulatory elements, such as tissue-specific 

enhancers (Figure S17) and mapping of RNA editing sites on genes, which are 

predominately postnatally biased in neocortical gene expression (Figure S8). Moreover, six 

GWAS loci demonstrate co-localization with edQTLs and show moderate effect sizes (ß, 

0.82 ± 0.26). Notably, genes NGEF and ARL6IP4 replicated between brain regions. The 

edSNPs and editing sites for NGEF are located within 3’UTR regions and enhancer 

elements. NGEF is predominantly brain expressed, particularly during early development, 

and shows substantial homology with the Dbl family, which are implicated in human 

cognitive function46. The editing site in ARL6IP4 (also known as, splicing factor SRp25) 

causes a non-synonymous amino acid substitution (K/R) and affects a basic region in the 

protein that has not been ascribed a specific function. We also identified GWAS-edQTL co-

localization for ENSA, a gene which belongs to a highly conserved cAMP-regulated 

phosphoprotein family and is considered an endogenous regulator of ATP-sensitive 

potassium (KATP) channels, which rest at the intersection of cell metabolism and membrane 

excitability47,48. The diversity of KATP channel properties allows for exploitation by 

differential pharmacology, creating in-roads towards new targeted pharmacological 

interventions.

In conclusion, our study reveals dynamic aspects of RNA editing in human brain tissue 

covering hundreds of SCZ cases and control samples, including two brain regions and two 

large primary cohorts used for discovery and validation. Strong reproducible evidence was 

identified for widespread dysregulation of RNA editing in SCZ, including under-editing of 

glutamate receptor activity and post-synaptic density genes, which show pyramidal neuronal 

cell type specificity as well as over-editing in genes involved in regulation of translation and 

translation initiation which are specific to interneuronal cell types. Moreover, we 

characterize a large portion of RNA editing sites to be involved in cis-edQTLs in human 

brain tissue and further perform GWAS-edQTL co-localization analysis, which identified 

co-localization of 11 edQTLs with 6 GWAS loci. This result is supportive of a causal role of 

RNA editing in risk for SCZ. While these results shed new light into the mechanisms 

underlying the neuropathophysiology of SCZ, additional molecular studies of aberrant RNA 

editing sites identified in the current study and their molecular mechanisms are required to 

fully appreciate their functional importance for SCZ neurobiology.
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MATERIALS AND METHODS

Identification of RNA editing sites from human RNA-sequencing data

RNA-sequencing data generated from the human post-mortem ACC (ncontrol=245, 

nSCZ=225) and DLPFC (ncontrol=286, nSCZ=254) were obtained through the CommonMind 

Consortium (CMC; number of uniquely mapped reads, 33,988,367 ± 12,959,625). 

Additional RNA-sequencing data from human post-mortem DLPFC (ncontrol=217, 

nSCZ=100) were obtained through the NIH Human Brain Collection Core (HBCC; number 

of uniquely mapped reads, 105,426,854 ± 10,0005,209). All fastq files were mapped to 

human reference genome hg19 using STAR version 2.4.049 and the following parameters 

were optimized: chimSegmentMin=15; chimJunctionOverhangMin=15; 

outSAMstrandField=intronMotif. For each sample, this produced a coordinate-sorted BAM 

file of mapped paired end reads including those spanning splice junctions. Known RNA-

edited sites were curated using the publicly available database, Rigorously Annotated 

Database of A-to-I RNA editing (RADAR)50. Nucleotide coordinates for these well 

documented editing sites were then used to extract reads from each sample using a 

customized perl script and the samtools mpileup function51. This approach quantifies the 

total amount of edited reads and the total amount of un-edited reads, which map to each 

RNA editing site in the RADAR database for each individual sample, thereby producing a 

rich source of editing information both within and across all samples.

In order to identify a collection of high quality and high confidence sites, a series of 

detection-based thresholds were placed for each brain region and cohort, separately: 1) The 

minimum base quality of 25; 2) minimum mapping quality of 20 (that is, probability that a 

read is aligned to multiple locations); 3) probability of misalignment = 0.01 (i.e., 99% 

probability that a read is correctly aligned in the genome); 4) minimum read coverage per 

edited site to be 20. The identification of RNA editing sites has previously been reported to 

be prone to these biases, therefore, it is likely that changing these parameters to be more 

lenient would increase the number of falsely predicted editing events; 5) We also removed 

all known single nucleotide polymorphisms (SNPs) present in the SNP database (dbSNP; 

except SNPs of molecular type ‘cDNA’) and those within the 1000 Genomes Project; 6) 

Finally, we required that an editing site must be present in at least 80% of all samples and 

subsequently, must have no more than 20% missing values per sample. The resulting RNA 

editing data frames for the CMC ACC and DLPFC samples contained 8.3% and 9.8% 

missing data respectively, and the data frame for HBCC DLPFC samples contained 7.6% 

missing data. All missing values were imputed using predictive mean matching method in 

the mice R package52, using five multiple imputations and 30 iterations. The resulting sets of 

sites identified from these RNA-sequencing data were subsequently referred to as known 
RNA editing sites and were used for downstream analysis.

No statistical methods were used to pre-determine sample sizes, however our sample sizes 

are the largest to be reported. All samples used in this study were from participants in two 

large studies of schizophrenia in the United States who donated their brains upon death. 

Data collection and analysis were not performed blind to the conditions of the experiments. 

No animals or data points were excluded from the analyses for any reason.
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Identification of RNA editing sites from macaque RNA-sequencing data

To examine whether drug treatment effects were responsible for overall RNA editing levels 

observed in SCZ, we computed overall editing derived from an RNA-sequencing study of 

DLPFC tissue from Rhesus macaque monkeys. Antipsychotic administration, tissue 

dissection and RNA-sequencing data generation was previously described elsewhere53. In 

brief, subjects were randomly selected for four treatment groups: (1) high doses of 

haloperidol (4mg/kg/d), (2) low doses of haloperidol (0.14mg/kg/d), (3) clozapine 

(5.2mg/kg/d), (4) vehicle. Treatments were administered orally for six months. Following a 

six-month treatment regime, monkeys were sacrificed using an overdose of barbiturate and 

transcardinally perfused with ice cold saline. DLPFC tissue was dissected from the dorsal 

and ventral banks of the principal sulcus (Area 46) and pulverized. Finally, gene expression 

data was generated using an identical RNA-sequencing protocol. Raw RNA-sequencing data 

was aligned to the macaque reference genome and transcriptome (mmul1) using STAR. 

Next, all well documented RNA editing sites in the RADAR database, which were annotated 

to the human reference hg19, were lifted over to the macaque reference mmul1 using the R 

library package rtracklayer54. These nucleotide coordinates were used to extract reads from 

each sample using the same customized perl script and the samtools mpileup function. We 

also carried out a series of matching thresholds in order to identify a collection of high 

confidence sites across all samples, as noted above. Notably, few differentially edited sites in 

SCZ are conserved in rhesus macaque and the vast majority of these conserved sites reside 

within Alu regions (see Table S1), which undergo significant sequence divergence and Alu 

retrotransposition activity among primates.

Quantifying RNA editing levels

RNA editing levels were calculated for each sample, as previously described55. In brief, we 

define editing levels as the total number of edited reads at a specific RNA editing site (i.e., 
reads with G nucleotides) over the total number reads covering the site (i.e, reads with A and 

G nucleotides). The resulting metric is a continuous measure, ranging from 0 (i.e., a totally 

un-edited site) to 1 (i.e., a completely edited site). When computing overall RNA editing 

levels per sample, we did not impose any sequencing coverage criteria, but instead took all 

known sites from the RADAR database into account that were identified in each sample in 

our study to obtain the total amount of editing in each sample. In this way, overall RNA 

editing is defined as the total number of edited reads at all known RNA editing sites over the 

total number reads covering all sites for each sample. These measures were used to identify 

relationships between editing levels and SCZ and between editing levels and expression of 

editing enzymes. In this way, this approach also takes into account hyper editing events, 

which are often RNA editing events detected at very low coverage in standard RNA-seq 

studies.

Differential RNA editing analysis

It is possible that RNA editing levels, similar to that observed in gene expression studies, are 

influenced by a number of biological and technical factors. By properly attributing multiple 

sources of RNA editing variation, it is possible to partially correct for some variables. 

Therefore, prior to differential RNA editing analysis, the editing variance for each site was 
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partitioned into the variance attributable to each variable using a linear mixed model 

implemented in the R package variancePartition56. Under this framework, categorical 

variables (i.e., sample site, biological sex) are modeled as random effects and continuous 

variables (i.e., individual age, PMI) are modeled as fixed effects. Each site was considered 

separately and the results for all sites were aggregated afterwards. This approach enabled us 

to rationally include leading covariates into our downstream analysis, which may ultimately 

have an influence on differential RNA editing analysis. Subsequently, to identify sites with 

differential RNA editing levels between SCZ and control samples, we implemented linear 

model though the limma R package57 covarying for the possible influence of individual age, 

RNA integrity number (RIN), postmortem interval (PMI), sample site and sex. Significance 

values were adjusted for multiple testing using the Benjamini and Hochberg (BH) method to 

control the false discovery rate (FDR). Sites passing a multiple test corrected P-value < 0.05 

were labeled significant.

To further rule out the possible confounding effects of antipsychotic medications on editing 

levels, we examined SCZ-related sites that were also conserved in the rhesus macaque 

samples, as noted above. Of these sites, we identified 24 unique sites with sufficient 

coverage (> 10 reads/site) across all rhesus macaque DLPFC samples that were also 

significantly differentially edited in at least one SCZ brain region. Using these sites, a series 

of pairwise comparisons were made using a linear model implemented through limma57 in 

order to compute the change in editing rates associated with 5.2 mg clozapine, 0.14 mg 

haloperidol and 4 mg haloperidol relative to vehicle treatment (Table S1E). Subsequently, 

we evaluated the concordance between antipsychotic induced changes in editing rates in 

macaques relative to SCZ-related changes in humans using a robust linear regression and 

found no significant associations between candidate SCZ sites and antipsychotic 

medications for this subset of conserved RNA editing events (Table S1E).

We also took additional measures to ensure that the landscape of RNA editing in SCZ was 

not confounded by differences in cellular composition. RNA-seq fastq files of adult human 

brain single cells were downloaded from the Gene Expression Omnibus database using the 

accession number GSE67835. Raw RNA-sequencing files were aligned to the human 

reference (hg19) using STAR alignment with default paired-end parameters. We identified 

35 unique sites with sufficient coverage (> 5 reads/site) across at least 70% or more of all 

adult human cells that were also detected in at least one SCZ brain region. Note that a lower 

coverage threshold was implemented due to RNA-seq coverage being orders of magnitude 

lower than our bulk postmortem tissue RNA-seq samples. Next, no more than 80% missing 

values were allowed for each individual cell type thereby yielding a total of 181 cells 

dissociated from adult brain cortex which were in our analysis, including oligodendrocytes 

(n=16), oligodendrocyte precursors (OPCs; n=7), astrocytes (n=39), and neurons (n=119). 

To identify changes in editing rates associated with cell type differences, levels of RNA 

editing were compared between neuronal and non-neuronal cell types using a linear model, 

as described above. Similarly, we evaluated the concordance between neuronal-related 

differences in editing rates relative to SCZ-related changes in humans using a robust linear 

regression and found no significant associations for this subset of RNA editing events (Table 

S1F).
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Supervised class prediction methods

In order to assess cross-validation of the SCZ-related sites, two prediction models were built 

using the differentially edited sites in the (1) DLPFC and (2) ACC derived from the CMC 

(here referred to as, training set) to predict case/control status (i.e. SCZ cases from control 

samples) from withheld DLPFC data derived from the HBCC (here referred to as, test set). 

Regularized regression models, including ElasticNet, Lasso and Ridge Regression were fit 

using the glmnet R package58. The penalty parameter lambda (λ) was estimated using 10-

fold cross validation on each training set using the caret package in R, and ultimately set to 

lambda.min, the value of λ that yields minimum mean cross-validated error of the regression 

model. Once the models were fit, they were applied to RNA editing levels from the test set 

using the predict() function, which calculates the predicted log-odds of diagnostic status. 

Subsequently, area under the receiver operative curve (ROC) analysis was performed using 

the pROC package in R59. Classification accuracies were reported as area under the curve 

(AUC) on test samples to assess the precision of the models.

Identification of enriched sequence motifs and RNA binding protein sites

Previous studies suggest that RNA editing events are mediated by RNA-binding proteins that 

recognize specific sequence motifs around the RNA editing sites. Therefore, we extracted 

±20 bp long sequences relative to each differentially edited and non-differentially edited site 

in the ACC and DLPFC, both the discovery and validation cohorts, to discover potential 

motifs that may determine its interaction with the RNA editing enzyme complexes. These 

sequences were subjected to the Multiple Em Motif Elicitation (MEME) algorithm60 (http://

meme-suite.org/). This method aims to detect motifs that are significantly enriched within 

user defined list of sequences, regardless of their relative location to the editing sites. MEME 

was run using classic mode limiting the search to only the top 5 motifs whereby enrichment 

is measured relative to a (higher order) random model based on frequencies of the letters in 

the submitted sequences. As a control, we also compared these results to a motif enrichment 

analysis using a random selection of sequences, of equal number compared to differential 

and non-differential edited sites per brain region and cohort with matching GC content, in 

order to determine whether the enriched motifs are specific to RNA editing sites.

Sites enriched that shared a common sequence motif were then used to map binding sites of 

human RNA binding proteins (RBPs) using the RBPmap database61 (http://

rbpmap.technion.ac.il/index.html). This produced a list of 37 motifs in the ACC and 36 

motifs in the DLPFC discovery samples and 201 motifs in the DLPFC validation samples, 

which were independently submitted to RBPmap to identify motifs enriched in RBP targets 

from a database of 114 experimentally defined human motifs. The algorithm for mapping 

motifs on the RNA sequences is based on the Weighted-Rank approach, previously exploited 

in the SFmap web-server for mapping splicing factor binding, and was run in default mode.

Genes enriched with differentially edited sites

In order to identify genes enriched with differentially edited sites, we corrected each gene 

for gene length. As gene length is strongly correlated with the number of detectable sites in 

each gene, we used a hyper-geometric test to examine over-representation of differentially 
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edited sites within a particular gene while setting a rotating background to match the total 

number of detectable sites for each gene.

Co-editing network analysis

To identify sites that are co-edited across SCZ and control samples, we applied unsupervised 

weighted gene co-expression network analysis (WGCNA)62. Signed networks were 

constructed for the CMC-derived ACC and DLPFC samples separately, and then again using 

HBCC-derived DLPFC samples, thus totaling three separate networks. To construct a 

network, the absolute values of Pearson correlation coefficients were calculated for all the 

possible editing site pairs and resulting values were transformed using a β-power of 8 for 

each network so that the final correlation matrix followed an approximate scale-free 

topology. The WGCNA cut-tree hybrid algorithm was used to detect sub-networks, or co-

editing modules, within the global network with the following optimizations: minimum 

module size of 30 sites, tree-cut height of 0.999 and a deep-split option of 2. For each 

identified module, we ran singular value decomposition of each module’s editing matrix and 

used the resulting module eigengene (ME), equivalent to the first principal component, to 

represent the overall editing profiles for each module. Subsequently, modules with similar 

editing profiles were merged if ME values were highly correlated (R>0.9). Co-editing 

modules were interrogated for containing an over-representation of significantly 

differentially edited sites in SCZ using a one-sided Fisher’s Exact Test and an estimated 

odds-ratio in comparison to a background of all detected sites for each brain region and 

cohort. All pairwise tests were corrected using the BH method to control the FDR. To test 

whether ME values were significantly associated with SCZ, a linear model was applied 

covarying for individual age, RIN, PMI, sample site and sex using the limma package in R 

and all statistical tests were BH adjusted.

Gene set and cell type enrichment analyses

All differentially edited sites passing a multiple test corrected P-value <0.05 and all co-

editing network modules were subjected to functional annotation. The ToppFunn module of 

ToppGene Suite software63 (https://toppgene.cchmc.org/) was used to assess enrichment of 

GO ontology terms relevant to cellular components, molecular factors, biological processes 

and metabolic pathways using a one-tailed hyper-geometric distribution with a Bonferroni 

correction. This is a proportion test that assumes a binomial distribution and independence 

for probability of any gene belonging to any set. We use a one-sided test because we are 

explicitly testing for over-representation of genes that harbor editing sites across hundreds of 

GO categories, without any a priori selection of candidate gene sets. A minimum of a three-

gene overlap per gene set was necessary to be allowed for testing. Subsequently, modules 

were tested for over-representation of CNS cell type specific markers collected from a 

previously conducted single cell RNA-sequencing study64. In order for a gene to be labeled 

cell type specific, each marker required a minimum log2 expression of 1.4 units and a 

difference of 0.8 units above the next most abundance cell type measurement, as previously 

shown. Over-representation of cell type markers within co-editing modules was analyzed 

using a one-sided Fisher exact test to assess the statistical significance. All P-values, from all 

gene sets and modules, were adjusted for multiple testing using the BH procedure. We 

required an adjusted P-value <0.05 to claim that a cell type is enriched within a module.
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BrainSpan developmental gene set enrichment analysis

BrainSpan developmental RNA-seq data (www.brainspan.org) were summarized to 

GENCODE10 and gene-level RPKMs were used across 528 samples. From here, only the 

neocortical regions were used in our analysis -- dorsolateral prefrontal cortex (DFC), 

ventrolateral prefrontal cortex (VFC), medial prefrontal cortex (MFC), orbitofrontal cortex 

(OFC), primary motor cortex (M1C), primary somatosensory cortex (S1C), primary 

association cortex (A1C), inferior parietal cortex (IPC), superior temporal cortex (STC), 

inferior temporal cortex (ITC), and primary visual cortex (V1C). Samples with RIN <= 7 

were filtered and removed from subsequent analysis. Genes were defined as expressed if 

they were present at an RPKM of 0.5 in 80% of the samples from at least one neocortical 

region at one major temporal epoch, resulting in 22,141 transcripts across 299 high-quality 

samples ranging from post-conception weeks (PCW) 8 to 40 years of age. Finally, 

expression values were log-transformed (log2[RPKM+1]).

Linear regression was performed at each of 22,141 transcripts, modeling gene expression as 

a continuous dependent variable, as a function of a binary ‘developmental stage’ variable. A 

total of 11 developmental stages were analyzed. A moderated t-test, computed using the 

limma R package, was used to determine which genes were uniquely over-expressed and 

under-expressed for each specific developmental stage against all other developmental 

stages. Models included gender, individual as a repeated measure and ethnicity as 

adjustment variables. Significance values were adjusted for multiple testing using the 

Benjamini and Hochberg (BH) method to control the false discovery rate (FDR). After the 

BH correction, genes with Q-value < 0.05 and log2 fold change > 0.5 are defined as genes 

highly expressed in a given developmental stage, whereas genes with Q-value < 0.05 and an 

log2 fold change < 0.5 are defined as genes lowly expressed in a given developmental stage. 

These curated data formed the basis of our developmental stage gene set enrichment 

analysis. All processed data are available upon request. To test for over-representation of 

genes with differentially edited sites within a given gene set, a modified version of the 

GeneOverlap function in R was used so that all pairwise tests were multiple test corrected 

using the BH method. The Fisher’s exact test function also provides an estimated odds-ratio 

in comparison to a genome-wide background set to 27,546 transcripts.

cis-edQTL analysis

A total of 11,242 high confidence sites in the ACC and 7,594 sites in the DLPFC edQTL 

(editing quantitative trait loci) were derived using genetically inferred European samples 

(ACC=368, DLPFC=426) across the 6.4 million genotyped and imputed markers with 

imputation score ≥ 0.8 and estimated minor allele frequency ≥ 0.05. For each of the RNA 

editing sites, we normalized editing levels by centering and scaling each measurement 

through subtracting out the mean editing level value and dividing by the standard deviation. 

Quantile normalization was then used to fit the distribution to a standard normal distribution. 

Subsequently, in order to map genome-wide edQTLs, we used a linear model on the imputed 

genotype dosages and standardized RNA editing levels using MatrixEQT65. The RNA 

editing levels were covaried for sample site, sex, individual age, PMI, RIN and clinical 

diagnosis. In order to control for multiple tests, the FDR was estimated for all cis-edQTLs 

(defined as 100 KB between SNP marker and editing position), controlling for FDR across 
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all chromosomes. We identified significant cis-edQTLs using a genome-wide significance 

threshold (q< 0.05). Max cis-edQTL (defined as the most significant eSNP per site, if any) 

were annotated for genomic regulatory elements according to ENCODE annotations 

implemented with the SNP nexus annotation tool (http://snp-nexus.org/index.html). To 

assess whether cis-edQTLs relate to known enhancer sequences, we tested for overlap 

between edQTLs and tissue-specific enhancer sequences from the FANTOM project 

covering 40 different tissues. We leveraged the SlideBase database66 (http://

slidebase.binf.ku.dk/), which has well curated lists of enhancers found to be exclusively 

expressed across different tissues in humans. A permutation-based approach with 1,000 

random permutations was used to determine statistical significance of the overlap between 

edSNP coordinates and enhancer regions using the R package regioneR67. A matching 

permutation analysis was used to assess edQTL overlap with previously generated 

expression QTL (eQTLs) in the ACC and DLPFC, which are publically available from 

synapse (syn7188631, syn7254151).

GWAS-edQTL co-localization analysis

A total of 108 genome-wide significant (P<5.0×10−8) SCZ GWAS loci68, as defined by 

linkage disequilibrium r2 > 0.6 start and end positions, and edQTL sites overlapping those 

loci were considered for analysis. For those edQTL sites overlapping these GWAS loci, 

extended edQTL calling was performed using an increased window size in order to obtain 

edQTL statistics for the entire GWAS locus. GWAS and edQTL summary statistics (beta, 

standard error) for SNPs within each GWAS locus were used as input to coloc269, and 

posterior probabilities for five hypotheses (H0, no GWAS or edQTL signal; H1, GWAS 

signal only; H2, edQTL signal only; H3, GWAS and edQTL signal but not co-localized; H4, 

co-localized GWAS and edQTL signals) were estimated for each locus. Loci with posterior 

probability for hypothesis H4 (PPH4) greater than 0.5 were considered to have co-localized 

GWAS and edQTL signals. While PPH4 ≥ 0.8 has previously been shown to demonstrate 

strong Bayesian evidence for co-localization, our previous work has found that many loci 

with PPH4 ≥ 0.5 appear qualitatively consistent with co-localization69.

Data availability.

The CommonMind investigators are committed to the release of data and analysis results, 

with the anticipation that data sharing in a rapid and transparent manner will speed the pace 

of research to the benefit of the greater research community. Data and analytical results 

generated through the CommonMind Consortium are available through the CommonMind 

Consortium Knowledge Portal: http://dx.doi.org/10.7303/syn2759792.

URLs.

Human Brain Collection Core (HBCC): https://www.nimh.nih.gov/research/research-

conducted-at-nimh/research-areas/research-support-services/hbcc/index.shtml

CommonMind Consortium (CMC): http://www.synapse.org/CMC
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Code availability.

Code for identifying RNA editing sites and quantifying RNA editing ratios are provided in 

the public repository: https://github.com/BreenMS/RNAediting

Differential RNA editing, co-editing network analyses and edQTL analysis used standard 

software packages.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Overview of the study design and analytic pipeline.
The samples used in this study were from participants in two large studies of schizophrenia 

in the United States who donated their brains upon death. A total of 364 unique 

schizophrenia cases and 383 unique controls were sampled in at least one brain region. 

Genome-wide RNA-seq data from the CommonMind Consortium (CMC) covered two brain 

regions, the ACC and the DLPFC, and these samples served as the discovery cohort. RNA-

seq data of post-mortem DLPFC tissue was generated on behalf of NIMH Human Brain 

Collection Core (HBCC) and this second resource served as a validation cohort. Fastq files 

were aligned to the human reference genome and transcriptome (hg19) using STAR and bam 

files were sorted using samtools. RNA editing events were called from sorted bam files 

using the mpileup function in samtools together with customized perl scripts, which 

integrated all known RNA editing sites from the RADAR database. A series of internal 

filtering. quality control and imputation metrics were computed before moving downstream 

to overall RNA editing, differential RNA editing, co-editing and edQTL analyses.
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Figure 2. Overall RNA editing profiles.
(a) Overall RNA editing levels across for the CMC ACC (ncontrol=245, nSCZ=225) and 

DLPFC (ncontrol=286, nSCZ=254) and HBCC DLPFC (ncontrol=217, nSCZ=100). A two-sided 

Mann-Whitney U test with continuity correction was used to test significance between 

diagnostic groups. Whisker box plots show median, lower and upper quartiles, and whiskers 

represent minimum and maximum of the data. Associations between expression levels of (b) 

ADAR1, (c) ADAR2 and (d) ADAR3 (quantified as the number of RNA-seq reads per 

kilobase of transcript per million mapped reads (RPKM)) and overall editing levels across 

all available ACC and DLPFC samples (including CMC and HBCC data). These 

concordance analyses were made across all samples (ncontrol=735, nSCZ=579) as the ACC 

and DLPFC showed highly collinear relationships. R2 values were calculated by robust 

linear regressions on overall editing levels and logarithmic transformed RPKM values.
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Figure 3. Identification of differentially edited sites in SCZ.
Differential editing sites in the (a) ACC (ncontrol=245, nSCZ=225) and DLPFC (ncontrol=286, 

nSCZ=254). Dotted line marks a multiple test corrected level of significance (Adj. P < 0.05, 

limma, linear regression with Benjamini-Hochberg (BH) correction). Red points indicate 

over-edited sites and blue points indicate under-edited sites. For the top three sites, we 

outline their respective gene body. (b) Scatterplot of change (△) in editing rates for RNA 

editing sites in the ACC compared to the DLPFC. Inset Venn Diagram indicates the total 

number of significant overlapping sites (top value) and respective gene symbols (bottom 
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value). Results were cross-validated for the (c) ACC (x-axis) and (d) DLPFC (x-axis), 

respective to △ editing rates within independent HBCC DLPFC samples (y-axis) 

(ncontrol=217, nSCZ=100). R2 values were calculated by robust linear regressions on 

△editing rates. Red and blue points indicate sites passing BH correction in the discovery 

sample. (e) Significantly differentially edited sites by genic region indicates a significant 

depletion of sites mapping to 3’UTR regions (Fisher’s Exact Test, P < 0.05,* Alternative 

hypothesis=less; ACC p=0.02; DLPFC p=0.01; NIMH HBCC DLPFC p=0.04). Functional 

annotation of the top five enrichment terms for (f) under-edited sites and (g) over-edited sites 

in SCZ were computed by a one-sided hypergeometric test and adjusted for multiple 

comparisons using Bonferroni correction.
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Figure 4. Genes enriched with differential editing sites that replicate across two brain regions or 
across two cohorts.
Genes containing enrichment of differentially edited sites from the ACC (ncontrol=245, 

nSCZ=225) and DLPFC (ncontrol=286, nSCZ=254) as well the NIMH HBCC DLPFC sample 

(ncontrol=217, nSCZ=100) were examined. (a) Genes enriched for under-edited sites primarily 

map to intronic regions. (b) KCNIP4 contains 13 unique differential RNA editing sites, 

which are under-edited and span its first and second intron. These sites replicate across brain 

regions and withheld validation samples. Enrichment was calculated using the phyper 
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hypergeometic function (lower.tail=FALSE). (c) Genes enriched for over-edited sites in 

SCZ. Over-edited sites primarily map to 3’UTR regions. (d) HOOK3 contains 22 unique 

differential RNA editing sites and (e) MRPS16 contains 19 unique differential RNA editing 

sites which are over-edited within their respective 3’UTR region. Note that genes FTX and 

NDUFS1 contain sites in more than one genic region, see Table S5 for full details. UCSC 

Genome Browser customized track options display the precise locations of editing sites 

within each gene.
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Figure 5. Unsupervised co-editing network analysis.
(a) Overlap analysis of co-editing modules identified within the ACC and DLPFC. 

Unsupervised clustering was used to group modules by module eigengene (ME) values 

using Pearson’s correlation coefficient and Ward’s distance method. Significance of overlap 

was computed (one-sided Fisher exact test, Bonferroni correction) and p-values were 

colored on a continuous scale (bright red, strongly significant; white, no significance). The 

number of overlapping sites are displayed in each cell with a significant overlap. (b) 

Enrichment analysis of differentially edited sites within co-editing networks (one-sided 

hypergeometric test). (c) Assessment of ME values for modules M1a and M1d (over-edited) 

and M4a and M4d (under-edited). Differential ME analysis was conducted using a linear 

model and covarying for age, RIN, PMI, sample site and gender. (d) The top functional 

enrichment terms and (e) brain cell-type enrichment results for all identified modules, 

verifying similar functional and cell-type properties of co-editing networks in the ACC and 

DLPFC. Enrichment was computed using one-sided hypergeometric test and adjusted for 

multiple comparisons using Bonferroni correction. (f) A collection of nonsynonymous sites 

within SCZ-related AMPA glutamate receptor modules M4a and M4d (** indicates Adj. P 

<0.05, * indicates P < 0.05 derived from differential RNA editing analysis, see Table S1 for 

details). Whisker dot plots show mean and whiskers represent minimum and maximum 

standard error of the ACC (ncontrol=245, nSCZ=225) and DLPFC (ncontrol=286, nSCZ=254).
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Figure 6. Brain cis-edQTL analysis.
(a) Quantile-Quantile plot for association testing genome-wide P-values between imputed 

genotype dosages and 11,242 RNA editing sites in the ACC (ncontrol=180, nSCZ=180) and 

7,594 RNA editing sites in the DLPFC (ncontrol=210, nSCZ=211) (linear regression and FDR 

correction via matrixEQTL). (b) Distribution of the association tests in relation to the 

distance between the editing site and variant for max cis-edQTLs (that is, the most 

significant edSNP per site, if any). Vertical dotted lines indicate ± 5KB relative to the editing 

site. (c) Genic locations of edSNPs and corresponding editing sites. (d-g) Two examples of 

top cis-edQTLs with nearby editing sites replicating between brain regions with (e,g) 

predicted local RNA secondary base-pairing structures (dosage sample sizes are listed below 

each violin plot). Whisker violin plots show median, lower and upper quartiles, and whiskers 

represent minimum and maximum of adjusted RNA editing levels (y-axis) according to 

imputed genotype dosages (x-axis; linear regression and FDR correction via matrixEQTL).
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Figure 7. Coloc2 fine-mapping analysis.
GWAS and edQTL summary statistics (beta, standard error) for SNPs within each GWAS 

locus were used as input for coloc2. Loci with posterior probability for hypothesis H4 

(PPH4) greater than 0.5 were considered to have co-localized GWAS and edQTL signals. 

One example of co-localization between (a) cis-edQTL and (b) GWAS signal on 

chromosome 7 DGKI locus (PPH4=0.99). This specific co-localization event is specific to 

the DLPFC. LD estimates are colored with respect to the GWAS lead SNP (rs3735025) and 

coded as a heatmap from dark blue (0≥r2>0.2) to red (0.8≥r2>1.0). Recombination hotspots 
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are indicated by the blue lines (recombination rate in cM Mb−1). (a) Inset violin plots 

reflects the association of editing between RNA editing site chr7:127067936 with SCZ risk 

allele at the GWAS index SNP in the respective loci (rs3735025; DLPFC, n0=64, n1=182, 

n2=175; P = 9.5×10−09, linear regression and FDR correction via matrixEQTL). Whisker 

violin plots show median, lower and upper quartiles, and whiskers represent minimum and 

maximum of adjusted RNA editing levels (y-axis) according to imputed genotype dosages 

(x-axis).
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