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Bipartite networks are pervasive in modeling real-world phenomena and play a

fundamental role in graph theory. Interactive exploratory visualization of such networks

is an important problem, and particularly challenging when handling large networks.

In this paper we present results from an investigation on using a general multilevel

method for this purpose. Multilevel methods on networks have been introduced as a

general approach to increase scalability of community detection and other complex

optimization algorithms. They employ graph coarsening algorithms to create a hierarchy

of increasingly coarser (reduced) approximations of an original network. Multilevel

coarsening has been applied, e.g., to the problem of drawing simple (“unipartite”)

networks. We build on previous work that extended multilevel coarsening to bipartite

graphs to propose a visualization interface that uses multilevel coarsening to compute

a multi-resolution hierarchical representation of an input bipartite network. From this

hierarchy, interactive node-link drawings are displayed following a genuine route of

the “overview first, zoom and filter, details on demand” visual information seeking

mantra. Analysts may depart from the coarsest representation and select nodes or

sub-graphs to be expanded and shown at greater detail. Besides intuitive navigation

of large-scale networks, this solution affords great flexibility, as users are free to select

different coarsening strategies in different scenarios. We illustrate its potential with case

studies involving real networks on distinct domains. The experimental analysis shows

our strategy is effective to reveal topological structures, such as communities and

holes, that may remain hidden in a conventional node-link layout. It is also useful to

highlight connectivity patterns across the bipartite layers, as illustrated in an example

that emphasizes the correlation between diseases and genes in genetic disorders, and

in a study of a scientific collaboration network of authors and papers.

Keywords: complex network visualization, bipartite network visualization, exploratory network visualization,

multilevel network visualization, multilevel network coarsening
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1. INTRODUCTION

Bipartite networks are a special type of network in which the set
of nodes is split into two independent partitions called “layers”

(they are hence called “two-layer” networks) and the links
connect nodes from different layers. They emerge in important
data mining problems that require modeling relations between

two types of entities, e.g., documents and terms, papers, and
authors (Newman, 2001; Grujić, 2008; Faleiros et al., 2017), or
patients and genes (Hwang et al., 2008). Some authors even argue

that many real-world unipartite networks are actually projections
of bipartite networks (Guillaume and Latapy, 2004, 2006).

Exploratory visualization of network topology plays a relevant

role in many data mining and optimization problems modeled
as networks. Effectively conveying the relevant topological
information of large-scale networks is challenging in interactive

visualization (Tang et al., 2015; Staudt et al., 2016), and even
more so in handling bipartite networks, in view of their peculiar
organization and inherent topological complexity. A few recent
contributions discuss strategies for interactive visualization of
such networks (Chan et al., 2018; Garcia-Algarra et al., 2018;
Pezzotti et al., 2018; Steinbock et al., 2018; Sun et al., 2019;
Zhao et al., 2019; Waldner et al., 2020), as further discussed in
Section 3.

Analysis assisted by interactive visualization is arduous
because human perceptual abilities are limited to rather small
network sizes even when executing simple tasks such as locating
a node or finding the links between a pair of nodes (Ghoniem
et al., 2005). As network sizes increase, even simple data
exploration tasks become increasingly difficult. Furthermore,
besides the cognitive burden on users attempting to grasp both
local and global information, a heavy rendering load impairs
smooth navigation on node-link views (Ghoniem et al., 2005).
Limitations of node-link representations encouraged many
research efforts on devising alternative visualization techniques,
with relative success (Nobre et al., 2020; Di Giacomo et al., 2021).
Yet, node-link views remain a classic approach for interactive
visualization of networks, even if to be used in combination with
other techniques (Di Giacomo et al., 2021).

In order to reduce clutter and obtain representations
more amenable to user interaction, general-purpose interactive
visualization of large unipartite networks often relies on node
aggregation into clusters or communities (Abello et al., 2006;
Archambault et al., 2008; Wong et al., 2009; Batagelj et al., 2010;
Dias et al., 2017b; Perrot and Auber, 2018) (see Section 3).
Nevertheless, a single level partition of the set of nodes may prove
ineffective, as important topological structures often manifest
themselves at multiple observation levels. Indeed, alternative
solutions have been introduced that rely on hierarchical
algorithms for clustering or community detection to obtain
a hierarchical aggregation to support user navigation and
exploratory tasks. Thus, it is possible to interact with higher-
level representations in order to make early assessments before
proceeding to detailed investigation. This strategy is likely to be
more effective than continuously rendering the full network in
situations where the user focus is directed to a specific region.
A hierarchical network model offers a natural support to the

well-known “visual information seeking mantra” of information
visualization (Shneiderman, 1996), where users depart from an
overview and then navigate and interact in the visual space to
focus on target regions and demand further details. This mantra
embeds a number of visual design guidelines and is widely
acknowledged as a general interaction framework in designing
information visualization applications.

Alternatively, a hierarchical aggregation of a complex network
may be obtained with the multilevel method, a meta-heuristic
employed to modify and potentially fix a solution obtained
with a target optimization algorithm (Karypis and Kumar,
1998; Wong et al., 2009). A multilevel algorithm performs
an incremental coarsening of an original network to yield a
hierarchy of simplified networks from the original (Brandt, 1988;
Karypis and Kumar, 1998). It yields a hierarchical representation,
where each level depicts a network with fewer nodes and links
than its previous one. Multilevel methods have been originally
introduced to enable executing expensive algorithms on large-
scale networks.1 The rationale is to compute an initial solution
executing a target algorithm on a simpler network that still
preserves the relevant properties of the original. This initial
solution is then incrementally refined over the inverse hierarchy
of coarsened networks to yield an approximate solution to
the original problem (Noack and Rotta, 2009; Valejo et al.,
2018). Applying the strategy successfully required two essential
capabilities, namely finding a coarsest network that preserves
the essential features of the original, and generalizing the initial
solution obtained to the full original model. Thus, identifying
a coarsening strategy that yields a suitable trade-off between
solution accuracy, generalization capability, and speed is critical.
This is commonly approached with empirical investigation on
each problem and data set, sometimes departing from existing
coarsening algorithms, sometimes introducing novel ones. Yet,
multilevel methods have been successfully employed in a range
of important problems defined in unipartite networks (Brandt,
1988). It has also been considered to accelerate the computation
of node-link layouts for purposes of network drawing and
visualization (Harel and Koren, 2000a; Walshaw, 2000; Hachul
and Jünger, 2004; Hu, 2005; Archambault et al., 2007; Frishman
and Tal, 2007; Bartel et al., 2010; Arleo et al., 2016; Toosi and
Nikolov, 2016; Hinge et al., 2017).

In earlier work, authors of this paper introduced a general
multilevel framework for bipartite networks, i.e., it preserves
the bipartite restrictions and ensures efficient coarsening in
this context (Valejo et al., 2017a, 2018, 2020a). The solution
was motivated by the growing occurrence of bipartite networks
as models for solving important real-world problems, e.g., the
method has been applied in problems of link prediction (Ferreira
et al., 2019), trajectory mining (Minatel et al., 2018, 2019), and
community detection (Valejo et al., 2014a,b, 2020a).

In this contribution, we address the problem of employing the
multilevel method for interactive visualization of large bipartite
networks. As multilevel network coarsening can preserve the
topological structures relevant to problem solving, we propose

1By “large-scale” wemean networks with up to a few hundreds of thousands nodes,

in contrast to massive-scale networks with millions to billions nodes.
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FIGURE 1 | Phases of a general multilevel optimization method operating on a network. (i) Coarsening: computes a sequence of incrementally simpler networks. (ii)

Solution finding: computes an initial solution executing a target algorithm in the coarsest network. (iii) Uncoarsening: projects this solution back up to the original

network.

using coarsening algorithms to obtainmulti-resolution networks,
which can be rendered as node-link diagrams at distinct
levels of detail for purposes of interactive visualization. To
the best of our knowledge, multilevel coarsening has not been
considered so far for interactive visualization of real-world
bipartite networks (Valejo et al., 2020b). We follow this premise
and introduce a proof-of-concept solution that supports user-
driven navigation in a hierarchical multilevel representation. The
distinctive points of our contribution are the following:

1. We define a visualization strategy on top of an existing
general multilevel framework for bipartite networks.
Our strategy allows plugging-in any network coarsening
algorithm, yielding maximum flexibility in obtaining multi-
resolution representations of a given network. Thus, given
an input network, alternative multi-resolution models can
be created based on user convenience and her choice of
coarsening algorithm.

2. We use our strategy as the underlying model of a system that
supports interactive visualization and navigation on themulti-
resolution network models, starting with a node-link view of
the coarsest network. User interaction triggers gradual, on-
demand expansion or contraction of selected sub-sets nodes.
Thus, at any moment a node link view may be rendered
with different regions shown at distinct resolution levels.
The system also offers functionalities for zooming in/out and
requesting complementary information on nodes or links.

3. The system is introduced as a proof-of-concept to
demonstrate the feasibility of the strategy to support effective
exploratory visualization of complex bipartite networks. The
operation of the strategy and its potential are illustrated with
examples in which real-world bipartite networks with varied
topological properties are explored on-demand.

The remainder of this paper is organized as follows: in Section 2
we present a brief overview of our previously introduced
multilevel framework for bipartite networks, which provides the
underlying framework for the proposed visualization strategy. In
Section 3, we briefly review related work on interactive network
visualization, with an emphasis on solutions aimed at bipartite
networks. In Section 4, we describe the proposed visualization
strategy built on top of the general multilevel method, and
describe how it has been implemented into a proof-of-concept
system. In Section 5, we report illustrative case studies using the
strategy in different scenarios. Finally, in Section 6, we summarize
our findings and discuss future work.

2. MULTILEVEL METHOD ON BIPARTITE
NETWORKS

The overall strategy of a multilevel method in the context
of solving problems in networks is illustrated in Figure 1.
The method operates in three phases, identified as coarsening,
solution finding and uncoarsening. A description of the phases
requires establishing some definitions and notation, as follows.

A unipartite network is represented by G = (V , E , σ ,ω),
wherein V and E define the set of nodes and links, respectively,
and a link (v, u) =

{

(u, v) = (v, u) | u, v ∈ V
}

. n = |V| and
m = |E| denote the number of nodes and links, respectively.
A link (u, v) or a node u can associated with a weight, denoted,
respectively, as ω(u, v) :V × V → R

∗ or σ (u) :V → R
∗. The

network is bipartite if V is split into two sub sets V1 and V2, such
that V1 ∩ V2 = ∅ and E ⊆ V1 × V2.

The h-hop neighborhood of a node u, denoted by Ŵh(u), is
given by the nodes distant from u by h or less links. Thus, Ŵ1(u)
is the set of nodes adjacent to u; Ŵ2(u) is the set of nodes 2-hops
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away from u, and so forth. The degree of u, denoted by κ(u), is
the number of its incident links, i.e., |Ŵ1(u)|. A similarity measure
(henceforth called similarity index) is a function that quantifies
common properties of a pair of nodes (u, v), yielding values
(scores) in the range [0, 1] ⊂ R, from lowest (0) to highest (1)
similarity (Valejo et al., 2014a). A typical structural index is the
number of common neighbors, defined as CN(u, v) = |3(u, v)|,
wherein 3(u, v) = {Ŵ1(u) ∩ Ŵ1(v)}.

Back to the multilevel method, in the coarsening phase
a given network G0 is iteratively coarsened into a hierarchy
of increasingly simpler representations, yielding a multilevel
hierarchy {G1,G2, · · · ,GH}withH levels. The hierarchy describes
G0 at multiple levels-of-detail, wherein GH is the coarsest network.
Specifically, a coarsening algorithm constructs a coarser network
by collapsing a set of matched nodes {u1, . . . , un} into a single
super-node sVi. The nodes in set {u1, . . . , un} ∈ Vh collapsed into
a super-node sVi ∈ Vh+1 are called predecessors of sVi, denoted
2(sVi), whilst the super-node (sVi) is a successor of its originating
nodes, denoted 1(ui). A successor network Gh+1 will inherit the
non-matched nodes from its predecessor network Gh. In order
forGh+1 to be a good proxy to its predecessor network, the weight
σ (sVi) of a super-node sVi ∈ Vh+1 is computed as the sum of
weights of its predecessor nodes. Furthermore, any links incident
to nodes in 2(sVi) are collapsed into the so-called super-links
incident to sVi.

In the solution finding phase, a target task, such as community
detection, dimension reduction, link prediction or node-link
layout computation, is evaluated in GH yielding an initial
solution SH. In the uncoarsening phase SH is gradually refined
through the intermediate networks GH−1,GH−2, . . . ,G1 up to the
original network G0.

Notably, effective application of the strategy to any problem
is highly dependent on the quality of the hierarchical multilevel
representation built. Coarsening requires a policy to collapse
nodes and links into super-nodes and super-links; uncoarsening
requires a policy to expand collapsed nodes or links. Clearly, the
steps of computing an initial solution and refining it are task
dependent. As opposite, policies for merging nodes and links
may be defined in terms of the network topology only, regardless
of the task (Valejo et al., 2020b). Here we briefly introduce a
few coarsening strategies for bipartite networks defined in earlier
work, namely algorithms OPM, RGMb, GMb, andMLPb.

OPM (one-mode projection-based matching algorithm) is
one of the earliest coarsening algorithms applied to bipartite
networks (Valejo et al., 2017a,b). It decomposes the bipartite
network G into two unipartite networks, one relative to each
layer, i.e., G1 and G2, which allows employing solutions devised
for unipartite networks, such as the popular Heavy-Edge
Matching (HEM) algorithm (Karypis and Kumar, 1998). In
HEM, a random node u is matched with an adjacent node v
for which the edge (u, v) has maximum weight overall all edges
adjacent to u.

Valejo et al. (2018) designed two coarsening algorithms
specifically for bipartite networks. Algorithms RGMb (Random
greedy matching) and GMb (Greedy matching) extend earlier
link-based matching strategies which operate by collapsing
node pairs into a single super node. Both inspect the 2-hop
neighborhood of a node u to identify matching candidates,

picking the node with the greatest similarity index with u. RGMb
picks candidate nodes for matching randomly, whereas GMb
picks nodes from a priority queue holding the most similar pairs.

A third algorithm called MLPb (Multilevel label propagation
for bipartite networks) (Valejo et al., 2020a), has been introduced
based on the well-known Label Propagation Algorithm (LPA)
(Raghavan et al., 2007). Each node is initially assigned a unique
label, and at each iteration node labels are updated with the node’s
most frequent label in its two-hop neighborhood. Groups of
nodes with the same label are collapsed into a single super-node.
Coarsening withMLPb typically requires less iteration steps than
RGMb or GMb, as unlike these the algorithm is not restricted to
collapsing just a pair of nodes per iteration. Preliminary studies
provided empirical evidence that multilevel representations
obtained with MLPb preserve the essential topological features
of a bipartite network (Valejo et al., 2020a).

Of course, the choice of coarsening algorithm affects the
multilevel representation obtained, which is key to the interactive
visualization process. There is no better algorithm a priori, as
the suitability of a representation must be considered in the
context of the user problem, tasks and goals. This is a problem
that deserves further investigation. Interestingly, the impact of
distinct coarsening policies on the effectiveness of the multilevel
strategy applied in different data mining tasks is also a relevant
research topic where interactive visualization itself can play an
important role (Valejo et al., 2021).

3. INTERACTIVE VISUALIZATION OF
LARGE NETWORK

Whilst node-link representations are intuitive to convey network
topology, they have very limited scalability (Ghoniem et al., 2004;
Nobre et al., 2020; Di Giacomo et al., 2021). Rendering large
networks can be slow and the result can be cumbersome. For
unipartite networks it is common to use aggregations of nodes
and/or links to mitigate clutter and reduce rendering load. Link
bundling is possibly the best established solution for implicit link
aggregation (Holten, 2006; van der Zwan et al., 2016; Lhuillier
et al., 2017), whereas node aggregation strategies are usually
explicit and domain-driven, with a diversity of strategies reported
in the literature. In general terms, most solutions use clustering
or community detection algorithms to group nodes into meta-
nodes, super-nodes, clusters or communities that may be handled
as individual entities (Von Landesberger et al., 2011), yielding a
hierarchical representation that can be navigated and explored
for visualization and analysis purposes. Hierarchical algorithms
have been employed to create simplified representations of large
networks (Dias et al., 2017a), and multilevel methods have
been applied, for instance, to reduce the computational cost of
computing node-link layouts (Harel and Koren, 2000b; Gajer
and Kobourov, 2001; Hachul and Jünger, 2004; Wong et al.,
2009). An experimental evaluation has been reported on using
multilevel algorithms in association with energy-based layout
algorithms (Bartel et al., 2011).

Still on the realm of unipartite networks, Abello et al.
(2006) uses clustering algorithms to define a hierarchy over the
network, so that users can navigate in a top-down strategy by
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interactively expanding individual clusters. Archambault et al.
(2008) proposes using domain-specific attributes associated with
the nodes and edges to create different possible hierarchies on
the same unipartite network, instead of a single, fixed hierarchy
as obtained with clustering. Wong et al. (2009) introduces a
coarsening algorithm to create a sequence of reduced networks
that retain the most important structural features at each level. A
coarser graph is guaranteed to have no less than half the number
of nodes than the previous (less coarsened) graph, i.e., ensuring
a 50% reduction rate at each level. Similarly, Dias et al. (2017b)
uses a non-negative matrix factorization (NMF) to rewrite the
edge weights and then employ a coarsening algorithm to create
a sequence of simpler networks. Batagelj et al. (2010) introduced
a two-level clustering algorithm that guarantees the intra and the
inter-cluster edges satisfy a set of desired topological properties.
This strategy makes it possible to exploit and combine different
visualization algorithms. Perrot and Auber (2018) presents a
technique to visualize huge graphs using a client running in
a Web browser. For this purpose, the authors introduce novel
scalable algorithms based on the well-known k-means clustering
to produce multiple levels of abstraction of the network.

Another category of related work comprises solutions
introduced for exploratory visualization of data modeled
as large scale bipartite graphs, which are becoming more
prevalent recently. Several systems employ the biclustering
algorithm (Heinrich et al., 2011) to generate node aggregations
in this context (Dörk et al., 2012; Xu et al., 2016; Steinbock
et al., 2018; Zhao et al., 2018; Sun et al., 2019). Using a co-
clustering algorithm, the interactive visualization system by Xu
et al. (2016) assists user recommendation on cluster models to be
input into a machine learning algorithm (Hoi et al., 2010) that
will learn acceptable clusterings according to user preferences.
Chan et al. (2019) also use co-clustering to facilitate interactive
data exploration. Waldner et al. (2020) deal with interactive
exploration of time-dependent large bipartite graphs. They use
two clustering algorithms to build a hierarchical aggregation: a
biclustering algorithm to group nodes so as to maximize the
graphmodularity, and a time series clustering algorithm to group
nodes based on their temporal correlation. The visual encoding
adopts the usual approach of presenting two vertical lists of
nodes, laid out in parallel. Other approaches are also employed to
assist visualization of bipartite graphs, as in Garcia-Algarra et al.
(2018), who use a k-core decomposition to identify and aggregate
groups of nodes that share connectivity properties in order to
simplify the network structure. The rationale of aggregating
groups of nodes that share connectivity properties is also at the
core of multilevel coarsening, employed in this paper.

Yet, other approaches are possible. The system WAOW-
Vis (Pezzotti et al., 2018), for instance, adopts a hierarchical
dimensionality reduction technique to create hierarchical
representations of bipartite graphs. Users may interact to expand
nodes in a particular area. The BiCFlows system (Steinbock et al.,
2018) relies a novel visualization to support exploration of large
weighted bipartite graphs, using biclustering for a hierarchical
aggregation. Selecting a clustering yields a new execution of the
biclustering algorithm to support a more detailed visualization.
The ViBr tool (Chan et al., 2019) uses the Minimum Description

Length (MDL) principle to create a clustered network, which can
be explored selecting specific clusters and re-executing the MDL
approach. The system employs adjacency lists for visualization,
rather than node-link views. Zhao et al. (2019) also prefer to
adopt an alternative representation to the node-link view, in this
case a matrix-based visualization to assist in interactive analysis
of missing links in bipartite networks.

Regarding multilevel methods in association with
visualization of bipartite networks, very few specific strategies
have been designed. Cintra et al. (2019) introduces a visualization
metaphor in association with the multilevel method, however
the focus is not on exhibiting network topology, but in assisting
developers of multilevel methods to compare the outcomes of
different coarsening algorithms. As opposite, Valejo et al. (2020a)
illustrate how the MLPb coarsening algorithm can support
node-link visualizations of large bipartite networks, however the
authors only consider static visualizations, rather than interactive
exploratory visualization scenarios.

In this work, we contribute a novel approach for interacting
with node-link views of large bipartite networks. Navigation of
the network at varying levels-of-detail is afforded by a multi
resolution hierarchical representation of the network obtained
with multilevel coarsening algorithms. We are not aware of
previous efforts of using multilevel network coarsening in
this context.

4. MULTILEVEL VISUALIZATION OF
BIPARTITE NETWORKS

In this section, we describe how a multi-resolution network
representation {G1,G2, · · · ,GH} obtained with a multilevel
coarsening algorithm can provide an underlying hierarchical
representation for interactive exploration of an original large-
scale bipartite network G0. We specialize the general framework
depicted in Figure 1 to address the target task of constructing a
multiresolution visual mapping of G0. In this context, the initial
solution SH corresponds to any suitable node-link layout of its
coarsest representation GH. However, rather than pre computing
a layout for each intermediate network Gh, we introduce a
strategy that performs uncoarsening locally over sub-graphs
defined by user selections. In other words, whenever the user
wishes a more detailed view of a certain region of the graph
than the one currently displayed, s/he identifies and selects the
corresponding super-nodes and the uncoarsening algorithm is
triggered on demand, on the selected super-nodes. The opposite
is also possible, i.e., changing from a detailed current view of a
sub-set of nodes to a coarser view by collapsing a selected sub-set
of nodes into super-nodes.

As further detailed in Section 4.2, expanding selected super-
nodes for a more detailed view requires identifying their
predecessor nodes at the upper hierarchical level, which must
be incorporated into the rendering layout. Likewise, collapsing
user selected nodes requires identifying their successor super-
nodes, then updating the rendering accordingly. This solution
prevents unnecessary complexity and, most importantly, avoids
overloading the visualization with information beyond the
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FIGURE 2 | The navigation pathway for exploring a bipartite network made possible by coupling appropriate interaction functions with a hierarchical model obtained

applying multilevel coarsening to the original network. The bottom level of the hierarchy corresponds to the full network, the upper level corresponds to its coarsest

version, with intermediate networks in between. Compliant with the “visual information seeking mantra” (Shneiderman, 1996), it displays an initial high-level view of the

coarsest network. A user may then expand selected nodes for a more detailed view of the corresponding local structure, which is achieved moving upwards in the

hierarchy. S/he may also apply filters and modify the visual mappings of the topological elements, or again drill-down for further detail. S/he may also move

downwards in the hierarchy, returning to a coarser view. These and other user operations may be carried out in any sequence. (A) Initial bipartite network. (B)

Highest-level view (coarsest network). (C) Selecting a region in the coarsest view. (D) Detailed view of the selected nodes (in the black circle).

cognitive convenience of the user and the computational power
available to ensure real-time interactivity. On the other hand, the
node-link layout of a network displayed at any moment may be
depicted with different regions shown at distinct resolution levels,
following the user interactions.

The approach is defined as a general framework that is
independent of specific choices of either coarsening algorithms
or node-layout algorithms; an implementation may thus offer
multiple choices of such algorithms to meet distinct domain
and/or user specific demands. Additionally, it seamlessly
supports the “visual information-seeking mantra” (Shneiderman,
1996) of overview first, zoom and filter, then details-on-demand.

Exploration starts with the user observing a node-link layout
of the highest level network (its coarsest representation GH),
rendered with any efficient algorithm. S/he may interact to
inspect topology, nodes or associated content, and eventually
select an arbitrary sub-set of nodes to obtain an expanded
view. In other words, the user is able to zoom into the region
defined by the selected nodes, which are rendered at the next
level of the hierarchical multilevel network {G0,G1, · · · ,GH−1},
as illustrated in Figure 2. In the example, the initial node-link
layout exhibits G0, after a user interaction the layout is updated
so that the selection is rendered at the level of detail given
by G1. Similar interactions can be applied to arbitrary regions
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Algorithm 1: BiNetVis algorithm for multilevel
visualization of a bipartite network.

Input: input network G0, layers ∈ {1, 2}
Output: Visual mapping of the current network

1 for h← 0 to (H− 1) by 1 do
2 foreach l ≤ layers do
3 Gh+1 ← Coarsen(Gh, l)

4 screen← render coarsest network GH

5 while C is not “exit” do
6 h← current user focus level
7 V ′ ← user selection of nodes
8 C ← user command
9 if C is “to expand” and h 6= 0 then
10 Gh← Expand(Gh, Gh+1, V

′)
11 else if C is “to collapse” and h 6= H then

12 Gh← Collapse(Gh, Gh−1, V
′)

13 else

14 Gh← update visual mapping according to C
15 screen← render network Gh

of the network rendered at any level of detail captured by the
multilevel representation, therefore allowing a user to switch
between coarser to finer levels of detail, or vice-versa.

We named our approach BiNetVis (from Multilevel Bipartite
Network Visualization), and it is described in Algorithm 1. The
algorithm instantiates the general multilevel framework depicted
in Figure 1 to the specific problem of multilevel visualization of
bipartite networks. Initially, an input network G0 is coarsened
with an arbitrary user selected algorithm, indicated by the routine
Coarsen (lines 1-3). Coarsening is performed independently on
each network layer {1, 2}, or the user may choose to coarsen just
one of the layers. The number of levels of the resulting network
hierarchy, which defines the extent of the desired simplification,
is typically a parameter of the coarsening algorithm. Next,
any choice of node-link layout algorithm can be employed to
render GH to the screen, line 4. For purposes of interactive
exploratory visualization, network GH , which depicts the coarsest
representation of G0, provides the initial focus for the user to
interact. S/he can move the focus up or down the multilevel
hierarchy while interacting, and the visual mapping is adjusted
accordingly to the current focus. Possible user operations in
the interaction loop (lines 5–15) would be requests to expand
selected (super-)nodes or to collapse selected (super-)nodes
(routines Expand and Collapse in lines 10 and 12, respectively).
Although not explicit in the algorithm, additional operations
can be incorporated into an implementation, e.g., to request
metadata relative to nodes or links, modify graphical properties
such as position, color or transparency of nodes and/or links;
apply zooming or panning to the rendering, etc.

Algorithms 2, 3 detail the routines Expand and Collapse,
which take as inputs two networks Gh and Gh+1 (or Gh and Gh−1)
where h is the level of the current viewing focus, and a user
selection of nodes V ′ ∈ Vh. Recall that set 2(u) refers to the
predecessor nodes of u at level h − 1, and 1(u) refers to the
successor super-node of u at level h + 1. Expanding a selection

Algorithm 2: Expand selected nodes one level up.

Input: Gh, V
′ ⊂ Vh

Output: Current visual mapping of the network
1 foreach u ∈ V ′ do

2 Gh ← remove u and its incident links
3 foreach p ∈ 2(u) do
4 Gh← add node p
5 foreach n ∈ Ŵ1(p) do
6 sV ← 1(n)
7 if (sV , u) ∈ Eh then

8 Eh = ωh(sV , u)+ ωh−1(n, u)
9 else

10 Eh = insert new link (sV , u) with weight
ωh−1(n, u)

Algorithm 3: Collapse selected nodes one level down.

Input: Gh, V
′ ⊂ Vh

Output: Current visual mapping of the network
1 foreach v ∈ V ′ with v ∈ Vh do

2 Gh ← remove v and its incident links
3 sV ←1(v) ∈ Vh+1

4 if sV 6∈ Vh then

5 Gh← recover sV and its incident links

V ′ requires incorporating into the current network layout the
predecessor nodes, at level h + 1, of all nodes v ∈ V ′

h
and their

adjacent links. Similarly, collapsing V ′ implies in replacing its
nodes with their corresponding successor nodes and adjacent
links at level h− 1. In both cases, the node-layout rendering will
be updated with a hybrid network model which simultaneously
includes nodes and links from networks at multiple levels of the
hierarchical multilevel representation.

4.1. BiNetVis Interface
We developed a proof-of-concept implementation of the
BiNetVis approach2; the system interface is illustrated in
Figure 3. An analyst initially selects a network model from
a drop-down menu (1), which also admits uploading a new
network. BiNetVis currently admits networks described in the
NCOL3 readable file format, often associated with biological data
graphs, though other formats could be incorporated.

The next step once a network has been loaded is to select a
coarsening algorithm and set its parameters in the corresponding
menu (area 2 in Figure 3). The user can choose from OPM,
GMb, RGMb, and MLPb coarsening algorithms (introduced in
Section 2), and set their parameters—reasonable default settings
are provided to newcomers. The options indicated in area 3
can be checked to hide/show the “layout options” menu and
to hide/show edges in the layout rendering, in addition to
showing the predecessor nodes of a selected super-node. Once

2source code and installation instructions at https://github.com/ttm/ml-net-gui

(runs on Linux platforms).
3http://lgl.sourceforge.net/#FileFormat
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FIGURE 3 | The BiNetVis system interface: (1) drop-down menu to select a network or upload a network for analysis; (2) control widgets of the coarsening algorithm

and its parameters; (3) check boxes to display the layout dialog and show/hide links and area to display user requested information on nodes or links; (4) control

widget of the node-link layout algorithm; (5) interactive table panel depicting the multilevel hierarchy levels with corresponding bipartite layers; also used to set the

current hierarchy view focus for interaction on the canvas; (6) toolbar with controls for network navigation and visualization; (7) canvas with the hybrid node-link

network view. This view shows nodes at two distinct levels of detail, indicated by the glyph colors: level 4 (blue/green) and level 1 (light green/yellow). The current view

focus is set at level 4, as indicated by the orange mark at the corresponding entry in the multilevel table panel (5).

the “render network” button is hit (area 4) the coarsening
algorithm is activated to build the hierarchical representation,
and a node-link layout of the coarsest network is computed with
the selected layout algorithm and rendered to the canvas (area 7).
The system currently incorporates two node layout algorithms,
namely Fruchterman and Reingold (1991) and Kamada and
Kawai (1989). The most relevant interface components to
support user interaction in BiNetVis are themultilevel table panel
(area 5) and the toolbar (area 6).

The table panel (5) provides the necessary controls to navigate
in the multilevel hierarchy. The color pairs used in rendering
the nodes change to identify the different levels, as indicated in
the table panel. Because different regions of the network may be
rendered at distinct levels of detail, a user must explicitly inform
the view focus level h to which level the current operations apply.
The default focus level is the coarsest one, and it may be changed
by the user clicking in any line of the table panel that corresponds

to the desired level focus. The current focus is signaled by the
orange marker in the corresponding line, e.g., in Figure 3 the
marker appears at the line corresponding to level h = 4, which is
the coarsest representation of the input network. For each layer
of Gi at level h = i the table panel also informs how many nodes
and links are currently visible, vs. their total numbers. The user
also has options to modify node colors or shapes, as well as to
toggle on/off drawing of links by means of left/right clicks on
the corresponding colored square. Any current user actions apply
only to the nodes/links at the currently defined view focus level.

Interaction is governed by the controls in the toolbar (6),
which are organized in four groups according to their target
element (node, link, multilevel hierarchy, canvas). The leftmost
group of controls affect the mapping of node properties to
graphical attributes of its corresponding graphical marker.
Moving right, the next group of controls affect the mapping
of link properties to graphical attributes of the corresponding
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lines. The next group is of controls to navigate in the multilevel
hierarchy, e.g., obtain information relative to a selected (clicked)
node, its predecessors and successor, move nodes in the canvas
by clicking and dragging; define a rectangular region in the
canvas and drag to move all nodes within, expand super-nodes
to show their predecessor nodes and links at a finer level of detail,
or collapse super-nodes that have been previously expanded.
Finally, the rightmost set of controls affect the canvas, with tools
to change the background color and perform zooming, panning
and rotation of the network.

4.2. BiNetVis Implementation
Components of the BiNetVis software are mostly written in a
combination of JavaScript and Python: it uses Vue.js (set up by
Nuxt.js) in the front-end client, the back-end is a Flask Python
server, used to perform specialized or heavy calculations. A
secondary server, a FeatherJS, is used to facilitate contact with
the database and real-time multi-user interaction. The data is
stored in a MongoDB database and ordinarily in the file system,
while the multi-user interaction is currently deactivated to avoid
unnecessary complexity. Multiple bipartite network coarsening
algorithms available from a previous implementation (Valejo
et al., 2018) are accessed by the Flask server. Pixi.js is employed
for fast WebGL 2D rendering on the canvas. The choice of
features and technologies supports visualization of networks with
tens of thousands of nodes without any perceptible lag in the
interactive navigation and transformations, with links rendered,
even when running the system on ordinary machines, e.g., with
8GB RAMDDR3, a first generation i7 processor and a 1GB GPU.

In order to comply with the goal of handling large bipartite
networks, the glyphs on the canvas use only triangles as geometric
primitives (for nodes) and straight line segments (for links).
It is possible to choose the colors and shapes associated with
the bipartite layers at the different hierarchy levels, and also to
alleviate the computational burden by setting the option of not
rendering the links.

5. USE CASE SCENARIOS

We present four use case scenarios to illustrate the flexibility
afforded by the proposed visualization solution.

1. A first example illustrates how network coarsening can reveal
fundamental topological properties of a complex network,
which may remain hidden in a full rendering of the full
network.

2. A second study investigates how user-driven uncoarsening of
specific regions of the n-reactome biochemical network can
reveal hidden local structures with no need to iterate over the
entire network.

3. A third study explores a gene-disease network to illustrate
the possibility of switching between different perspectives by
coarsening just one layer at a time, indicating that users can
easily obtain relevant contextual information by on-demand
navigation and exploration of the network.

4. A fourth study explores a scientific collaboration network
(authors and papers) obtained from papers published related

FIGURE 4 | Bipartite network “HB/jagmesh7,” with |V1| = 1, 138 and

|V2| = 1, 138 nodes, 7, 450 links and three holes: (A) a high-resolution

rendering the network (from https://sparse.tamu.edu/HB/jagmesh7); (B) a

rendering of the full network obtained in the BiNetViz system using the

Fruchterman-Reingold layout algorithm, where the holes are not clearly visible.

to COVID-19 and the “CoronaVac” vaccine. This study
illustrates how users can explore groups in different contexts
after obtaining a global visual perspective of how they are
connected.

5.1. Revealing Hidden Patterns
The overlapping of graphical elements in node-link visualizations
of large networks contributes to blurring important topological
patterns. Consider, as an example, the bipartite network
“HB/jagmesh7,” from the SuitSparse Matrix Collection.4 This
network, with 1, 138 nodes and 3, 156 links, has a peculiar
topology with three holes—a hole is a loop formed by nodes
with cyclic links only and no links crossing the loop. Holes may
indicate a relevant large-scale event occurring at a particular
region of the network.

Figure 4A, replicated from the SuitSparse Matrix site,
illustrates a static high-resolution drawing of this network. In
this large-sized high-resolution image the node layout algorithm
had sufficient space to place the graphical elements so that the
three holes are clearly visible. However, such rendering would
hardly afford real-time user interaction. More commonly, users
interact with node-link layouts displayed in limited-size screens.
Figure 4B illustrates a rendering of the full “HB/jagmesh7”
network obtained in BiNetVis with the Fruchterman-Reingold
layout algorithm (Fruchterman and Reingold, 1991). In this
view the hole topology of the network is not as clear. Even
though it is possible to rotate a layout, or to create and render
alternative layouts, they will not necessarily convey the existing
holes, of which an analyst may not be aware. Moreover, a
node-link screen rendering of a network this size also suffers
from severe overlapping of graphical elements, which impairs
legibility, interpretation, and interactivity.

Figure 5 shows coarsened versions of the original network
obtained with the GMb algorithm using the parameters as
following: three levels of coarsening and a reduction factor of
50% at both levels. Again, node-link layouts have been computed
with the Fruchterman-Reingold algorithm. The coarsest network
model shown in Figure 5C has just |V1| = 194 and |V2| =

4https://sparse.tamu.edu/
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FIGURE 5 | Node link layouts of the “HB/jagmesh7” network obtained in BiNetViz, at three increasing levels of coarsening: in (A) the network has |V1| = 623 and

|V2| = 626 nodes and 2, 291 links; in (B) it has |V1| = 342 and |V2| = 357 nodes and 1, 289 links; whereas, in (C) it has |V1| = 194 and |V2| = 199 nodes and 699

links. Node-link layouts have been obtained with the Fruchterman-Reingold algorithm, and the coarsening hierarchy has been computed with the GMb algorithm.

199. Yet, the holes in the network topology remain evident in
the three reduced models, and the layout in Figure 5C has a
similar shape to the one shown in Figure 4A. In both the largest
hole is placed in the central area, whereas the smallest hole
appears to the right. Whilst detailed topological information
is not accessible in the coarsened models, the renderings still
preserve the essential global topological structure of the full
network. Once the global structure is conveyed, a user may
further investigate local topological structures by interactively
selecting and expanding nodes.

5.2. On-Demand User Interaction
The interaction patterns between genes and proteins establish
the basis of molecular biology and disease pathogenesis, i.e., the
study of how diseases arise and evolve (Pawson and Linding,
2008; AlQuraishi et al., 2014). Protein groups are defined by the
topological properties of the networks they entail, which allows
for the isolation of functional and disease pathways (Sharan et al.,
2007; Barabási et al., 2011). We illustrate a brief case study of
BiNetViz on the n-reactome biochemical network, also available
at the SuiteSparseMarix (https://sparse.tamu.edu/Schulthess/N_
reactome).

Figure 6A depicts a high quality rendering of the original two-
layer network, formed by 8, 788 proteins in one layer, 15, 422
reactome interactions in the second layer, and 41, 087 links
between proteins and interactions. In this high-quality rendering

one observes three more salient communities and several smaller
ones. Figure 6B illustrates a coarsened representation obtained
in BiNetViz, with 100 nodes in each layer (protein nodes
represented as purple hexagons, and reactome interactions
represented as green triangles). The coarser networks have been
obtained executing three steps of algorithmMLPb, setting a 50%
reduction factor at each coarsening level with an upper bound
of 0.1 to allow for unbalanced super-nodes. Notice how the
coarsest network, even after severe reduction, still mirrors the
predominant characteristics of the original one, emphasizing the
presence of three major communities and their connections.

For purposes of illustrating the possibilities afforded by
BiNetViz we chose to inspect the connectivity node patterns of
the smallest community, identified by the nodes within black
circle depicted in Figure 6B. Figures 7A–C depict this particular
community rendered, respectively, at coarsening levels 2, 1 and
as in the original level, whereas the remaining nodes are still
rendered at coarsened level 3. One observes how the complex
topology is gradually unfolded in the sequence of views, each one
revealing more detail.

A zoomed view of the community rendered at level 0 is
depicted in Figure 7D, where one observes a group of densely
connected nodes in the central area. As these nodes clearly
correspond to numerous protein reactome interactions, they are
likely to play a central role in the network, and an analyst might
wish to further investigate the topological structures in that area.
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FIGURE 6 | Two renderings of the n-reactome bipartite network with 24, 211 nodes (a layer with 8, 788 protein nodes and a layer with 15, 422 n-reactome

interactions), and 41, 087 links. Panel (A) depicts a rendering of the full network, replicated from https://sparse.tamu.edu/Schulthess/N_reactome; panel (B) shows a

rendering obtained in BiNetViz of a coarsened representation with only 200 nodes (100 in each layer). The protein nodes are represented as purple hexagons,

whereas the reactome interactions are represented as green triangles.

Or, she might become interested in examining the less connected
nodes, in an attempt to understand their behavior or specific
roles.

This example illustrates how BiNetVis could be useful for
revealing localized patterns and topological relations involving
groups of nodes from one or both layers of a large bipartite
network. The framework allows focusing on particular areas
for detail on the connections, preserving interactivity without
loosing the global context provided by the remainder of the
network. For this particular network, it could support, e.g.,
studying groups of proteins that could be targeted for therapeutic
or other purposes, or groups of genes associated with metabolic
deficiency.

5.3. Exploring a Gene-Disease Network
Goh et al. (2007) discuss how a network of human diseases
and genes linked by known disease-gene associations offers a
platform to investigating “whether human genetic disorders and
the corresponding disease genes might be related to each other
at a higher level of cellular and organism organization.” Authors
use an available repository with data on diseases, genes and their
associations to construct a bipartite network in which one layer
has nodes corresponding to known genetic disorders, and the
other layer has nodes corresponding to all known disease genes in
the human genome. At the time, repository listed 1, 284 diseases
and 1, 777 genes. A disease and a gene are connected with a link
if mutations in the gene are implicated in the manifestation of
the disease.

The authors manually classified each disease into one of 22
classes, based on the physiological system affected. They analyzed
one-mode projections, i.e., derived unipartite models of the
bipartite network, creating two projections: a human disease
network, obtained connecting any two disease nodes that share
at least one gene in common, i.e., gene mutations are associated
to both diseases; a gene disease network connecting any two
gene nodes connected to a common disease, i.e., known to be
associated with the same disorder.

BiNetViz offers an alternative approach for direct
investigation of the bipartite network topology. Figure 8A

illustrates a giant component of the original network formed
by |V1| = 516 nodes representing diseases (depicted as purple
hexagons) and |V2| = 903 nodes representing genes (depicted
as green triangles), connected by 1, 550 links. Figures 8B–E

illustrate this giant component at increasing levels of coarsening
(levels 1, 2, and 3, respectively). The network was coarsened
with the GMb algorithm, set with three coarsening levels,
each level reduced by a factor of 50% relative to the previous
one. Figure 8E illustrates the expansion of the super-nodes
outlined with a black circle in Figure 8D to level 1 (expanded
nodes depicted in blue and yellow representing genes and
diseases, respectively). This feature enables a user to navigate
through multiple levels-of-detail, e.g, getting an overview of
the whole network and, at the same time, locally expanding (or
contracting) selected regions for a more detailed observation.
Therefore, multiple levels-of-detail may be rendered in a single
node-link view.

Another interesting possibility afforded by BiNetViz is to
conduct exploratory investigations by coarsening just one of the
network layers at a time, possibly alternating the analysis focus
between the gene and the disease layers. Based on this premise,
the node-link view can display the layers at distinct granularity
levels, whilst still preserving the full connectivity information
between both layers. For instance, coarsening the disease layer,
while keeping the gene layer at its original resolution, allows
identifying groups of diseases associated with similar genes,
which will become super nodes in the coarsened representation.
This strategy allows identifying the genes related with similar
diseases. Furthermore, a specific super-node representing a group
of diseases can be uncoarsened to reveal their connectivity to a
particular gene. Next we illustrate such a hypothetical scenario.

Figure 9 illustrates a rendering of the giant component
of the network, in which only the gene layer (green
triangles) has been coarsened. Coarsening the gene layer
allows exploring the network with a focus on the diseases
and, if necessary, it is possible to expand the gene-layer
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FIGURE 7 | Departing from the coarsest network (level 3) depicted in Figure 6B, with just 100 nodes in each layer, one may select nodes for progressively more

detailed visualizations. This is illustrated assuming a selection of the nodes enclosed within the black curve in Figure 6B. In (A) the selection is rendered at coarsening

level 2; in (B) it is rendered at coarsening level 1; and in (C) it is rendered at level 0, equivalent to the original network. The non-selected nodes remain rendered at the

coarsest level 3. Panel (D) shows a zoomed-in view of the drawing in (C). These hybrid renderings, depicting the network at different levels-of-detail are created

on-demand as a user interacts and selects sub-networks, triggering the corresponding uncoarsening operation. Selecting sub-networks to go back to coarser views

is also possible.

locally on-demand by “exploding” super-nodes into
their predecessor nodes. In this perspective, groups of
diseases become more evident, which is convenient for
detailed exploration.

Highly connected super-vertices thus represent densely
connected groups of genes. Figure 9A depicts the giant
component with the gene layer coarsened at level 4. The
degree of the gene nodes is mapped to the triangle size, so
that larger triangles indicate higher degrees. We notice how
the disease nodes appear clustered around the gene super-
nodes, e.g., the two gene super-nodes outlined by the light blue
and the black circles are highly connected to several disease
nodes. One may expand again those regions, for more detail.
Figure 9B illustrates the local expansion of the gene super-
node (green triangle) enclosed by the black circle. The expanded
region includes diseases nodes (purple hexagons) related
to “Endocrine” diseases, namely: “Hypothyroidism,” “Goiter,”
“Thyroid hormone resistance,” “Total iodide organization
defect,” “Graves disease” and “Autoimmune thyroid disease.”
Interestingly, the disease highlighted with a green circle
represents a type of cancer called “Thyroid carcinoma.” In
this case, the TSHR-gene bridges the diseases Hyperthyroidism

(Endocrine) and “Thyroid carcinoma” (Cancer). Notice that the
“Thyroid carcinoma” is linked with another group of several
cancer-related diseases (highlighted with a light blue circle),
such as: “Oligodendroglioma,” “Multiple malignancy syndrome,”
“Li-Fraumeni syndrome,” “Sezary syndrome,” “Lymphoma,
“Adrenocortical carcinoma,” “Dermatobrosarcoma protuberans,”
“T-cell lymphoblastic leukemia” and “Li-Fraumeni syndrome.”
Future investigations could analyze whether the “Thyroid
carcinoma,” as a cancer-related to the thyroid, could be explored
as a bridge between cancer-related diseases and other thyroid
diseases through the TSHR gene.

5.4. Exploring a Scientific Collaboration
Network
We include an example illustrating how the BiNetViz approach
can be applied to the analysis of scientific collaborations
expressed in terms of co-authorship in papers. Such analysis can
be aimed at assessing, for instance, scientific influence and scope
of collaborations, influential groups of researchers on topics of
interest, or the overall distribution structure of groups publishing
on a particular topic.
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FIGURE 8 | Biological bipartite network depicting the relationships between 516 diseases (purple hexagons) and 903 genes (green triangles). Panel (A) shows the

initial network, which is depicted at increasing levels of coarsening in (B) with |V1| = 323 and |V2| = 485 super-nodes and 866 super links, (C) with |V1| = 214 and

|V2| = 273 super-nodes and 524 super-links, and in (D) with |V1| = 142 and |V2| = 161 super-nodes and 328 super-links; finally panel (E) shows the expansion

back to level 2 of the elements within the black circle in (D), detailing an interesting topology.

The CORD-19 database is a freely available comprehensive
collection of coronavirus literature accessible for data
mining. Created as a joint effort by a coalition of renowned
research organizations, the collection includes over 500,000
research papers about COVID-19, SARS-CoV-2, and similar
coronaviruses, 200,000 of them with full text.5 We considered
this database to create a bipartite network of papers and authors,
with a focus on publications related with the “CoronaVac”
vaccine developed by the Chinese pharmaceutical company

5https://www.kaggle.com/datasets/allen-institute-for-ai/CORD-19-research-

challenge

Sinovac Biotech. Coronavac was one of the earliest vaccines
adopted in Brazil, after an agreement for local production. We
filtered the database to retrieve only papers published from 2020
for which the title or abstract included the term “CoronaVac”
and created the bipartite network formed by the papers retrieved
and their authors, linking the papers with their corresponding
authors.

The resulting network is formed by |V1| = 3, 531 author
nodes and |V2| = 451 paper nodes, with 5, 058 links indicating
authorship. This network has been loaded in BiNetViz and it is
displayed in Figure 10A with a node-link layout generated by
the Fruchterman-Reingold algorithm. Author nodes are depicted
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FIGURE 9 | An exploratory investigation conducted over the network after coarsening the gene layer (represented by the green triangles) only: panel (A) depicts the

coarsened gene layer; panel (B) depicts the local expansion of the super-nodes enclosed in the black circle in (A).

as purple hexagons and paper nodes are depicted as green
triangles.We notice many small isolated communities toward the
boundary regions, and larger communities in the central area,
apparently more connected, indicating group collaborations. A
three-level hierarchy (levels 1 to 3) has been created applying
algorithm GMb on both layers, with a target reduction factor
at each level equal to 50%. The coarsened network at level 1 is
formed by 1, 866 super-nodes in the author layer and 335 super-
nodes in the paper layer; whereas for the networks at levels 2
and 3 these numbers are, respectively, 1, 119 and 563 author
super-nodes and 286 and 264 paper super-nodes. Figure 10B
depicts the coarsest network (level 3), in which the patterns
of boundary isolated groups and central connected groups is
again very evident. From this representation, users may easily
select and expand communities of scientists and papers to obtain
relevant contextual information by on-demand navigation and
exploration.

Figures 11, 12 illustrate the expansion of two specific
groups back to level 0 (brown octagons correspond to author
super-nodes, whereas the green triangles depict paper super-
nodes). A feature of BiNetViz enables to select and crop a
group of elements, and then reposition it on the screen to
navigate over multiple levels-of-detail. In this case the two
groups identified in Figure 10B have been cropped from the
main view and locally expanded. The smaller group is mostly
related to Brazilian researchers, while the largest group is
characterized by researchers related to the “Sinovac laboratory,”
responsible by the “CoronaVac vaccine.” Figure 11 shows the
expansion of the smaller group, which includes several sub-
groups depicting teams led by reputed Brazilian researchers who
contributed papers on the “CoronaVac” vaccine. For instance,
Nuno Faria, a researcher affiliated with the University of Oxford,
United Kingdom, has co-authored several studies related to the
spreading of COVID-19 in Brazil, in partnership with Brazilian
researchers, e.g., Li et al., 2022; Mee et al., 2022; Prete et al., 2022.
This group also includes Ester C. Sabino (entry by “Sabino, E.

C.”), immunologist and researcher at the University of São Paulo
(USP). Several other visible groups and their connections could
also be further investigated.

Figure 12 shows the expansion to level 0 of greater and
denser group, which as in the previous case has been isolated
prior to expansion. Important information can be identified
in this sub-network, which corresponds to the largest group
of connected authors and their papers. Highlighted within the
blue circle, we notice a highly connected node corresponding to
researcher “Zeng, Gang.” who is amedical director at Sinovac, the
pharmaceutical company responsible for the development of the
CoronaVac vaccine. The brown nodes indicated within the green
line correspond to a small group of Brazilian researchers only,
authors of the study represented in the green triangle visible in
this group (Aikawa et al., 2022). This recently published paper
reports results from a study on the immunogenicity pattern
induced by the CoronaVac vaccine in SARS-CoV-2 seropositive
patients with autoimmune rheumatic diseases. Interestingly,
Ester C. Sabino is again one of the co-authors, however, now
identified as “Sabino, Ester C.”. Of course, using the solution
in this application domain would require additional processing,
e.g., to identify replicate author entries. Again, many groups
are visible in the detailed visualization that could be further
investigated for connections and other information.

6. CONCLUSIONS AND FURTHER WORK

We introduced a visualization framework for bipartite networks
assisted by the multilevel method that admits a conceptual
organization very consistent with the well-known visual
information seeking mantra stated as overview first, zoom and
filter, then details-on-demand. We introduce a system as a
proof-of-concept on the feasibility of employing the multilevel
strategy coupled with the familiar node-link views to visualize
and investigate large bipartite networks. Our framework allows
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FIGURE 10 | (A) Original scientific collaboration network formed by |V1| = 3, 531 authors, |V2| = 451 papers and 5, 058 links. (B) the network coarsened at level 3,

with |V1| = 563 author nodes, |V2| = 264 paper nodes, and 351 super-links. Purple hexagons depict author nodes or super-nodes, green triangles depict paper

nodes or super-nodes.

FIGURE 11 | Further exploratory investigation of a selected group, departing from the coarsest network. The smaller central group in Figure 10B has been isolated

and locally expanded back to level 0, for observation of its detailed topology.

departing from an overview of the major topological structures in
a network and then focus on relevant elements such as individual
or multiple nodes, which may be selected and rendered at a
less coarsened level, with further topological details displayed.
The combination of the multilevel strategy with suitable
software technologies and computationally inexpensive design
decisions regarding the rendering of node-link representations
yields a visual interface manageable with simple interactive
operations that can effectively support navigation on large-scale
networks.

The proposed visualization framework may be incorporated
into interactive visualization systems of large networked data
sets, aimed at different application domains, with added
domain-specific functionalities for data analytics. It does
require further validation on practical analytical settings, as
the usage scenarios of interactive knowledge discovery are
inherently complex, and often domain dependent. Indeed,

approaches beyond those considered here could be devised
for coarsening networks in general and bipartite networks
in particular, e.g., coarsening could consider domain specific
properties of the networked data. Further investigation on
coarsening choices and their impact on executing exploratory
visualization tasks in different application domains is
required. As a downside, using this strategy does require
from users some familiarity with the multilevel coarsening
algorithms.

Beyond data exploration, we believe our current
implementation could be tuned into a tool to guide and inform
developers of novel multilevel algorithms and applications.
For instance, certain multilevel strategies require selecting
pivot nodes to guide the coarsening procedure, a task that
could benefit from an interactive visual interface. The same
applies to developers who wish to compare the outcome of
multiple executions of coarsening algorithms, e.g., with different
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FIGURE 12 | Further exploratory investigation of a selected group, departing from the coarsest network. The bigger central group in Figure 10B has been isolated

and locally expanded back to level 0, for observation of its detailed topology.

parameter settings. Finally, despite our current focus and interest
on bipartite networks, a similar underlying rationale is clearly
applicable to unipartite networks, or can be generalized to
heterogeneous networks, as long as the underlying multilevel
methods are provided to build a hierarchical representation.
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