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Abstract: This study analyzed the thermostability and effect of calcium ions on the enzymatic activity
of α-Amylase produced by Bacillus licheniformis strain LB04 isolated from Espinazo Hot springs in
Nuevo Leon, Mexico. The enzyme was immobilized by entrapment on agar-agarose beads, with
an entrapment yield of 19.9%. The identification of the bacteria was carried out using 16s rDNA
sequencing. The enzyme was purified through ion exchange chromatography (IEX) in a DEAE-
Sephadex column, revealing a protein with a molecular weight of ≈130 kDa. The enzyme was stable
at pH 3.0 and heat stable up to 80 ◦C. However, the optimum conditions were reached at 65 ◦C and
pH 3.0, with a specific activity of 1851.7 U mg−1 ± 1.3. The agar-agarose immobilized α-Amylase
had a hydrolytic activity nearly 25% higher when compared to the free enzyme. This study provides
critical information for the understanding of the enzymatic profile of B. licheniformis strain LB04 and
the potential application of the microorganisms at an industrial level, specifically in the food industry.

Keywords: thermostability; α-Amylase; agar-agarose immobilization; Bacillus licheniformis; hot
springs; ion exchange chromatography; free enzyme; immobilized α-Amylase

1. Introduction

Starch is a polysaccharide composed of several glucose units bound together by α-1,4-
glycosidic linkages and α-1,6-glycosidic bonds. Through the bond branching, starch occurs
as granules composed of two main polymers of glucose: amylose and amylopectin [1].
While amylose is a linear chain of α-D-glucose units joined together by α-1,4-glycosidic
linkages, amylopectin is a polysaccharide built by α-1,4 and α-1,6-glycosidic bonds, the
latter being responsible for the branching inside starch granules. The disruption of starch
granules to obtain glucose is known as starch hydrolysis, essential for a wide range of
industrial products [2].

Acidic hydrolysis of starch was widely replaced by enzymatic hydrolysis since it
performs under less demanding conditions, in addition to minimizing extreme parameters
reached during chemical and physical treatments, such as temperature, pressure, and
prolonged periods of time [3].

The α-Amylase is an extracellular enzyme produced by a diversity of organisms
that cleave into the α-1,4-glycosidic linkages inside the starch granules, releasing glu-
cose monomers and several oligosaccharides, such as maltose [4]. Due to its versatility,
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α-Amylase was used in a wide range of industrial sub-sectors, such as the textile, pharma-
ceutical, brewing, detergent, and baking industry. This enzyme alone represents more than
50% of the global demand in the enzyme market. For instance, the worldwide α-Amylase
market for the baking industry valued at USD 278.23 million in 2018, was estimated to
reach USD 352.78 million by 2026 [5,6]. The α-Amylase improves bread properties by atten-
uating its damaged starch content and increasing carbon dioxide production during dough
fermentation. By changing the mixture’s rheology, a higher level of elasticity is reached,
thus increasing bread volume and firmness and reducing the crumb ratio [7]. This enzyme
was proved to decrease starch retrogradation levels, improve crumb formation during
longer storage periods, and lower water-loss rates [8]. As enzymes help meet consumer
demands of better quality bakery products, the need for cost-effective, enhanced perfor-
mance, thermostable and versatile α-Amylase enzymes that adjust to specific processes
is essential.

Enzymes produced by thermophilic organisms are commonly identified as ther-
mostable due to their performance capacity under high temperatures without losing
catalytic efficiency through temperature shifting. Microorganisms able to endure and adapt
to unusual environments, for instance, where temperature repetitively drops and rises,
where pH values are irregular or there is continuous exposure to high levels of salts, miner-
als or even pollutants, become targets for research focused on the production of enzymes
better-suited for industrial applications [9–12]. Enzyme immobilization is a well-known
technique where the physicochemical properties of a compound acting as a support allow
interaction with the structure of an enzyme. This interaction culminates with the rear-
rangement of the enzyme’s original configuration, achieving better enzyme stability during
catalytic reactions, and simplifying its recovery for future reuse [13–15]. Agar-agarose,
an acid-resistant polymer with a prolific gelling ability, was promoted as a carrier agent
for different enzyme’s entrapment due its inert nature and low-cost production. These
were the main reasons for choosing it as the immobilization matrix for the current study.
The entrapment technique is easier to perform against covalent binding, since it allows
thermo- and acid-sensitive proteins to preserve or even improve their enzymatic activity
without interacting with the active site. The enzyme is captured within the polymeric
matrix which allows a controlled diffusion while reacting with the substrate. At the same
time, the enzyme suffers a reconfiguration in its structure, resulting in changes through its
activity performance under different conditions, such as temperature, pH and substrate
concentration [16].

The industrial need for better performing enzymes under harsh conditions and limited
timeframes encourages the development of more efficient microorganisms. However, such
microorganisms might already inhabit ecosystems that parallel said conditions. That is
why in the present study, Bacillus licheniformis strain LB04 was isolated from a hot spring
(average water temperature of 55 ± 1.0 ◦C), in Espinazo, Nuevo Leon State in Mexico, to
determine its capacity to produce a thermostable α-Amylase enzyme. Different experiments
were carried out to evaluate its ability to hydrolyze starch under high temperatures and
acidic conditions, while subtracting calcium ions from the reaction, due to their nature
as structure stabilizing agents. The enzyme immobilization by physical entrapment in
agar-agarose beads was employed as the main technique to study its performance in the
interest of improving the enzymatic activity for potential industrial applications, such as
starch degradation, in which reducing costs and performance improvement is imperative.

2. Materials and Methods
2.1. Chemicals

Difco Nutrient broth and Difco Starch agar BD Bioscience, JT Baker sodium chloride,
PQM magnesium sulfate heptahydrate, sodium hydroxide, potassium sodium tartrate,
DEAE-Sepharose and JT Baker calcium chloride were purchased from CTR Scientific
(Nuevo Leon, Mexico). The JT Baker potassium iodate, JT Baker agar, and iodine solution
were bought from Productos Quimicos Monterrey, S.A. de C.V. FERMONT (Nuevo Leon,
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Mexico). JT Baker Soluble starch, Bacto yeast extract, casein peptone and BIO-RAD protein
assay dye reagent concentrate and bovine serum albumin standard were acquired from
Insumos Biomoleculares, S.A. de C.V. (CDMX, Mexico). The 3,5-dinitrosalicylic acid (DNS)
was purchased from Thermo Fisher Scientific Inc (CDMX, Mexico).

2.2. Sample Collection

Water and sediment samples were collected from a hot spring located in Espinazo,
Nuevo Leon, Mexico [17] using 50 mL sterilized falcon tubes and stored at −20 ◦C for
further use.

2.3. Microbial Strains and Medium Composition

Samples were grown in 250 mL of nutrient broth medium (beef extract 10.0 g, casein
peptone 10.0 g, NaCl 5.0 g dissolved in 1 L deionized water; pH 7.3) in Erlenmeyer flasks.
The flasks were incubated for 24 h at 45 ◦C under shaking conditions. A sample of 1.0 mL
of the grown culture was transferred to starch agar plates (soluble starch 10.0 g, casein
peptone 3.0 g, agar 12.0 g, pH 6.0; made with 1 L deionized water) for isolation and
identification of the microbial species.

2.4. Screening of Amylase Producing Bacteria and Growth Conditions

The colonies isolated from starch agar plates were tested to produce α-Amylase
enzymes using the Lugol staining assay [18]. Only the bacteria species showing the highest
α-Amylase production were identified and repeatedly grown on a starch culture medium
(soluble starch 10.0 g, yeast extract 3.0 g, casein peptone 5.0 g, NaCl 3.0 g, MgSO4 • 7H2O
0.5 g, CaCl2 3.0 g, pH 5.5; made with 1 L deionized water) at constant shaking at 150 rpm
and 45 ◦C [19]. The cell-free supernatant used as the α-Amylase enzyme source was
collected by centrifugation at 14,000 rpm for 40 min at 4 ◦C and tested for amylase activity
through the DNS method.

2.5. Morphological, Biochemical, and Physiological Characterization

Morphology of the isolated strain was determined using the Gram staining technique.
The endospore and capsule staining technique was also employed. Bacterial morphology
was observed with a binocular microscope CxL (LABOMED). The biochemical charac-
terization of the resulting enzyme activity was determined through different substrate
degradation and resulting bio-products.

2.6. Molecular Phylogenetic Analyses

The 16s rDNA sequence was analyzed through the BLASTN data to identify the iso-
lated α-Amylase-producing strain. A neighbor-joining phylogenetic tree was constructed
using MEGA6 software.

2.7. Amylase Activity Assay

The starch hydrolytic activity of the isolated strain was estimated using the DNS
assay method [20] as follows: the enzymatic activity was measured using 50 µL of enzyme
solution with 50 µL of starch solution 1.0% and incubated for 60 min at 45 ◦C. A 50 µL
sample of the reaction was mixed with 50 µL of DNS solution. The mixture was incubated in
a boiling water bath for 5 min and immediately cooled down for 10 min in an ice bath. The
absorbance of the cooled mixture was measured at 540 nm using UV-vis spectrophotometry,
where one unit of amylase activity was defined as the amount of enzyme that releases
1 µg/mL of maltose per minute under the assay conditions. Total protein concentration
was determined by Bradford protein assay [21].

2.8. Preparation of Crude Extract for Purification of α-Amylase

A fermented media (48 h, 150 rpm, 45 ◦C) was centrifuged for 40 min at 4 ◦C and
10,000 rpm. The supernatant phase was collected and filtrated through a membrane disc
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(47 mm diameter and 0.45 µm pore size). The proteins present in the fraction were pre-
cipitated with an initial concentration of (NH4)2SO4 at 65%. The remaining proteins in
the fraction were precipitated at a salt saturation of 85%. Ammonium was added under
constant agitation at 4 ◦C. Precipitated proteins were separated during the second period of
centrifugation (10,000 rpm, 4 ◦C, 40 min). The obtained pellet was dissolved in a minimum
volume of a sodium acetate buffer (10 mM, pH 5.0) and dialyzed overnight at 4 ◦C and
constant agitation [12].

2.9. Purification of α-Amylase LB04 by Ion Exchange Chromatography

The dialyzed solution from the previous step was transferred to a column (20 × 400 mm)
loaded with a DEAE-Sephadex matrix. The column was pre-equilibrated with a 20 mM
acetate buffer, pH 6.0. Fractions were collected at a flow rate of 0.5 mL per minute against a
gradient of NaCl from 0 to 500 mM. The obtained fractions were evaluated for protein content
and enzyme activity.

2.10. Electrophoretic Analysis of Purified Enzyme and Zymography

To determine the molecular weight of the α-Amylase produced by B. licheniformis
strain LB04, an SDS-PAGE was performed, employing a 12% running gel and a 5% stack-
ing gel [22]. Samples were mixed with 10 µL loading buffer and loaded onto the gel.
Electrophoresis was performed using a BIO-RAD Mini Protean-Tetra Cell with a voltage
of 20 mA during the run. The protein bands were detected by Coomassie Brilliant Blue
R250. Zymography for detection of α-Amylase activity was performed by following the
methodology proposed by Upadhyay [23].

2.11. Characterization of Enzymatic Properties of Purified α-Amylase LB04
2.11.1. Thermostability and Acidic Resistance on α-Amylase Activity

In order to determine the optimal pH for the obtained α-amylase, the enzyme-
containing fraction was tested in a pH range of 3.0–8.0, employing a 0.1 M glycine-HCl
buffer (pH 3.0), sodium acetate buffer 0.1 M (pH 4.0–6.0) and a Tris-HCl buffer (pH 8.0), in
a solution of 1.0% starch as substrate. The samples were incubated for 60 min at 40 ◦C. The
activity and optimal temperature of the purified enzyme was measured through the DNS
method by ranging temperatures from 20 to 90 ◦C during the incubation period employing
a sodium acetate buffer 0.1 M pH 4.0 and a starch 1.0% solution as substrate.

2.11.2. Effects of Calcium Ions on the Enzymatic Activity of α-Amylase

The calcium ion-dependency for hydrolytic activity of the α-Amylase was analyzed
employing a sodium acetate buffer 0.1 M, pH 4.0. The metallic ions present in the medium
were chelated adding EDTA until a final concentration of 1.0 mM. The reaction conditions
were the same as in the thermostability and acidic resistance activity test. The enzyme’s
total activity (100%) was determined by reducing sugar production using the DNS method.

2.12. Immobilization of α-Amylase LB04 on Agar-Agarose Beads

Agar-agarose beads were formed from a solution of 1.0% (w/v) agarose and 4.0%
(w/v) agar in a 25 mM sodium acetate buffer solution. The pH in solution was adjusted
to 5.5 and heated to 50 ◦C to solubilize the agar and the agarose. Once homogenized, a
volume of 9.0 mL was mixed with 1.0 mL of protein solution at a fixed concentration of
0.5 mg of protein per milliliter. The mixture was poured into a sterile glass plate until it
had completely solidified. Afterward, the gel was cut into beads of 5 × 5 mm and washed
with sodium acetate buffer 25 mM. The buffer was collected for protein quantification [16].

2.13. Immobilized Enzyme Assay

The binding of α-Amylase into the agar-agarose beads was analyzed through a DNS
assay. Beads were suspended in 0.5 mL of 10 mM sodium acetate buffer and 0.5 mL of a
1.0% soluble starch solution. This enzyme binding reaction was performed at pH 3.0, 4.0,
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5.0 and 6.0, for 30 min at 65 ◦C. These analytical parameters were designed to be within the
range that resulted in the optimal α-Amylase activity as shown in a previous test. Every
5 min, subsamples of 50 µL were collected, stopping the reaction by adding 50 µL of DNS
solution. The subsamples were boiled for 5 min and cooled down at 4 ◦C for 10 min,
then mixed with 500 µL of deionized water. Following the methodology established in
the DNS assay for amylase activity determination [20], the concentration of the reducing
sugars in the samples was analyzed through spectrophotometry at 540 nm, where 1 unit of
α-Amylase activity was defined as the amount of enzyme needed to produce 1 µmol of
maltose per min from soluble starch at 65 ◦C.

3. Results
3.1. Identification and Starch-Degrading Activity of the Strain LB04

Of the 14 samples collected, 10 isolates showed the ability to grow in starch agar after
24 h of incubation at 45 ◦C. However, only 4 strains produced halo zones in the agar plates
and were consequently selected to produce amylases to study their activity profile. A strain
labeled LB04 was identified as Gram-positive, rod-shaped bacteria and exhibited growth
and a production profile for an α-Amylase that maintained amylolytic activity at low pH
ranges and high temperatures. A summary of the biochemical characteristics observed for
LB04 is shown in Table 1.

Table 1. Identification profile of Bacillus licheniformis strain LB04.

Characterization of the LB04 Strain

Test LB04

Colony character Color White
Colony Shape Irregular

Edge Undulate
Elevation Flat

Morphology Gram character +
Shape Rod

Arrangement Single
Motility −

Biochemical profile Amylase +
Protease +
Lipase +

Catalase +
Oxidase −
Indole −

Gas production −
SH2 production −

Glucose +
Fructose −
Lactose −

Environmental tolerance Temp. tolerance range 20–90 ◦C
pH tolerance range 2.0–10.0

Positive test results, labeled with “+” sign, negative results labeles with “−“.

A further analysis of the 16S rDNA gene segment amplification and using the bioin-
formatics tool, BLAST, indicated the strain LB04 to be Bacillus licheniformis with a 99.8%
identity, as compared with the NCBI website database (Figure 1).

The B. licheniformis strain LB04 showed starch hydrolysis halos around the colonies
while incubated at 60 ◦C, indicating thermostability due to the production of α-Amylases,
commonly associated with thermotolerant performing enzymes [24].
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Figure 1. Molecular identification based on 16S rDNA sequence. The phylogenetic tree was con-
structed by a neighbor-joining algorithm based on the 16S rDNA gene sequences of B. licheniformis
strain LB04 against related species of Bacillus.

3.2. Growth Rate of Bacillus licheniformis Strain LB04

The B. licheniformis strain LB04 growth was monitored for 90 h, taking samples for
analysis every 12 h. The stationary phase lasted from 48 to 72 h, followed by a rapid decline
in the growth rate. Similar time patterns were previously reported for different B. licheni-
formis strains [25]. As shown in Figure 2, the presence of reducing sugars was registered
since the first 12 h, reaching the maximum point at 60 h, with 0.28 mg mL−1 ± 0.02 of free
reducing sugars in the supernatant fraction.
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3.3. Production of α-Amylase by B. licheniformis Strain LB04

Reducing sugar production peaked at 48 h (2.35 mg mL−1 ± 0.15), equivalent to
134.8 U (Figure 3). Bacillus licheniformis, in accordance to similar species, was reported
to reach maximum production levels of α-Amylase by 48 h; after that, the presence of
the reducing sugars in the medium declines due to accumulation of by-products and the
depletion of nutrients [26,27].
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Figure 3. Release of reducing sugars during the fermentation process by B. licheniformis strain LB04.
Maximum production levels of α-Amylase reached at 48 h (2.35 mg mL−1 ± 0.15).

3.4. Purification of α-Amylase

A recovery of 0.8 mg of purified α-Amylase was obtained, as can be seen in the protein
purification chart in Table 2.

Table 2. Protein purification steps for α-amylase produced by B. licheniformis strain LB04. The experiments were performed
in triplicate.

Step Total Activity
(U)

Total Proteins
(mg)

Specific Activity
(U/mg)

Purification
(Fold) Yield (%)

Crude extract 14,450 ± 142.7 44.0 328.4 ± 6.5 1.0 100
Ammonium sulfate
precipitation (65%) 6647 ± 98.2 10.0 664.7 ± 10.6 2.0 46

Ammonium sulfate
precipitation (85%) 4018 ± 34.9 2.8 1435 ± 27.8 4.4 28

DEAE-Sepharose 3092 ± 12.1 0.8 3865 ± 47.2 11.8 21.4

The eluted fractions at 250 mM NaCl showed amylase activity. Analysis by SDS-PAGE
and zymography confirmed the presence of a protein with a molecular weight of nearly
130 kDa and starch-degrading activity, as seen in Figure 4.

3.5. High Temperature and pH Ranges of Activity for the α-Amylase Produced by Strain LB04

The purified enzymatic fraction was tested under a range of temperatures and pH
levels. The influence of these parameters can be seen in Figure 5. From 30 to 95 ◦C, the
peek activity was shown at 65 ◦C under acidic conditions (pH 3.0), with a specific activity
of 1851.7 U mg−1 ± 1.3. By raising the pH level, a drop in enzymatic activity could be
observed from pH 4.0 to 8.0. As the reaction was performed under alkaline conditions, the
residual activity significantly decreased to 20.6% of the original value.
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Lane 1—Molecular weight marker. Lane 2—Composition of the crude extract at 48 h of fermentation.
Lane 3—Fraction 33, eluted at 250 mM NaCl. Lane 4—Zymogram of fraction 33 for detection of
α-Amylase activity.
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Figure 5. (a) Purified α-Amylase under different temperatures and pH levels. (b) Purified α-Amylase
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3.6. Influence of Calcium Ions on the Enzymatic Activity

The purified α-Amylase enzyme was analyzed through a DNS assay and by adding
EDTA as a chelating agent. The analysis was conducted as in previous conditions (data
shown in Figure 5b). A distinctive decrease in the enzymatic activity for most of the
temperature and pH ranges was shown after the addition of EDTA. It was noticed that
the enzymatic activity at 65 ◦C and pH 3.0, despite being the point of highest enzymatic
activity, dropped nearly 25% after the addition of EDTA when compared to chelating-free
conditions. The same trend was present at all temperatures. Still, none of the activity points
were completely inhibited by the chelation of the calcium ions.

3.7. Immobilization of α-Amylase on Agar-Agarose Beads

A simplified representation of the step-by-step process of the α-Amylase immobi-
lization in agar-agarose beads is shown in Figure 6. During this process the beads entrap
the enzyme on its surface, allowing a better interaction with the substrate. However,
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from the initial 0.5 mg of α-Amylase used for entrapment in the agar-agarose beads, only
0.36 ± 0.04 mg were immobilized after washing the beads with the 25 mM sodium ac-
etate buffer, equivalent to an estimated of 0.031 mg of α-Amylase per gram of beads.
The protein loading efficiency was calculated to be 72.1%, with an entrapment yield of
19.9%. This might suggest further analysis of different polymers in order to achieve greater
compatibility with the α-Amylase produced by B. licheniformis strain LB04 [28].
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Figure 6. Representation of the process followed for entrapment of the α-Amylase produced by
B. licheniformis LB04, on the surface of the agar-agarose beads.

3.8. Acidic Stability of Immobilized α-Amylase

As we can see in Figure 7, immobilization of α-Amylase in agar-agarose beads resulted
in enhanced enzymatic activity at pH 6. The increase in activity shown by the immobilized
enzyme was almost three times greater when compared to the free enzyme, even under the
same conditions. On the other hand, the change in the structure of the enzyme due to the
immobilization affected the acid-stability, considerably decreasing the enzymatic activity
at pH 3.0. The free non-immobilized enzyme showed better amylolytic performance at
lower pH values, with a gradual activity decrease as pH approached neutrality. After the
immobilization process, the acid-stability was only 202.4 U mg−1, when compared to the
original 834.1 U mg−1.
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Figure 7. Response of the α-Amylase during chelating conditions under a reaction temperature
of 65 ◦C and different pH levels. Comparison between the enzymatic activity shown by the free
form of the enzyme and its immobilized form. The maximum activity (100%) was equivalent to
1851.7 U mg−1 ± 1.3.
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4. Discussion

During the growth study, the protein levels released to the supernatant fraction followed
the growth curve at low concentrations from 12 to 48 h (less than 0.03 mg mL−1 ± 0.005)
(Figure 2), indicating the production of α-Amylase as a primary metabolite since its pro-
duction was growth-related to the carbon source (soluble starch) [29]. Once increased,
dextrins are released to the medium. In response, the bacteria shift from the starch as the
main source to the use of reduced sugars. Afterward, a rapid depletion of glucose and
maltose is observed. This pattern is related to the catabolite repression (CR) in B. licheniform
is due to the accumulation of degradation products such as glucose. The expression of
enzymes like α-Amylase leads to the buildup of reduced sugars in the medium and the later
repression of B. licheniformis promoters, preventing the amylase over-expression [30,31].
Once the 60-h threshold is passed, the CR is observed as the carbon source changes to
glucose and enzymes non-related to starch degradation are produced.

It has been reported that commonly, the molecular mass for enzymes such as α-
Amylases ranges from 55 to 70 kDa [30]. However, some amylase enzymes produced by
diverse Bacillus sp. strains have been reported to have molecular weights ranging from
130 to 210 kDa, which is associated with several factors, such as thermostable conformations
of wild-type enzymes [32], pH acid-alkaline resistance [33,34] and the type of carbon-source
(substrate) [35]. The heat and acidic resistance are one of the main characteristics observed
in LB04 α-Amylase, as the enzyme demonstrated higher enzyme activity levels at lower pH
points and higher temperatures. The activity profile can be observed in Figure 5, where the
lower the pH in the reaction the higher enzyme activity. The drop in activity is shown as the
reaction becomes alkaline. This is suggested to be caused by changes in the enzyme confor-
mation [36]. The alkaline adaptation of extracellular enzymes produced by microorganisms
is rare since the intracellular medium has neutral pH. However, remodeling of amino
acid pairs such as Arg-Asp in α-Amylase was shown to increase alkaline performance,
while Lys-Asp pairing was linked to non-alkaline resistance [37]. The latter configuration
could be linked to the nature of the α-Amylase produced by B. licheniformis strain LB04.
Nonetheless, the structure of the enzyme must be provided for a deeper understanding of
the thermo and acidic stability of the obtained α-Amylase.

The study of the calcium ions’ influence over α-Amylase activity, demonstrated how
enzymatic activity is partially reduced by EDTA additions. These results agree with pre-
vious studies on the Ca2+-independent α-Amylase produced by native B. licheniformis
species [38,39], indicating a partial independence from calcium ions due to a continuous
starch hydrolysis despite a lower efficiency [40,41]. As pH increased, the activity dropped;
an effect that could be attributed to the enzyme’s structure configuration, more specifically
due to irregularities in segments belonging to the loop regions that participate in the metal-
binding zones 177–199 [41]. Amino acids in the domain B region were reported to play a
fundamental role in thermostability [42]. The study of these regions is necessary for further
conclusions; however, a similar performance profile was reported for neutrophilic and aci-
dophilic endo-β-glucanases with a similar fold in their catalytic domain [43]. Nevertheless,
the factors that establish the acidophilic nature of α-Amylase are still unanswered, and
further research is imperative to acquire this knowledge.

Through the results obtained it is clear that the immobilization process affected the
activity profile of the α-Amylase, since the acidic stability assay of immobilized amylase
showed a discordance of activities. While the free enzyme showed a better acidic resistance,
its immobilized form suffered large reductions of activity under the same conditions,
and the activity increased as the reaction medium became alkaline. This profile is not
exclusive to the α-Amylase produced by B. licheniformis strain LB04, as previous research
reported increased enzyme activity after immobilization by entrapment, with marked
drops at points where originally there were higher values [44–46]. The acid-stability for
immobilized α-Amylases is attributed to structural preservation, limiting the expansion of
the enzyme’s domains during the increase in temperatures and change in pH [47].
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In order to avoid altering the active sites of α-Amylase LB04, the selected immobiliza-
tion method was entrapment. The entrapment technique is a physical method where the
enzyme is confined within the polymer network of the matrix. For this study the matrix
were beads made out of agar-agarose, a polymer with a strong gelling activity that shows
no reaction with other biomolecules. However, this biopolymer is not suitable for studies at
higher temperatures, since beads start to disintegrate beyond 75 ◦C. [48]. In order to study
the enzymatic activity of the immobilized α-Amylase at higher temperatures, a different
carrier must be selected.

The activity of immobilized enzymes depends on factors such as the immobilization
method and the nature of the matrix. Based on the present results, a different strategy must
be approached, since although the agar-agarose beads improved the heat stability of the α-
amylose LB04 at 65 ◦C, it was at higher pH levels as compared to the free form. This pattern
was previously reported, where immobilization of amylases in a silica-based matrix during
acid catalyzed sol-gel entrapment lowered the activity of the enzyme instead of enhancing
it [49]. With similar results, agar gel entrapment improved the performance of different
enzymes at neutral and alkaline conditions, but decreased the enzymatic activity of the
free enzyme at lower pH levels [50]. While the entrapment technique is a straightforward
method that preserves the enzyme conformation and the agar is a low-cost polymer with
a non-toxic nature, in order to improve the acidic profile of the α-Amylase produced by
B. licheniformis LB04, different techniques and resources should be employed. A matrix
like chitosan, which is an abundant, non-toxic and inert polysaccharide, is one of the most
popular options for enzymatic immobilization. The amines and hydroxyl groups in this
polymer allow crosslinking with the enzyme and different supports. Since chitosan beads
previously improved the acidic hydrolysis of the α-Amylase-by 50%, they might become a
suitable strategy for further analysis of hydrolytic enhancement by immobilization [51].

To fully associate these observations as a peculiarity of the α-Amylases produced by
the Bacillus genus, due to the nature of α-Amylases immobilization by entrapment or due
to the agar-agarose support, further tests are necessary.

5. Conclusions

This study revealed the capacity of B. licheniformis strain LB04, a bacterium adapted to
tolerate continuous environmental extremes in temperature and pH, to produce a versatile
α-Amylase capable of performing starch hydrolysis at temperatures above 65 ◦C and
acidic conditions. The results suggest that the isolated bacteria and its α-Amylase could
be employable under conditions commonly met in industrial processes, especially in the
refined syrups and bakery industries.

However, further studies on the enzyme activity are required to determine its potential
in real manufacturing applications. While immobilization is a perfect tool for improving
and recovering the enzyme, in this particular case, a different immobilization technique
should be employed due to the loss of the amylolytic activity during acidic conditions
and high temperatures. These characteristics are crucial for industrial processes where
conditions are too harsh for most of the available commercial enzymes. While the im-
provement of a better-suited immobilization technique is important, new information
related to the enzyme structure must be acquired to understand how the enzyme adapts to
extreme conditions.

Author Contributions: Conceptualization, E.A.B.-G. and A.S.-S.; methodology, A.S.-S.; software,
A.S.-S.; validation, E.A.B.-G., C.O.-C. and U.L.-C.; formal analysis, A.S.-S.; investigation, A.S.-S.,
M.R.-D. and E.A.B.-G.; resources, E.A.B.-G., M.R.-D. and J.G.-T.; data curation, A.S.-S.; writing—
original draft preparation, A.S.-S.; writing—review and editing, E.A.B.-G. and U.L.-C.; visualization,
E.A.B.-G.; supervision, E.A.B.-G.; project administration, E.A.B.-G.; funding acquisition, E.A.B.-G.
and U.L.-C. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.



Microorganisms 2021, 9, 1857 12 of 14

Informed Consent Statement: Not applicable.

Data Availability Statement: The authors confirm that the data supporting the findings of this study
are available within the article.

Acknowledgments: This study was supported by the CONACyT scholarship program and the
Autonomous University of Nuevo Leon, Mexico. The authors express their gratitude for the financial
support during the development of the project.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Robertson, G.; Wong, D.; Lee, C.; Wagschal, K.; Smith, M.R.; Orts, W.J. Native or raw starch digestion: A key step in energy

efficient biorefining of grain. J. Agric. Food Chem. 2006, 54, 353–365. [CrossRef]
2. Peng, H.; Chen, M.; Yi, L.; Zhang, X.; Wang, M.; Xiao, Y.; Zhang, N. Identification and characterization of a novel raw-starch

degrading α-Amylase (AmyASS) from the marine fish pathogen Aeromonas salmonicida ssp. salmonicid. J. Mol. Catal. B Enzym
2015, 119, 71–77. [CrossRef]

3. Straksys, A.; Kochane, T.; Budriene, S. Catalytic properties of maltogenic α-Amylase from Bacillus stearothermophilus immobilized
onto poly(urethane urea) microparticles. Food Chem. 2016, 211, 294–299. [CrossRef] [PubMed]

4. Saini, R.; Saini, H.; Dahiya, A. Amylases: Characteristics and industrial applications. J. Pharmacogn. Phytochem. 2017, 6, 1865–1871.
5. Simair, A.A.; Qureshi, A.S.; Khushk, I.; Ali, C.H.; Lashari, S.; Bhutto, M.A.; Mangrio, G.S.; Lu, C. Production and Partial

Characterization of α-Amylase Enzyme from Bacillus sp. BCC 01-50 and Potential Applications. BioMed Res. Int. 2017, 2017,
5259–5267. [CrossRef] [PubMed]

6. Alpha-Amylase Baking Enzyme Market to Reach USD 347.7 Million by 2026|Reports and Data. Available online:
https://www.globenewswire.com/newsrelease/2019/04/25/1809974/0/en/Alpha-Amylase-Baking-Enzyme-Market-
To-Reach-USD-347-7-Million-By-2026-Reports-And-Data.html (accessed on 25 April 2019).

7. Barrera, G.; Tadini, C.; León, A.; Ribotta, P. Use of alpha-amylase and amyloglucosidase combinations to minimize the bread
quality problems caused by high levels of damaged starch. J. Food Sci. Technol. 2016, 53, 3675–3684. [CrossRef] [PubMed]

8. Purhagen, J.; Sjöö, M.; Eliasson, A. Starch affecting anti-staling agents and their function in freestanding and pan-baked bread.
Food Hydrocoll. 2011, 25, 1656–1666. [CrossRef]

9. Sen, S.; Jana, A.; Bandyopadhyay, P.; Das-Mohapatra, P.; Raut, S. Thermostable amylase production from hot spring isolate
Exiguobacterium sp.: A promising agent for natural detergents. Sustain. Chem. Pharm. 2016, 3, 59–68. [CrossRef]

10. Sundarram, A.; Murthy, T. α-Amylase Production and Applications: A Review. J. Appl. Environ. Microbiol. 2014, 2, 166–175.
11. Bouacem, K.; Laribi-Habchi, H.; Mechri, S.; Hacene, H.; Jaouadi, B.; Bouanane-Darenfed, A. Biochemical characterization of a

novel thermostable chitinase from Hydrogenophilus hirschii strain KB-DZ44. Int. J. Biol. Macromol. 2018, 106, 338–350. [CrossRef]
12. Allala, F.; Bouacem, K.; Boucherba, N.; Azzouz, Z.; Mechri, S.; Sahnoun, M.; Benallaoua, S.; Hacene, H.; Jaouadi, B.; Bouanane-

Darenfed, A. Purification, biochemical, and molecular characterization of a novel extracellular thermostable and alkaline
α-Amylase from Tepidimonas fonticaldi strain HB23. Int. J. Biol. Macromol. 2019, 132, 558–574. [CrossRef]

13. Basso, A.; Serban, S. Industrial applications of immobilized enzymes—A review. Mol. Catal. 2019, 479, 110607. [CrossRef]
14. Mohamed, S.; Khan, A.; Al-Bar, A.; El-Shishtawy, R. Immobilization of Trichoderma harzianum α-Amylase on treated wool:

Optimization and characterization. Molecules 2014, 19, 8027–8038. [CrossRef]
15. Mohamed, S.; Al-Harbi, M.; Almulaiky, Y.; Ibrahim, I.; Salah, H.; El-Badry, M.; Abdel-Aty, A.; Fahmy, A.; El-Shishtawy, R.

Immobilization of Trichoderma harzianum α-Amylase on PPyAgNp/Fe3O4-nanocomposite: Chemical and physical properties. Art.
Cells Nanomed. Biotechnol. 2018, 46, S201–S206. [CrossRef] [PubMed]

16. Prakash, O.; Jaiswal, N. Immobilization of a thermostable α-Amylase on agarose and agar matrices and its application in starch
stain removal. World Appl. Sci. J. 2011, 13, 572–577.

17. Blanco de la Cruz, L. Glycerol Bioconversion by Thermotolerant Microorganism Isolated from Northeast Mexico. Master’s Thesis,
Nuevo Leon Autonomous University, Nuevo Leon, Mexico, 2016.

18. Minor, V. Ein Neues Verfahren zu der Klinischen Untersuchung der Schweißabsonderung. Dtsch. Z. Nervenheilkd 1928, 101,
302–308. [CrossRef]

19. Deljou, A.; Arezi, I. Production of thermostable extracellular α-Amylase by a moderate thermophilic Bacillus licheniformis-AZ2
isolated from Qinarje Hot spring (Ardebil prov. of Iran). Period. Biol. 2016, 118, 405–416.

20. Miller, G. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal. Chem. 1959, 31, 426–428. [CrossRef]
21. Bradford, M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of

protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [CrossRef]
22. Laemmli, U. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227, 680–685.

[CrossRef]

http://doi.org/10.1021/jf051883m
http://doi.org/10.1016/j.molcatb.2015.06.005
http://doi.org/10.1016/j.foodchem.2016.05.071
http://www.ncbi.nlm.nih.gov/pubmed/27283635
http://doi.org/10.1155/2017/9173040
http://www.ncbi.nlm.nih.gov/pubmed/28168200
https://www.globenewswire.com/newsrelease/2019/04/25/1809974/0/en/Alpha-Amylase-Baking-Enzyme-Market-To-Reach-USD-347-7-Million-By-2026-Reports-And-Data.html
https://www.globenewswire.com/newsrelease/2019/04/25/1809974/0/en/Alpha-Amylase-Baking-Enzyme-Market-To-Reach-USD-347-7-Million-By-2026-Reports-And-Data.html
http://doi.org/10.1007/s13197-016-2337-2
http://www.ncbi.nlm.nih.gov/pubmed/28017982
http://doi.org/10.1016/j.foodhyd.2011.03.004
http://doi.org/10.1016/j.scp.2016.04.002
http://doi.org/10.1016/j.ijbiomac.2017.08.026
http://doi.org/10.1016/j.ijbiomac.2019.03.201
http://doi.org/10.1016/j.mcat.2019.110607
http://doi.org/10.3390/molecules19068027
http://doi.org/10.1080/21691401.2018.1453828
http://www.ncbi.nlm.nih.gov/pubmed/29578361
http://doi.org/10.1007/BF01652699
http://doi.org/10.1021/ac60147a030
http://doi.org/10.1016/0003-2697(76)90527-3
http://doi.org/10.1038/227680a0


Microorganisms 2021, 9, 1857 13 of 14

23. Upadhyay, M.; Sharma, R.; Pandey, A.; Rajak, R. An improved zymographic method for detection of amylolytic enzymes of fungi
on polyacrylamide gels. Mycologist 2005, 19, 138–140. [CrossRef]

24. Gamal, R.; Abou-Taleb, K.; Abd-Elhalem, B. Isolation, Identification and Production of Amylases from Thermophilic Spore
Forming Bacilli Using Starch Raw Materials Under Submerged Culture. AASCIT J. Biosci. 2017, 3, 52–68.

25. El-Sheshtawy, H.; Aiad, I.; Osman, M.; Kobisy, A.; El-Sheshtawy, H.; Abo-Elnasr, A. Production of biosurfactant from Bacillus
licheniformis for microbial enhanced oil recovery and inhibition the growth of sulfate reducing bacteria. Egypt. J. Pet. 2015, 24,
155–162. [CrossRef]

26. Hiteshi, K.; Didwal, G.; Gupta, R. Production optimization of α-Amylase from Bacillus licheniformis. J. Adv. Res. Biol. Pharm. Res.
2016, 1, 1–14.

27. Alariya, S.; Sethi, S.; Gupta, S.; Lal-Gupta, B. Amylase activity of a starch degrading bacteria isolated from soil. Arch. Appl. Sci.
Res. 2013, 5, 15–24.

28. Chaudhary, M.; Rana, N.; Vaidya, D.; Ghabru, A.; Rana, K.; Dipta, B. Immobilization of Amylase by Entrapment Method in
Different Natural Matrix. Int. J. Curr. Microbiol. Appl. Sci. 2019, 8, 1097–1103. [CrossRef]

29. Esfahanibolandbalaie, Z.; Rostami, K.; Mirdamadi, S. Some studies of α-Amylase production using Aspergillus oryzae. Pak. J. Biol.
Sci. 2008, 11, 2553–2559. [CrossRef] [PubMed]

30. Nathan, S.; Nair, M. Engineering a repression-free catabolite-enhanced expression system for a thermophilic alpha-amylase from
Bacillus licheniformis. J. Biotechnol. 2013, 168, 394–402. [CrossRef]

31. Russell, J.; Baldwin, R. Substrate preferences in rumen bacteria: Evidence of catabolite regulatory mechanisms. Appl. Environ.
Microbiol. 1978, 36, 319–329. [CrossRef] [PubMed]

32. Maktouf, S.; Kamoun, A.; Moulis, C.; Remaud-Simeon, M.; Châabouni, S. A new raw-starch-digesting α-Amylase: Production
under solid-state fermentation on crude millet and biochemical characterization. J. Microbiol. Biotechnol. 2013, 23, 489–498.
[CrossRef]

33. Burgess-Cassler, A.; Imam, S.; Gould, J. High-molecular-weight amylase activities from bacteria degrading starch-plastic films.
Appl. Environ. Microbiol. 1991, 57, 612–614. [CrossRef]

34. Abou-Dobara, M.; El-Sayed, A.; El-Fallal, A.; Omar, M. Production and partial characterization of high molecular weight
extracellular α-Amylase from Thermoactinomyces vulgaris isolated from Egyptian soil. Pol. J. Microbiol. 2011, 60, 65–71. [CrossRef]

35. Timilsina, P.; Pandey, G.; Shrestha, A.; Ojha, M.; Karki, T. Purification and characterization of a noble thermostable algal starch
liquefying α-Amylase from Aeribacillus pallidus BTPS-2 isolated from geothermal spring of Nepal. Biotechnol. Rep. 2020, 28, e00551.
[CrossRef]

36. Behal, A.; Singh, J.; Sharma, M.; Puri, P.; Batra, N. Characterization of alkaline α-Amylase from Bacillus sp. AB 04. Int. J. Agric.
Biol. 2006, 8, 80–83.

37. Pinto, E.; Dorn, M.; Feltes, B. The tale of a versatile enzyme: α-Amylase evolution, structure, and potential biotechnological
applications for the bioremediation of n-alkanes. Chemosphere 2020, 250, 1–18. [CrossRef] [PubMed]

38. Matpan-Bekler, F.; Acer, Ö.; Güven, K. Co-Production of Thermostable, Calcium-Independent α-Amylase and Alkali-Metallo
Protease from Newly Isolated Bacillus licheniformis Dv3. Innov. Rom. Food Biotechnol. 2015, 16, 21–30.

39. Du, R.; Qiaozhi, S.; Qiaoge, Z.; Zhao, F.; Kim, R.; Zhou, Z.; Han, Y. Purification and characterization of novel thermostable and
Ca-independent α-Amylase produced by Bacillus amyloliquefaciens BH072. Int. J. Biol. Macromol. 2018, 115, 1151–1156. [CrossRef]

40. Hmidet, N.; Bayoudh, A.; Berrin, J.; Kanoun, S.; Juge, N.; Nasri, M. Purification and biochemical characterization of a novel
α-Amylase from Bacillus licheniformis NH1. Cloning, nucleotide sequence and expression of amyN gene in Escherichia coli. Process
Biochem. 2008, 43, 499–510. [CrossRef]

41. Wu, H.; Tian, X.; Dong, Z.; Zhang, Y.; Huang, L.; Liu, X.; Jin, P.; Wang, Z. Engineering of Bacillus amyloliquefaciens α-Amylase with
Improved Calcium Independence and Catalytic Efficiency by Error-Prone PCR. Starch-Stärke 2018, 70, 3–4. [CrossRef]

42. Li, Z.; Duan, X.; Chen, S.; Wu, J. Improving the reversibility of thermal denaturation and catalytic efficiency of Bacillus licheniformis
α-Amylase through stabilizing a long loop in domain B. PLoS ONE 2017, 12, e0173187. [CrossRef]

43. Huang, Y.; Krauss, G.; Cottaz, S.; Driguez, H.; Lipps, G. A highly acid-stable and thermostable endo-β-glucanase from the
thermoacidophilic archaeon Sulfolobus solfataricus. Biochem. J. 2005, 385, 581–588. [CrossRef] [PubMed]

44. Talekar, S.; Chavare, S. Optimization of immobilization of α-Amylase in alginate gel and its comparative biochemical studies
with free α-Amylase. Recent Res. Sci. Technol. 2012, 4, 1–5.

45. Sharma, M.; Sharma, V.; Majumdar, D. Entrapment of α-Amylase in Agar Beads for Biocatalysis of Macromolecular Substrate. Int.
Sch. Res. Not. 2014, 2014, 1–8. [CrossRef]

46. Tavano, O.; Fernandez-Lafuente, R.; Goulart, A.; Monti, R. Optimization of the immobilization of sweet potato amylase using
glutaraldehyde-agarose support. Characterization of the immobilized enzyme. Process Biochem. 2013, 48, 1054–1058. [CrossRef]

47. Liu, Y.; Huang, L.; Jia, L.; Gui, S.; Fu, Y.; Zheng, D.; Guo, W.; Lu, F. Improvement of the acid stability of B. licheniformis alpha
amylase by site-directed mutagenesis. Process Biochem. 2017, 58, 174–180. [CrossRef]

48. Kalita, T.; Sangma, S.; Bez, G.; Ambasht, P. Immobilization of Acid Phosphatase in Agar-agar and Gelatin: Comparative
Characterization. J. Sci. Res. 2020, 64, 193–200.

49. Mesbah, N.; Wiegel, J. Improvement of Activity and Thermostability of Agar-Entrapped, Thermophilic, Haloalkaliphilic Amylase
AmyD8. Catal. Lett. 2018, 148, 2665–2674. [CrossRef]

http://doi.org/10.1017/S0269915X05004015
http://doi.org/10.1016/j.ejpe.2015.05.005
http://doi.org/10.20546/ijcmas.2019.805.126
http://doi.org/10.3923/pjbs.2008.2553.2559
http://www.ncbi.nlm.nih.gov/pubmed/19260332
http://doi.org/10.1016/j.jbiotec.2013.09.016
http://doi.org/10.1128/aem.36.2.319-329.1978
http://www.ncbi.nlm.nih.gov/pubmed/16345311
http://doi.org/10.4014/jmb.1211.11027
http://doi.org/10.1128/aem.57.2.612-614.1991
http://doi.org/10.33073/pjm-2011-009
http://doi.org/10.1016/j.btre.2020.e00551
http://doi.org/10.1016/j.chemosphere.2020.126202
http://www.ncbi.nlm.nih.gov/pubmed/32092569
http://doi.org/10.1016/j.ijbiomac.2018.05.004
http://doi.org/10.1016/j.procbio.2008.01.017
http://doi.org/10.1002/star.201700175
http://doi.org/10.1371/journal.pone.0173187
http://doi.org/10.1042/BJ20041388
http://www.ncbi.nlm.nih.gov/pubmed/15456402
http://doi.org/10.1155/2014/936129
http://doi.org/10.1016/j.procbio.2013.05.009
http://doi.org/10.1016/j.procbio.2017.04.040
http://doi.org/10.1007/s10562-018-2493-2


Microorganisms 2021, 9, 1857 14 of 14

50. Fernandez-Caresani, J.; Dallegrave, A.; dos Santos, J. Amylases immobilization by sol–gel entrapment: Application for starch
hydrolysis. J. Sol-Gel Sci. Technol. 2020, 94, 229–240. [CrossRef]

51. Mardani, T.; Khibani, M.; Mokarram, R.; Hamishehkar, H. Immobilization of α-Amylase on chitosan-montmorillonite nanocom-
posite beads. Int. J. Biol. Macromol. 2018, 120, 354–360. [CrossRef]

http://doi.org/10.1007/s10971-019-05136-7
http://doi.org/10.1016/j.ijbiomac.2018.08.065

	Introduction 
	Materials and Methods 
	Chemicals 
	Sample Collection 
	Microbial Strains and Medium Composition 
	Screening of Amylase Producing Bacteria and Growth Conditions 
	Morphological, Biochemical, and Physiological Characterization 
	Molecular Phylogenetic Analyses 
	Amylase Activity Assay 
	Preparation of Crude Extract for Purification of -Amylase 
	Purification of -Amylase LB04 by Ion Exchange Chromatography 
	Electrophoretic Analysis of Purified Enzyme and Zymography 
	Characterization of Enzymatic Properties of Purified -Amylase LB04 
	Thermostability and Acidic Resistance on -Amylase Activity 
	Effects of Calcium Ions on the Enzymatic Activity of -Amylase 

	Immobilization of -Amylase LB04 on Agar-Agarose Beads 
	Immobilized Enzyme Assay 

	Results 
	Identification and Starch-Degrading Activity of the Strain LB04 
	Growth Rate of Bacillus licheniformis Strain LB04 
	Production of -Amylase by B. licheniformis Strain LB04 
	Purification of -Amylase 
	High Temperature and pH Ranges of Activity for the -Amylase Produced by Strain LB04 
	Influence of Calcium Ions on the Enzymatic Activity 
	Immobilization of -Amylase on Agar-Agarose Beads 
	Acidic Stability of Immobilized -Amylase 

	Discussion 
	Conclusions 
	References

