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Highlights Impact and implications

� A novel machine learning-based classification

identifies patients with diabetes at-risk of liver-
related complications.

� Patients with severe insulin resistance had the
highest risk of liver-related outcomes and fibrosis
progression.

� Excessive alcohol consumption at the diagnosis of
diabetes was the strongest risk factor for devel-
oping liver-related events.
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Diabetes represents a major risk factor for NAFLD
development and progression. This study examined
the ability of a novel machine-learning approach to
identify at-risk diabetes subtypes for liver-related
complications. Our results suggest that patients that
had severe insulin resistance had the highest risk of
liver-related outcomes and fibrosis progression.
Moreover, excessive alcohol consumption at the
diagnosis of diabetes was the strongest risk factor for
developing liver-related events.
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Background & aims: Diabetes mellitus is a major risk factor for fatty liver disease development and progression. A novel
machine learning method identified five clusters of patients with diabetes, with different characteristics and risk of diabetic
complications using six clinical and biological variables. We evaluated whether this new classification could identify in-
dividuals with an increased risk of liver-related complications.
Methods: We used a prospective cohort of patients with a diagnosis of type 1 or type 2 diabetes without evidence of
advanced fibrosis at baseline recruited between 2000 and 2020. We assessed the risk of each diabetic cluster of developing
liver-related complications (i.e. ascites, encephalopathy, variceal haemorrhage, hepatocellular carcinoma), using competing
risk analyses.
Results: We included 1,068 patients, of whom 162 (15.2%) were determined to be in the severe autoimmune diabetes sub-
group, 266 (24.9%) had severe insulin-deficient diabetes, 95 (8.9%) had severe insulin-resistant diabetes (SIRD), 359 (33.6%)
had mild obesity-related diabetes, and 186 (17.4%) were in the mild age-related diabetes subgroup. In multivariable analysis,
patients in the SIRD cluster and those with excessive alcohol consumption at baseline had the highest risk for liver-related
events. The SIRD cluster, excessive alcohol consumption, and hypertension were independently associated with clinically
significant fibrosis, evaluated by liver biopsy or transient elastography. Using a simplified classification, patients assigned to
the severe and mild insulin-resistant groups had a three- and twofold greater risk, respectively, of developing significant
fibrosis compared with those in the insulin-deficient group.
Conclusions: A novel clustering classification adequately stratifies the risk of liver-related events in a population with dia-
betes. Our results also underline the impact of the severity of insulin resistance and alcohol consumption as key prognostic
risk factors for liver-related complications.
Impact and implications: Diabetes represents a major risk factor for NAFLD development and progression. This study
examined the ability of a novel machine-learning approach to identify at-risk diabetes subtypes for liver-related complica-
tions. Our results suggest that patients that had severe insulin resistance had the highest risk of liver-related outcomes and
fibrosis progression. Moreover, excessive alcohol consumption at the diagnosis of diabetes was the strongest risk factor for
developing liver-related events.
© 2023 The Author(s). Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL). This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction
NAFLD is the predominant cause of chronic liver disease world-
wide.1 The rising prevalence of NAFLD is closely related to the
global increases in overweight/obesity and diabetes mellitus that
have occurred in the past few decades.2,3

Type 2 diabetes (T2D) is a major risk factor for NAFLD
development and progression.4 The estimated prevalence of
NAFLD among patients with T2D is nearly 70%.5 Current joint
guidelines from the American Association of Clinical Endocri-
nology, the American Association for the Study of Liver Diseases,
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the European Association for the Study of the Liver, the European
Association for the Study of Diabetes, and the European Associ-
ation for the Study of Obesity recommend screening for liver
fibrosis in this specific population.6,7 In T2D, liver fibrosis path-
ogenesis and NAFLD progression are strongly associated with
insulin resistance.8 Although type 1 diabetes (T1D) is patho-
physiologically distinct from T2D, the population with T1D also
shares similar risk factors related to liver fibrosis, including
obesity, features of metabolic syndrome, and insulin resistance.
These similarities suggest that some patients with T1D might
also be at risk for NAFLD.9 The diabetes population is highly
heterogenous; it is, therefore, not surprising that the current
classification fails to adequately identify at-risk patients with
unfavourable outcomes, including liver-related complications.

Alcohol use disorder remains the major risk factor associated
with complications of liver disease in patients with T2D.10

However, very few studies to date have examined the associa-
tion between the level of alcohol consumption and the risk of
liver-related complications in the diabetes population.

Using a machine-learning approach, Ahlqvist et al.11 identified
five clusters of adult-onset diabetes reflecting different patho-
logical profiles, and associated with different treatment re-
sponses and complication risks. Six key clinical parameters at
diagnosis (i.e. age, BMI, HbA1c, glycaemia, C-peptide, and islet
autoantibodies) were used to classify patients. Since, several
studies have now confirmed the association between this clus-
tering method and the risk for specific diabetes-related compli-
cations, including chronic kidney disease, polyneuropathy,
diabetic retinopathy, and cardiovascular disease. Only a few
studies have explored the association between this novel clas-
sification and NAFLD.12–14 None have evaluated it in patients
with diabetes with significant alcohol consumption. The associ-
ation between cluster assignment and the development of liver-
related events or clinically significant fibrosis has not been
investigated.

In this study, we evaluated the risk of liver-related events and
the risk of clinically significant fibrosis in a cohort of patients
with diabetes without evidence of advanced fibrosis at baseline
using this novel clustering classification.
Patients and methods
Data collection
The cohort of patients with diabetes from the endocrinology
department of CUB Hôpital Erasme has been systematically fol-
lowed since 2000. The following data were collected at diabetes
diagnosis: age, weight, height, fasting glycaemia, and concomi-
tant C-peptide, HbA1C, glutamic acid decarboxylase antibodies,
most recent liver imaging, if available, Fibrosis-4 (FIB4), alcohol
consumption (units/day), tobacco consumption (units/day),
presence of arterial hypertension (systolic blood pressure
>−140 mmHg or treated hypertension), presence of hyper-
cholesterolaemia (LDL >100 mg/dl or treated). Excessive alcohol
consumption was defined as more than three drinks/day (or
>−40 g pure alcohol/day), and defined as chronic heavy alcohol
consumption.15 T1D or T2D was defined according to the di-
abetologist’s diagnosis.

The local institutional review board approved the develop-
ment of this prospective database and the study protocol
(Erasme-ULB Ethics Committee, reference: B2020/580).
JHEP Reports 2023
Study population
All adult patients diagnosed with diabetes included in the
endocrinology department database between January 2000 and
December 2020 were evaluated for inclusion. Exclusion criteria
related to diabetes were: gestational, secondary, monogenic, or
mitochondrial diabetes; missing data for clustering analysis,
including age at diagnosis, weight, height, fasting glycaemia, and
concomitant C-peptide, HbA1c, and glutamic acid decarboxylase
antibodies. For each of the previous variables, the closest value
from the diagnosis was selected to perform the clustering. Gly-
caemia and C-peptide were used to calculate homeostasis model
assessment (HOMA), estimates of beta-cell function (HOMA2B),
and insulin resistance (HOMA2IR) with the HOMA2 calculator
from the University of Oxford (Oxford, UK).16 Although useful for
large cohorts, it should be acknowledged that HOMA estimates
derived from fasting measures are less sensitive than measures
from dynamic, stimulated tests, that is meal-stimulated or oral or
intravenous glucose tolerance tests.17–19 Patients diagnosed
before 2000 for whom clinical/biological baseline data were
available were also included. Other exclusion criteria were: the
presence of hepatitis B surface antigen, positive hepatitis C virus
PCR or human immunodeficiency virus antigen/antibodies,
haematological or solid-organ transplantation, concomitant
immunosuppressive treatment, and clinical cirrhosis or any sign
of chronic liver disease at baseline. To exclude patients with a
high probability of advanced fibrosis at diabetes diagnosis, we
included only patients with FIB4 <2.67; the FIB4 value closest to
diabetes diagnosis was used. The timeframe for FIB4 assessment
was within a year of diabetes diagnosis. A total number of 1,612
patients with diabetes mellitus recorded from January 2000 to
December 2020 in the endocrinology department database were
evaluated for inclusion. After removing those with exclusion
criteria, 1,068 patients with diabetes mellitus were included
(Fig. S1).
Outcome measures
All outcomes were recorded until March 2022.

Liver-related outcomes
We defined liver-related events as the occurrence of at least one
of the following complications during the follow-up period: as-
cites, encephalopathy, variceal haemorrhage, or hepatocellular
carcinoma.

Liver fibrosis was assessed with either liver biopsy (percuta-
neous or trans-jugular) or fasting transient elastography using
the FibroScan® system. The transient elastography value was
validated if there were more than 10 valid measures with a
success rate above 80%.20 Clinically significant fibrosis (>−F2) was
defined by a liver stiffness >−9.1 kPa or histologically by the
presence of portal and perisinusoidal fibrosis.21 Advanced
fibrosis was histologically characterised by the presence of
bridging fibrosis (>−F3) or cirrhosis (>−F4) or by an liver stiffness
>−12.1 kPa (>−F3) or >18.5 kPa (>−F4).

22 Only patients in whom FIB4
and/or imaging and/or clinical and blood test results were sug-
gestive of fatty liver disease were invited to have liver fibrosis
assessment by FibroScan/liver biopsy during the follow-up
period.

Liver steatosis was assessed by: liver biopsy with the presence
of steatosis in >−5% of hepatocytes; or fasting transient elastog-
raphy with a controlled attenuation parameter (CAP) >255 dB/
2vol. 5 j 100791



min; or the presence of hepatic steatosis on imaging including
abdominal ultrasound, magnetic resonance imaging, and
abdominal computed tomography.6 The presence of steatosis at
baseline was defined as the presence of steatosis at imaging
closest to and at the latest 5 years after diabetes diagnosis.
Steatosis at the last-follow up was defined as steatosis present at
the last available liver imaging during the follow-up. NASH was
defined, on liver biopsy, by the presence of steatosis, hepatocyte
ballooning, and lobular inflammation and a NAFLD activity score
(NAS) >−5.

6,21
Statistical analysis
We applied the sex-specific classification algorithm published by
Ahlqvist et al.11 using the nearest centroid approach. The
following variables at baseline were used for the cluster analysis:
age, sex, BMI, HbA1c, HOMA2B, HOMA2IR, and glutamic acid
decarboxylase antibody status. Each patient was assigned to one
of the following clusters, mild age-related diabetes (MARD), mild
obesity-related diabetes (MOD), severe insulin-deficient diabetes
(SIDD), and severe insulin-resistant diabetes (SIRD). Patients
who were glutamic acid decarboxylase antibody-positive were
assigned to the severe autoimmune diabetes (SAID) cluster.
Based on key clinical and biological features shared by some
diabetes subgroups (e.g. metabolic control [HbA1c] level, beta
cell/insulin-resistance scores, age, BMI), we secondarily pooled
SAID with SIDD (creating an insulin-deficient cluster) and MARD
with MOD (mild-insulin resistant cluster). This simplified clas-
sification is hence composed of three subgroups: severe insulin-
resistant (SIR), mild insulin-resistant (MIR), and insulin-deficient
(ID) diabetes.

Continuous variables are described as means (95% CI) or
medians (IQR). The Kruskal–Wallis rank sum test, one-way
ANOVA test, or Fischer’s exact test were performed to compare
clinical and demographical variables between groups. Follow-up
time was defined as the period from diabetes diagnosis to the
last follow-up visit. Data for patients were censored at the time
of the last follow-up visit. We used a multistate approach using a
Table 1. Study population characteristics.

Characteristic 1/SAID, n = 162† 2/SIDD, n = 266†

Age (years) 37 (14) 46 (11)
Sex

F 74 (46%) 88 (33%)
M 88 (54%) 178 (67%)

BMI (kg/m2) 24 (21–27) 29 (26–32)
HbA1c (%) 9.20 (7.12–11.97) 10.50 (9.40–12.30) 7
HOMA2B 24 (9–56) 31 (21–48)
HOMA2IR 0.82 (0.57–1.67) 1.93 (1.18–3.00) 5
C-peptide (nmol/L) 0.23 (0.00–0.55) 0.66 (0.40–0.96) 2
Glycaemia (mg/dl) 178 (121–256) 202 (151–250)
Alcohol consumption

No 129 (80%) 203 (76%)
Occasionally 19 (12%) 23 (8.6%)
1–3 units/day 8 (4.9%) 17 (6.4%)
>3 units/day 6 (3.7%) 23 (8.6%)

Tobacco 51 (32%) 57 (22%)
Hypertension 21 (13%) 85 (32%)
Hypercholesterolaemia 45 (28%) 87 (33%)

Excessive alcohol consumptionwas defined as >3 units/day. Group comparisons were ma
considered as significant.
MARD, mild age-related diabetes; MOD, mild obesity-related diabetes; SAID, severe a
resistant diabetes.
* Kruskal-Wallis rank sum test; Pearson’s X2 test.
† Mean (SD); n (%); median (IQR).
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competing risk model and coded (0-1-2) as follows: 0, alive; 1,
non-fatal outcome of interest; and 2, death. Death was consid-
ered a competing risk event for the occurrence of non-fatal
outcomes. Gray’s test was used to compare cause-specific cu-
mulative incidence function between groups. To assess factors
predicting outcomes of interest, univariate and multivariable
regression analyses were performed using the Fine and Gray
competing risks regression model. Multivariable models were
built using a forward elimination technique, and we introduced
as candidates in multivariable models only factors with a value of
p <0.1 in univariate analysis. Variables already included in the
clustering analysis were not introduced as covariates in the
multivariable models containing diabetes subtypes to avoid bias
related to the effect of collinearity.23 We also compared the
predictive accuracy for liver fibrosis over time between insulin
resistance score (HOMA2IR), and clusters. The different models
were compared using the AUC and the Brier score over follow-up
time. The prediction accuracy of each model was defined using a
cross-validation.24 All tests were two-tailed, and p <−0.05 indi-
cated a significant difference. All statistical analyses were done
using R version 4.1.3 (R Foundation for Statistical Computing,
Vienna, Austria).

Results
Characteristics of the study population and diabetes clusters
The study included 1,068 adult patients, of whom 878 (82.2%)
had T2D, and 190 (17.3%) had T1D. Baseline clinical and biological
characteristics are stratified by cluster and summarised in
Table 1. A total of 162 (15.2%) patients with glutamic acid
decarboxylase antibodies were allocated to the SAID cluster.
They had the lowest BMI, the lowest insulin secretion/resistance
scores (HOMA2B/HOMA2IR), and the lowest age at diabetes
onset. Patients with SIDD (n = 266, 24.9%) had the poorest gly-
caemic control –with a low insulin secretion level (low HOMA2B
index) – and the highest level of excessive alcohol consumption
(>3 units/day). Patients with SIRD (n = 95, 8.8%) had the highest
insulin resistance/secretion indexes (HOM2IR/HOMA2B) and 72
3/SIRD, n = 95† 4/MOD, n = 359† 5/MARD, n = 186† p value*

55 (11) 44 (10) 60 (9) <0.001
<0.001

30 (32%) 197 (55%) 66 (35%)
65 (68%) 162 (45%) 120 (65%)

32 (30–38) 34 (31–38) 27 (25–29) <0.001
.10 (6.10–8.40) 6.90 (6.20–7.90) 6.70 (6.20–7.27) <0.001
142 (88–180) 84 (56–116) 76 (52–100) <0.001

.99 (3.88–7.72) 2.69 (1.88–3.79) 2.19 (1.48–2.74) <0.001

.03 (1.53–2.56) 1.07 (0.76–1.49) 0.89 (0.61–1.09) <0.001
131 (106–213) 137 (112–164) 131 (113–156) <0.001

0.022
66 (69%) 295 (82%) 138 (74%)
18 (19%) 37 (10%) 24 (13%)
5 (5.3%) 13 (3.6%) 16 (8.6%)
6 (6.3%) 14 (3.9%) 8 (4.3%)
18 (19%) 53 (15%) 24 (13%) <0.001
57 (60%) 131 (36%) 91 (49%) <0.001
50 (53%) 145 (40%) 78 (42%) <0.001

de using the Kruskal–Wallis rank sum test, or Pearson’s X2 test. Values of p <0.05 were

utoimmune diabetes; SIDD, severe insulin-deficient diabetes; SIRD, severe insulin-
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(75.8%) were obese. The MOD cluster (n = 359, 33.6%) had the
highest BMI without notable insulin resistance. Finally, patients
with MARD (n = 186, 17.4%) were older and had better metabolic
control than those assigned to other subgroups.

Cumulative incidence and factors associated with liver-
related events in patients with diabetes without evidence of
advanced fibrosis at diagnosis
The median follow-up for the whole cohort was 14.76 years (IQR:
8.2–22.06). For the whole population, the cumulative incidence
of liver-related events at 20 and 30 years was 1.5% (95% CI:
0.7–2.8) and 3.4% (95% CI: 1.4–5.4), respectively (Fig. S2). The
highest cumulative incidence of liver-related events at 20 years
was observed in the SIRD cluster (7.8%, 95% CI: 2.2–18.2), fol-
lowed by MOD (2.3%, 95% CI: 0.6–6.1), MARD (1.5%, 95% CI:
0.1–7.1), SIDD (0.5%, 95% CI: 0.0–2.4), and SAID 0% (Fig. S3). Re-
sults of univariate and multivariable analysis of factors associ-
ated with liver-related events are summarised in Table 2.
Independent predictors of liver-related events in multivariable
models were: excessive alcohol consumption at baseline (sub-
distribution hazard ratio [sHR], 11.30; 95% CI: 3.07–41.05, p
<0.001) and allocation to the SIRD cluster (sHR, 7.62; 95% CI:
1.89–30.80, p = 0.001). Moreover, in a competing risk regression
model, we included all clinical variables used to subclassify pa-
tients with diabetes. Independent predictors of liver-related
events in univariate models were: excessive alcohol consump-
tion at baseline, HOM2IR, age, and hypertension. Independent
predictors of liver-related events in multivariable models
remained: excessive alcohol consumption at baseline (sHR, 7.44;
95% CI: 2.12–26.1, p = 0.002), and HOMA2IR score (sHR, 1.43; 95%
CI: 1.20–1.69, p <0.001) (Table S1). The median age of patients
with diabetes who developed liver-related events was 68 (IQR:
63–75). Only one patient encountered liver-related events under
50 years (a patient with SIRD with excessive alcohol
consumption).

Association between diabetes cluster and liver fibrosis
In this study, 359 (33.6%) patients were screened for liver fibrosis
by FibroScan, and 126 (11.8%) had a liver biopsy. To assess the
association between the cluster assignment and the develop-
ment of clinically significant fibrosis during the follow-up, we
restricted our analysis to the subgroup of patients that have been
evaluated for liver fibrosis (n = 418). At 20 years, the highest
cumulative incidence of diagnosis of clinically significant fibrosis
(>−F2) was observed in patients with SIRD with 63.3% (95% CI:
Table 2. Factors associated with liver-related events.

Variable

Univariate analysis

sHR (95% CI)

Cluster
SIDD ref.
SIRD 8.90 (2.53–31.30)
MOD 1.06 (0.27–4.25)
MARD 1.34 (0.25–7.25)

Sex (male) 1.11 (0.40–3.09)
Hypertension 3.17 (1.12–9.00)
Hypercholesterolaemia 0.78 (0.24–2.51)
Alcohol (>3 units/day) 12.3 (4.18–36.40)
Tobacco (active) 1.43 (0.41–5.05)

Data are expressed as subdistribution hazard ratio (sHR) (95% CI). Univariate and mult
Excessive alcohol consumption was defined as >3 units/day. Values of p <0.05 were con
MARD, mild age-related diabetes; MOD, mild obesity-related diabetes; SIDD, severe ins
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41.3–85.3), followed by MOD with 44.6% (95% CI: 32.9–55.6) and
MARD with 40.3% (95% CI: 23.6–56.5) (p <0.001) (Fig. 1). The
lowest risk of significant fibrosis (i.e. F2–F4) was observed in
patients allocated to the SAID and SIDD clusters, with 5.0% (95%
CI: 0.003–21.1) and 26.3% (95% CI: 15.6–38.2), respectively. sHRs
for the risk of clinically significant fibrosis for the whole follow-
up period stratified by cluster were: 2.89 (95% CI: 1.67–5.01) for
SIRD, 1.60 (95% CI: 1.03–2.48) for MOD, and 2.05 (95% CI:
1.19–3.53) for patients with MARD with the SIDD cluster
considered as the reference (p = 0.001) (Table 3).

SIRD also had higher sHR for advanced fibrosis (>−F3) (sHR,
2.36; 95% CI: 1.21–4.60, p = 0.01) (Fig. S4). Considering the
clustering classification, we analysed risk factors associated with
clinically significant fibrosis in a Fine and Gray competing risks
regression model. In multivariable analysis, excessive alcohol
consumption (>3 units/day) (sHR, 2.60; 95% CI: 1.64–4.13, p
<0.001), cluster allocation (p <0.001), and presence of hyper-
tension (sHR, 1.47; 95% CI: 1.03–2.12, p = 0.035) at baseline were
independent predictive factors of clinically significant fibrosis
(Table 3). We also assessed the association between different
levels of baseline alcohol consumption and the development of
clinically significant fibrosis. We observed a significantly
increased risk starting from three drinks/day (Fig. S5).

No association was found between glucose-lowering drugs
(i.e. metformin, GLP1 receptor agonists, PPARc agonists) and the
development of clinically significant fibrosis (Table 3).

Moreover, in a competing risk regression model, we included
all clinical variables used to subclassify patients with diabetes.
Independent predictors of clinically significant fibrosis in
multivariable models remained: excessive alcohol consumption
at baseline (sHR, 2.53; 95% CI: 1.56–4.11, p <0.001), HOMA2IR
score (sHR, 1.12; 95% CI: 1.04–1.21, p = 0.004), and HbA1c level
(sHR, 0.98; 95% CI: 0.97–0.99, p = 0.001) (Table S2).

In addition, we compared the clinical characteristics of eval-
uated and non-evaluated patients for fibrosis during the follow-
up (Table S3). We observed no statistically significant difference
between screened and non-screened patients with SIRD con-
cerning their clinical and biological characteristics at baseline.
For the four remaining clusters, screened patients had higher
resistance surrogate markers.

We also compared the prediction accuracy between insulin
resistance score (HOMA2IR) and the clustering classification
(Table S4). The clustering classification had a higher AUC after 5
years of follow-up compared with HOMA2IR, indicating a higher
discriminatory accuracy (Fig. S6A). The clustering classification
Multivariable analysis

p value sHR (95% CI) p value

0.001 0.009

7.62 (1.89–30.80)
1.17 (0.26–5.29)
1.65 (0.29–9.26)

0.80
0.03 2.17 (0.69–6.86) 0.18
0.67

<0.001 11.30 (3.07–41.05) <0.001
0.58

ivariate regression analyses were performed using competing risk regression model.
sidered as significant.
ulin-deficient diabetes; SIRD, severe insulin-resistant diabetes.
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Fig. 1. Time to clinically significant fibrosis (F2–F4) by cluster. Cumulative
incidence function of clinically significant fibrosis. Death was considered as
competing risk factor for the diagnosis of clinically significant fibrosis. CIF,
cumulative incidence function; MARD, mild age-relate diabetes; MOD, mild
obesity-related diabetes; SAID, severe autoimmune diabetes; SIDD, severe
insulin-deficient diabetes; SIRD, severe insulin-resistant diabetes.
seems to have better discrimination and calibration (evaluated
by the Brier score) over time compared with the HOMA2IR score
(Fig. S6B).

We secondarily focused our analysis on our T1DM popu-
lation. Of the 190 patients included, 23 were evaluated for
liver fibrosis in the follow-up, among whom two (8.7%)
developed clinically significant fibrosis. Patients without
clinically significant fibrosis were younger, and had poorer
metabolic control, lower BMI, and HOMA2IR/HOMA2B index
as compared with patients who developed significant fibrosis
(Table S5).
Table 3. Factors associated with clinically significant fibrosis.

Variable

Univariate analys

sHR (95% CI)

Cluster
SIDD ref.
SIRD 2.89 (1.67–5.01)
MOD 1.60 (1.03–2.48)
MARD 2.05 (1.19–3.53)

Sex (male) 1.17 (0.82–1.66)
Hypertension 1.51 (1.06–2.14)
Hypercholesterolaemia 0.98 (0.68–1.40)
Alcohol (>3 units/day) 1.98 (1.25–3.14)
Tobacco (active) 0.77 (0.47–1.26)
Diabetes medication

Metformin alone 1.39 (0.86–2.24)
PPARc agonists 1.32 (0.38–4.58)
GLP1R agonists 0.87 (0.50–1.50)
GLP1R agonist–metformin 0.86 (0.49–1.52)

Data are expressed as subdistribution hazard ratio (sHR) (95% CI). Univariate and multiv
Excessive alcohol consumption was defined as >3 units/day. Values of p <0.05 were con
GLP1R, glucagon-like peptide receptor; MARD, mild age-related diabetes; MOD, mild obe
insulin-deficiency diabetes; SIRD, severe insulin-resistant diabetes.
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Association between simplified diabetes cluster assignment,
liver-related events, and liver fibrosis
A total of 428 and 545 patients were assigned to the ID diabetes and
theMIRdiabetes clusters, respectively. The remaining95belonged to
the SIR cluster. Their clinical and biological characteristics are sum-
marised in Fig. S7. Using the simplified classification, the risk of
developing liver-related events was, respectively, 14.3-fold (95% CI:
4.05–50.1)and1.84-fold (95%CI:0.52–6.57)higher forSIRandMIRas
compared with patients in the ID cluster (p <0.001).

At 20 years, the cumulative incidence of clinically significant
fibrosis stratified by this simplified classification was 63.3% (95%
CI: 41.3–85.3) for SIR, 44.3% (95% CI: 34.3–53.7) for MIR, and
23.4% (95% CI: 14.1–34.1) for ID diabetes (p <0.001) (Fig. S8). The
sHRs for clinically significant fibrosis were 3.30 (95% CI:
1.90–5.73, p <0.001) and 1.98 (95% CI: 1.30–2.99, p = 0.001) for
SIR and MIR, respectively, as compared to ID group (Table S6).
Liver steatosis according to diabetes cluster
Liver steatosis evaluation by imaging at baseline was available in
236 patients and revealed a higher proportion of steatosis in
patients with SIRD (89%) and MOD (86%) as compared with
MARD (75%), SIDD (64%), and SAID (64%) (p = 0.013) (Table 4).
Liver steatosis evaluation by imaging at the last follow-up was
available in 497 patients and also highlighted a higher propor-
tion of steatosis in MOD (77%) and SIRD (76%) clusters (p <0.001).
In patients with an available CAP (n=316), SIRD and MOD also
showed a higher CAP value than the other clusters. When
considering the simplified classification, patients with SIR had a
higher prevalence of steatosis at baseline (89%) than MIR (82%)
and ID (64%) patients (p = 0.01) (Table S7). The prevalence of
steatosis at last follow-up imaging and CAP values were also
higher in SIR and were lowest in patients with an ID profile.

NASH according to diabetes cluster
We also evaluated the prevalence of biopsy-proven NASH in 124
patients. The highest prevalence of NASH was found in patients
with MOD (31%) but was not significantly different from the
other clusters (Table 4). Of note, none of the three patients who
underwent biopsy in the SAID cluster had an NAS score >2.
is Multivariable analysis

p value sHR (95% CI) p value

0.001 <0.001

3.14 (1.76–5.61)
1.83 (1.17–2.86)
2.45 (1.40-4.30)

0.40
0.021 1.47 (1.03–2.12) 0.035

0.9
0.004 2.60 (1.64–4.13) <0.001

0.3

0.2
0.7
0.6
0.6

ariate regression analyses were performed using a competing risk regression model.
sidered as significant.
sity-related diabetes; PPARc, peroxisome proliferator-activated receptor; SIDD, severe
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Table 4. Distribution of steatosis and histological features across diabetes clusters.

Characteristics n SAID† SIDD† SIRD† MOD† MARD† p value*

Median CAP 316 327 (277,360) 297 (256,343) 339 (310,374) 330 (293, 365) 305 (244,354) 0.005
Steatosis at baseline 236 9/14 (64%) 27/42 (64%) 32/36 (89%) 79/92 (86%) 39/52 (75%) 0.013
Steatosis at last follow-up 497 21/47 (45%) 77/124 (62%) 39/52 (76%) 145/188 (77%) 49/86 (57%) <0.001
Definite NASH 124 0/3 (0%) 7/31 (23%) 3/18 (17%) 15/49 (31%) 2/23 (9%) 0.3

Definite NASH was defined, on liver biopsy, by a NAFLD activity score >−5 with the presence of predominantly macrovesicular steatosis, and hepatocyte ballooning, and lobular/
or portal inflammation. Group comparisons were made using the Kruskal–Wallis rank sum test, Fisher’s exact test, or Pearson’s X2 test. Values of p <0.05 were considered as
significant.
CAP, controlled attenuation parameter; MARD, mild age-related diabetes; MOD, mild obesity-related diabetes; SAID, severe autoimmune diabetes; SIDD, severe insulin-
deficient diabetes; SIRD, severe insulin-resistant diabetes.
* Kruskal-Wallis rank sum test; Fisher’s exact test; Pearson’s X2 test.
† Median (IQR); n/ntot (%).

Research article
Discussion
This study showed that a novel machine learning-based classi-
fication adequately stratifies the risk of liver-related events in
patients with diabetes. Patients at the highest risk of liver-related
events and liver fibrosis were assigned to clusters with evidence
of more pronounced insulin resistance. We also confirmed that
alcohol consumption remains the most potent prognostic factor
of the occurrence of liver-related events in this population.

The global prevalence of diabetes has increased over the past
few decades, reaching nearly 6–10% of the general population in
Western countries.25,26 Patients with diabetes remain at high
risk for liver fibrosis and liver-related outcomes. The estimated
prevalence of significant fibrosis (>−F2) in patients with T2D has
been evaluated across several studies and ranges between 9%
and 20%.5,27–29 Considering the worldwide increase in diabetes
patients at-risk for liver fibrosis and liver-related events, iden-
tifying subtypes with different risk profiles is urgently needed.

We used a novel clustering method for adult-onset diabetes,
developed by Ahlqvist et al.11 to stratify the risk of liver-related
events and liver fibrosis in patients with diabetes. Two studies
have evaluated hepatic fibrosis features among clusters using
serum-based markers in a limited number of patients.12,30 Here,
we used liver biopsy and elastography to show that patients with
SIRD had the highest risk for clinically significant fibrosis (i.e. F2–
F4). Patients with SIRD also had the highest risk for liver-related
events. Conversely, none of the patients with SAID (glutamic acid
decarboxylase antibody-positive) developed advanced fibrosis
during follow-up and thus should be considered at very low risk.
MARD and MOD had a 2.5- and twofold greater risk of devel-
oping significant fibrosis compared with patients with SIDD and
should be regarded as at intermediate risk. Based on the similar
metabolic profile of MARD with MOD (mild forms of insulin
resistance) and SAID with SIDD (insulin deficiency), we second-
arily evaluated the risk for liver fibrosis using a simplified clas-
sification into SIR (the SIRD cluster), MIR (i.e. MARD and MOD),
and ID (i.e. SAID and SIDD) diabetes. Overall, patients assigned to
the SIR and MIR groups had nearly three- and twofold greater
risk of developing significant fibrosis, respectively, than the ID
group. Here, we made use of HOMA estimates based on fasting
glucose and C-peptide levels, which are less sensitive than dy-
namic tests; it will hence be of interest in future studies to assess
insulin resistance and secretion using meal- or glucose-
stimulated tests. It should be also noted that our simplified
classification has not been validated so far. Therefore, it will
require further evaluation in other studies, especially those
assessing liver-related outcomes in patients with diabetes. Our
results confirm that the risk of developing liver fibrosis is highly
correlated with the degree of insulin resistance in people with
diabetes and underlines the critical role of insulin resistance in
JHEP Reports 2023
the occurrence of hepatic fibrosis. There is evidence that insulin
resistance plays a key role in lipid metabolism dysfunction by
promoting de novo lipolysis, excessive free fatty acids accumu-
lation in hepatocytes, and contributing to the development of
lipotoxicity.31 Liver lipotoxicity impairs insulin signalling, in-
duces oxidative stress, and apoptotic pathways resulting in he-
patocellular inflammation and fibrosis.32

We also confirmed that features of metabolic syndrome,
including hypertension, confer an additive risk for liver fibrosis
even in the population with diabetes. Moreover, we observed
that excessive alcohol consumption at baseline (>3 units/day) is
the most critical risk factor for liver-related outcomes even after
correction for insulin-resistance level. Our data align with Mallet
et al.10 who recently showed that alcohol was the leading risk
factor associated with liver-related complications in patients
with T2D. These repeated observations suggest that degrees of
insulin resistance and alcohol consumption are important
prognostic factors of liver-related complications that should be
carefully evaluated in patients with diabetes at baseline.

It should be noted that although patients with SIDD are at
lower risk for liver fibrosis, the cumulative incidence of clinically
significant fibrosis reached 26.3% at 20 years. Even if patients
with SIDD could be considered at lower risk, this population
should also be carefully monitored for liver fibrosis, especially if
other features of metabolic syndrome or alcohol consumption
are superimposed.

In this study, we assessed the cumulative incidence of liver-
related events in patients with diabetes without advanced
fibrosis at diagnosis. The observed cumulative incidence at 10
years was low, 0.34%, but consistent with the literature. The 10-
year cumulative incidence of the liver-related event reported in a
recent study enrolling 7,028 patients with NAFLD and T2D
(including 6.4% of patients with cirrhosis at baseline) was 0.6%.29

In another study including 80,224 patients who had obesity and
242,822 patients who did not have obesity, the cumulative
incidence of severe liver disease at 10 years was <0.15%, <0.2%,
and 0.4% in patients who were non-obese, overweight, and
obese, respectively.30 Despite a limited number of events, our
results are in line with those of previous studies and suggest that
SIRD patients should be carefully followed for liver-related
complications. However, this interesting observation should be
confirmed in other prospective cohorts with a longer follow-up.
However, must be confirmed in a prospective manner, with a
larger cohort followed for a more than 10-year period.

Age remains an important parameter to stratify the risk of
liver-related events in the diabetes population. In our study the
median age of patients with diabetes who developed liver-
related events was 68 (IQR: 63–75), and only one patient
encountered liver-related events under 50 years (a patient with
6vol. 5 j 100791



SIRD with excessive alcohol consumption). Moreover, the MARD
cluster remains the second more at-risk cluster for liver fibrosis.
These data are in line with previous studies that recommend
screening patients with diabetes for liver-related complications
starting at 50 years of age.33

The limitations of this study include its monocentric na-
ture, the lack of systematic screening of liver fibrosis in the
overall population, and the heterogeneity in the liver fibrosis
assessment (e.g. liver biopsy or FibroScan). Indeed, because
only patients with a higher probability of fibrosis progression
were assessed by transient elastography or biopsy, this may
lead to overestimating the incidence of this outcome. This
applies particularly to non-SIRD clusters, where screened
patients had a more pronounced level of insulin resistance.
However, there was no significant difference in record clinical
or biological variables between screened and unscreened pa-
tients with SIRD. Therefore, we are confident that we did not
JHEP Reports 2023
overestimate this subgroup’s relative risk for liver fibrosis. We
also acknowledge that by using a strict inclusion criterion for
the diagnosis of NASH (i.e. NAS >5), our study may have
inadvertently excluded a subset of patients with less severe
NASH that are still considered, for example, in clinical trials.34

This limitation could impact the generalisability of our results
to the broader NASH population. Future studies evaluating
this clustering approach may benefit from considering a more
inclusive diagnostic criterion that captures a broader spec-
trum of NASH severity.

In conclusion, we showed that a novel clustering adequately
stratifies the risk of liver-related complications in a population
with diabetes. Patients in the SIRD cluster had the highest risk of
liver-related outcomes and fibrosis progression. Furthermore,
our results underline the impact of the severity of insulin resis-
tance and alcohol consumption as key prognostic risk factors for
liver-related complications.
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