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Abstract
Lycium barbarum L. is a well-known traditional geoherb in Ningxia, China. The fruits of L. barbarum contain several dietary 
constituents, and thus, they exert many beneficial effects on human health. However, a few studies have been conducted 
on the geoherb L. barbarum and its rhizosphere soil fungal community. In this study, we determined the physicochemical 
properties and fungal community structure of rhizosphere soil of L. barbarum from three regions of China, namely Ningxia 
(NX), Qinghai (QH), and Xinjiang (XJ), during three development stages of L. barbarum. Soil pH varied between 7.56 and 
8.60 across the three regions, indicating that alkaline soil is conducive to the growth of L. barbarum. The majority of soil 
properties in NX, an authentic geoherb-producing area, were substantially inferior to those in XJ and QH during all three 
developmental stages. Total sugar, polysaccharide (LBP), and flavonoid contents were the highest in wolfberry fruits from 
NX. High-throughput sequencing showed that the abundance of the soil fungal population in NX was higher than that in 
QH and XJ during the flowering and fruiting stage and summer dormant stage. Moreover, the soil fungal diversity increased 
with the development of wolfberry. Ascomycota and Mortierellomycota were the predominant phyla in the rhizosphere 
fungal communities in all samples. Redundancy analysis showed a significant correlation of the soil-available phosphorus 
and LBP of wolfberry fruits with the fungal community composition. The characteristics of rhizosphere fungal communities 
determined in the present study provide insights into the mechanism of geoherb formation in NX wolfberry.
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Introduction

Lycium barbarum L. (wolfberry), belonging to the fam-
ily Solanaceae, is one of the most important traditional 
medicinal plants that is widely cultivated in Ningxia and 
Qinghai Provinces in northwest China. The utilisation of 

L. barbarum fruits has increased gradually over the past 
2 decades because of their proven nourishing value, anti-
inflammatory and antiageing effects, and crucial role in 
the prevention and treatment of various chronic diseases 
(Shi et al. 2017; Cenariu et al. 2021). Wolfberry con-
tains many nutrients with high biological activity, and its 
extracts exhibit immunomodulation and antitumour activi-
ties (Zhang et al. 2011; Huang et al. 2012; Kulczyński and 
Gramza-Michałowska 2016). Several studies have reported 
that L. barbarum polysaccharides (LBPs), a major active 
ingredient extracted from the fruits, possess a remarkable 
immuno-modulatory activity (Amagase and Farnsworth 
2011; Cheng et  al. 2015). In addition, phytochemical 
studies have revealed the presence of numerous second-
ary metabolites such as phenolic amides (Kai et al. 2015; 
Pei-Feng et al. 2017), alkaloids (Kun et al. 2011), peptides 
(Morita et al. 1996), and flavonoids (Qian et al. 2003) in 
L. barbarum. The clinical efficacy of wolfberry has not 
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been established yet, although its pharmaceutical proper-
ties have been determined in in vitro and in vivo studies, 
suggesting that it may be beneficial in the prevention and 
treatment of tumours (Potterat 2010). Lycium barbarum 
fruits also exert antitumour effects, which can be mainly 
attributed to the presence of carotenoids (Hsu et al. 2017).

Wolfberry in Ningxia Province has emerged as a well-
known geoherb because of the unique geographical envi-
ronment and climatic conditions in this province. Pres-
ently, the research on L. barbarum is mainly focussed on 
the cultivation, breeding, salt tolerance mechanism, effect 
of soil salt content on the accumulation of polysaccha-
ride, chemical composition analysis, and pharmacologi-
cal analysis (Masci et al. 2018; Zhang et al. 2019; Zhang 
et al. 2020; Yu et al. 2020b). However, only a few studies 
have investigated the quality of Ningxia wolfberry and soil 
microbial communities. In the plant rhizosphere micro-
ecosystem, plants release various root exudates under the 
influence of different environmental factors, which cre-
ates a unique and favourable environment for microbial 
growth and activity (Bais et al. 2006). Nitrogen-fixing 
rhizobia and mycorrhizal fungi in the rhizosphere have 
been reported to greatly influence the plant nutrient status 
(Mendes et al. 2013; Lu et al. 2018). Rhizosphere fungi 
are closely linked to plant health and growth due to their 
roles in antagonising pathogens, decomposing plant resi-
dues, and providing nutrients. Rhizosphere fungi can not 
only promote the absorption of soil nutrients by plants but 
also improve the yield and quality of wolfberry. Therefore, 
studying L. barbarum and its rhizosphere fungi can be 
useful for understanding the mechanism through which 
rhizosphere fungi increase the yield and nutritional value 
of the fruit.

Abundant microbes are present in the rhizosphere; how-
ever, only 0.1–1% of the environmental microorganisms 
can be cultivated by traditional methods, which cannot 
fully reflect the real situation of the environmental micro-
bial community. High-throughput sequencing technology 
has been widely used for studying the microbial commu-
nity structure due to the advantages of high-throughput, 
low price, and short operation cycle (Ying et al. 2012; Zuo 
et al. 2021). Therefore, in the present study, we character-
ised the rhizosphere fungal community of wolfberry in 
different regions during three stages, namely the sprout-
ing stage, flowering and fruiting stage, and summer dor-
mant stage. In addition, we analysed the environmental 
factors and fungal community composition related to the 
main nutrients of wolfberry to investigate the correlation 
between Ningxia wolfberry quality and soil microbial flora 
from the perspective of rhizosphere fungal community. We 
believe that the present study could provide new perspec-
tives to explore geoherbs and guide Ningxia wolfberry 
production practices.

Materials and methods

Wolfberry material and soil sampling

Similar wolfberry cuttings were artificially cultivated 
in Jinghe county (Xinjiang Province, XJ), Nuomuhong 
county (Qinghai Province, QH), and Zhongning county 
(Ningxia Province, NX), China, and were managed uni-
formly in an experimental base. We sampled the soil sur-
rounding the plant roots and randomly collected five soil 
cores from each plot to form a composite sample for each 
soil sample. The rhizosphere soil samples were collected 
at three stages, namely sprouting stage (SS), flowering and 
fruiting stage (FFS), and summer dormant stage (SDS), 
from the same plant in 2019. The soil samples were placed 
in sterile sealed plastic bags and then stored in two parts: 
one part was stored at − 80 °C for microbial diversity 
detection, whereas the other part was air dried and stored 
at room temperature for the determination of soil physi-
cal and chemical properties. Three biological replicates of 
each variant were performed. Sample information is pre-
sented in Table S1. The soil samples were collected from 
the surrounding of the plants from which wolfberry fruits 
were collected; then, the ripe fruits were collected, dried, 
mixed, and stored in bags at room temperature.

Soil properties and the main effective components 
of wolfberry

The soil physical and chemical characteristics were ana-
lysed according to a procedure described previously (Ehr-
mann and Ritz 2014; Wang et al. 2020). The soil water 
content was measured after oven drying the soil for 6 h 
at 105 °C. The soil pH was measured in a 1:2.5 (wt/vol) 
mixture of soil and water using a pH metre; the soil sam-
ples were ground to measure total nitrogen (TN) using 
a CHNOS elemental analyzer (Wang et al. 2020). The 
soil organic carbon (SOC) was measured using a method 
described in a study (Zhao et al. 2014). Soil total phos-
phorus (TP) was measured through flame photometry. Soil 
total potassium (TK) was measured through alkali fusion-
Mo-Sb Anti spectrophotometry; soil-available nitrogen 
(AN) was measured using a dual-wavelength scheme with 
an UV spectrophotometer (Kelly and Love 2007); soil-
available potassium (AK) was measured using a flame 
photometer, and available phosphorus (AP) was measured 
using the molybdenum blue method (Crouch and Malm-
stadt 1967). The electrical conductivity (EC) of the soil 
samples was measured in a 1:5 (wt/vol) mixture of moist 
soil and boiled water using a conductivity metre. The con-
tents of total sugar, polysaccharide, betaine, flavonoids, 
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and carotene in the fruits were determined using a spec-
trophotometer with NY/T1676-2008, NY/T1746-2009 and 
GB/T5009.83-2003.

DNA extraction, PCR amplification, and MiSeq

Total DNA was extracted using the genome extraction kit 
 (Powersoil® DNA isolation kit) following the manufac-
turer’s protocol. The concentration of the extracted DNA 
was determined on the NanoDrop One system (NanoDrop 
Technologies, Wilmington, DE, USA), and the DNA deg-
radation degree was examined through 1% agarose gel 
electrophoresis. Then, the ITS region of the fungal inter-
nal transcribed spacer (ITS) was amplified using the ITS1F 
forward primer (5′-CTT GGT CAT TTA GAG GAA GTAA-3′) 
and ITS2 reverse primer (5′-GCT GCG TTC TTC ATC GAT 
GC-3′), and the PCR products were sequenced through 
paired-end sequencing on the Illumina (MiSeq) platform. 
The raw sequences were deposited into the National Cen-
tre for Biotechnology Information with SUB10211634 in 
PRJNA759085.

Analysis of the high‑throughput sequencing data

Bioinformatic analyses were performed using QIIME 
(Quantitative Insights into Microbial Ecology, version 2.0) 
according to the methods described in a study (Caporaso 
et al. 2010; Sun et al. 2018). Briefly, the adapter sequences 
and low-quality sequence were discarded, and the clean data 
were clustered into operational taxonomic units (OTUs) 
at 97% similarity (Edgar 2010). Alpha diversity was esti-
mated in QIIME based on the OTU results. Taxonomy was 
assigned using the RDP Classifier against the Unite (Release 
8.2 http:// unite. ut. ee/ index. php) for fungal OTUs (Wang 
et al. 2007).

Statistical analysis

The significance of differences in soil properties between the 
treatments was determined using the Duncan’s test at a 95% 
confidence level in SPSS 20. 0. The relationship among the 
soil properties, contents of effective medicinal components 
of wolfberry, and soil rhizosphere fungal community was 
determined through a canonical redundancy analysis (RDA) 
in CANOCO software version 4.5. A P value of < 0.05 was 
considered to denote the significance threshold in all tests.

Results

Analysis of rhizosphere soil properties 
and nutritional ingredients of wolfberry

The rhizosphere soil of L. barbarum L. was collected from 
Xinjiang (XJ), Qinghai (QH), and Ningxia (NX) Provinces, 
China, and the physicochemical characteristics of rhizos-
phere soils were determined during the SS, FFS, and SDS 
(Table 1, Table S2). Most soil properties in NX were dif-
ferent from those in XJ and QH. The EC and contents of 
SOC, TN, TP, AN, AP, and AK in rhizosphere soil from 
NX were significantly lower than those in the soil samples 
from XJ and QH during the three developmental stages. The 
rhizosphere soil of L. barbarum was alkaline; the pH was 
not significantly different between the samples from QH and 
XJ; however, the soil from NX had the highest pH during the 
three developmental stages. The AN, AP, and AK contents 
exhibited significant differences in the three developmental 
stages. The SOC, AN, and AP contents were the highest 
in soil samples from QH, whereas the AK content was the 
highest in the XJ samples during the FFS.

Table 1  Basic physicochemical properties of rhizosphere soil samples from three regions during three developmental stages

a ,b,cValues represent means ± standard deviations (SDs) (n = 3). Values within a row followed by different lowercase letters are significantly dif-
ferent (P < 0.05, Duncan’s test)
EC electrical conductivity; SOC soil organic carbon; TN total nitrogen; TP total phosphorus; TK total potassium; AN available nitrogen; AP 
available phosphorus; AK available potassium

Sprouting stage Flowering and fruiting stage Summer dormant stage

NX QH XJ NX QH XJ NX QH XJ

pH 8.60 ± 0.04a 8.16 ± 0.01b 8.19 ± 0.01b 8.43 ± 0.03a 7.83 ± 0.01b 7.56 ± 0.03b 8.52 ± 0.02a 8.01 ± 0.01b 8.02 ± 0.01b

EC (mS/cm) 0.068 ± 0.01b 0.127 ± 0.01a 0.136 ± 0.00a 0.046 ± 0.00c 0.099 ± 0.00b 0.383 ± 0.00a 0.065 ± 0.00c 0.163 ± 0.01a 0.149 ± 0.01b

SOC (g/kg) 2.82 ± 0.09c 16.70 ± 0.20a 12.90 ± 0.15b 3.82 ± 0.32c 18.80 ± 0.06a 11.80 ± 0.36b 3.67 ± 0.15c 14.50 ± 0.23a 11.90 ± 0.10b

TN (g/kg) 0.31 ± 0.02c 1.05 ± 0.02a 0.80 ± 0.01b 0.25 ± 0.01c 1.31 ± 0.03a 0.81 ± 0.02b 0.28 ± 0.01c 0.87 ± 0.00a 0.73 ± 0.00b

TP (g/kg) 0.93 ± 0.01c 1.87 ± 0.02a 1.37 ± 0.02b 0.48 ± 0.01c 1.18 ± 0.03a 0.79 ± 0.01b 0.45 ± 0.01c 1.06 ± 0.01a 0.81 ± 0.00b

TK (g/kg) 18.90 ± 0.12b 19.10 ± 0.11b 23.30 ± 0.17a 18.10 ± 0.12c 20.10 ± 0.23b 21.90 ± 0.12a 15.90 ± 0.12c 17.30 ± 0.29b 21.70 ± 2.89a

AN (mg/kg) 18.00 ± 0.73c 89.00 ± 4.04b 97.00 ± 2.51a 127.00 ± 4.04b 221.00 ± 2.08a 123.00 ± 5.50b 10.00 ± 1.00c 66.00 ± 1.53a 55.00 ± 0.58b

AP (mg/kg) 11.70 ± 0.38c 164.00 ± 5.86a 32.00 ± 0.53b 39.40 ± 1.76b 176.00 ± 4.58a 26.10 ± 0.31c 23.00 ± 0.20b 70.10 ± 3.84a 16.80 ± 0.25c

AK (mg/kg) 80.00 ± 0.00c 168.00 ± 2.89a 152.00 ± 2.89b 98.00 ± 2.89c 203.00 ± 2.89a 207.00 ± 2.89a 75.00 ± 0.00c 125.00 ± 5.00b 143.00 ± 2.89a

http://unite.ut.ee/index.php
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Analysis of nutritional ingredients of wolfberry

Then, the main active ingredients of L. barbarum fruits were 
quantified in the samples from NX, XJ, and QH (Table 2, 
Table S3). The highest total sugar, LBP, and flavonoid con-
tents were detected in the fruits from NX. The betaine and 
carotenoid contents were significantly higher in the fruits 
from QH than in those from NX and XJ. Thus, the quality 
of NX wolfberry was superior to those of the fruits from 
other two regions because it contained the largest amount 
of active ingredients.

α‑Diversity of rhizosphere soil fungal communities

The fungal communities were characterised through next-
generation sequencing of nuclear ribosomal ITS1 in 27 
soil samples. A total of 1,948,798 high-quality reads were 
obtained from all samples (Table S4). The high-quality reads 
were clustered into 1762 microbial OTUs at 97% similar-
ity after removing the OTUs that were unassigned or not 
assigned to the target species (Table S5). To compare fungal 
diversity, we compared the rarefaction curves. Species rich-
ness is represented in these rarefaction curves and was meas-
ured according to the number of OTUs using a cutoff of 97% 
for similarity in sequence. The majority of the rhizosphere 
soil samples saturated 300–500 OTUs for fungi (Fig. S1A).

An analysis of α-diversity indicated that the Sobs, 
Chao, Shannon, Simpson, and ACE indices were higher 
in NX rhizosphere fungal communities than in QH and XJ 

rhizosphere fungal communities during the FFS and SDS 
(Table 3). In the SS, α-diversity indices were lower in the 
rhizosphere soil from NX than in those from QH and XJ. 
Moreover, the fungal alpha diversity showed an increasing 
trend with the growth of L. barbarum, suggesting that the 
fungal community abundance was gradually increased in 
rhizosphere soil (Table 3).

Fungal β‑diversity

β-Diversity of the samples was analysed based on a 
Bray–Curtis dissimilarity analysis. A cluster analysis indi-
cated that the samples from the soil resources of the same 
region were clustered together at the OTU level (Fig. S1B). 
Then, the variation in the soil fungal communities of differ-
ent regions was further visualised through nonmetric mul-
tiple-dimensional scaling (NMDS) ordination based on the 
Bray–Curtis distance (Fig. 1A). The results indicated that 
the NX soil was not clearly separated from the from QH and 
XJ soil at different developmental stages, which indicated 
that the development of L. barbarum did not significantly 
alter the community structure. However, the development of 
L. barbarum in QH altered the community structure signifi-
cantly at different developmental stages.

Composition of rhizosphere soil fungal communities

Fungal communities were classified into 11 phyla, 
29 classes, 172 families, and 332 genera (Table  S5). 

Table 2  Content analysis of the main active ingredients of L. barbarum 

a ,b,cValues represent means ± standard deviations (SDs) (n = 3). Values within a row followed by different lowercase letters are significantly dif-
ferent (P < 0.05, Duncan’s test)
LBP polysaccharide

Sample Total sugar/(g/100 g) LBP/(g/100 g) Betaine/(g/100 g) Flavonoids/(g/100 g) Carotenoid/(g/100 g)

NX 48.58 ± 0.48a 2.70 ± 0.02a 0.82 ± 0.04b 0.15 ± 0.02a 0.37 ± 0.01b

QH 46.18 ± 0.31c 1.84 ± 0.18b 0.94 ± 0.06a 0.11 ± 0.01b 0.42 ± 0.01a

XJ 47.36 ± 0.15b 2.72 ± 0.18a 0.86 ± 0.04ab 0.13 ± 0.01ab 0.24 ± 0.01c

Table 3  Alpha diversity indices 
of the rhizosphere soil fungi 
communities

Sample OTUs ACE Chao1 Shannon Simpson Sobs

NX-SS 322.67 ± 10.60 351.11 ± 17.06 352.88 ± 12.66 3.52 ± 0.07 0.06 ± 0.01 324.33 ± 13.50
NX-FFS 464.00 ± 26.66 506.86 ± 27.74 499.75 ± 26.47 2.94 ± 0.06 0.15 ± 0.01 463.33 ± 23.46
NX-SDS 470.00 ± 53.33 532.39 ± 47.39 520.19 ± 53.81 2.88 ± 0.66 0.20 ± 0.12 470.67 ± 52.20
QH-SS 360.33 ± 19.04 434.65 ± 35.53 429.23 ± 31.74 3.39 ± 0.10 0.07 ± 0.01 360.00 ± 18.03
QH-FFS 261.33 ± 91.25 318.08 ± 101.09 322.95 ± 100.12 2.66 ± 0.98 0.16 ± 0.16 260.33 ± 89.76
QH-SDS 356.67 ± 7.57 402.65 ± 8.33 398.86 ± 11.35 3.77 ± 0.12 0.04 ± 0.01 355.33 ± 9.07
XJ-SS 365.67 ± 16.26 435.52 ± 33.60 436.69 ± 34.64 2.74 ± 0.18 0.19 ± 0.05 369.33 ± 17.10
XJ-FFS 413.00 ± 42.23 482.80 ± 45.74 472.99 ± 49.18 2.73 ± 0.16 0.19 ± 0.03 411.67 ± 39.83
XJ-SDS 455.33 ± 87.56 509.69 ± 72.07 511.17 ± 73.14 3.33 ± 0.74 0.11 ± 0.09 453.67 ± 85.33
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Ascomycota and Mortierellomycota were the predominant 
phyla in the rhizosphere fungal communities in all samples 
(Fig. 1B, Table S6). Interestingly, Ascomycota accounted for 
approximately 92.06–97.08% of the total fungal communi-
ties in the NX soil samples (0.92–3.33% were unclassified) 
and approximately 75.24−96.04% and 91.60−96.97% in the 
QH and XJ soil samples, respectively. Mortierellomycota 
were significantly enriched in QH soil samples during the 
SS (13.39%) and SDS (16.70%). Chytridiomycota were sig-
nificantly enriched in the QH soil samples during the SDS 
(9.98%).

Sordariomycetes and Dothideomycetes were the pre-
dominant classes among the Ascomycota, with respective 
abundances of 70.66–88.92% and 9.72–15.96% in NX, 
49.95–53.59% and 5.17–38.56% in QH, and 29.83–89.88% 
and 4.13–21.59% in XJ during three developmental stages 
(Fig. S1C, Table S7). The abundance of Eurotiomycetes 
differed significantly across the three regions, with the 
abundance of 47.34% in XJ during the SS, which was sig-
nificantly higher than those in samples from NX and QH. 
The abundance of Pezizomycetes (21.6%) was the highest 
in QH during the SS. The results indicated that the fungal 
community of the rhizosphere soil in NX is less diverse but 
highly stable.

Relationships among fungal communities, soil 
properties, and active ingredients

RDA was applied to determine the correlations between 
soil properties and fungal community composition. The 
RDA results indicated the strongest correlation of soil TK, 
AN, and TP with the fungal community structure in differ-
ent developmental stages of wolfberry in NX, QH and XJ, 
respectively (Fig. 2A–C). Moreover, soil AP exhibited a sig-
nificant correlation with the fungal community structure at 
the same developmental stage in different regions (Fig. 2D, 

E). These results showed that the main driving factors for the 
fungal community structure were TK, AN, TP, and AP. Fig-
ure 3 illustrates that 48.09% of the variation can be explained 
by the relationship between fungi and active ingredients. The 
results showed a significant correlation between LBP and the 
fungal community composition (Fig. 3).

Discussion

Soil microorganisms play a pivotal role in the ecosystem 
and are the key factors associated with soil quality, soil fer-
tility, and productivity. Alterations in the rhizosphere soil 
microbial community composition affect the absorption and 
transformation of soil nutrients (Acosta-Martínez 2014). The 
unique geographical environment and climatic conditions 
in Ningxia are the major factors that have contributed to 
the establishment of L. barbarum as a well-known geoherb 
in China, which exhibits a wide range of biological effects, 
including immuno-modulatory, antiageing, antitumour, neu-
roprotective, and hepatoprotective effects (Kulczyński and 
Gramza-Michałowska 2016). However, the effects of the 
microbial community structure in plant rhizosphere soil on 
geoherbalism remain to be studied in detail. To efficiently 
manipulate the microbial populations in the rhizosphere for 
the benefit of plants, a better understanding of the relative 
importance of soil and plant factors for microbial rhizos-
phere communities is required. In the present study, fungal 
communities associated with the L. barbarum rhizosphere 
soils from different regions were characterised through high-
throughput sequencing during the SS, FFS, and SDS.

For detecting species diversity in soil samples, the Illu-
mina HiSeq technology is more efficient and precise than the 
traditional isolation culture method (Rhodes et al. 2014). In 
this study, the Illumina HiSeq platform was used to analyse 
the fungal ITS region, which provided detailed insights into 

Fig. 1  a The fungal community composition in the rhizosphere soil of different regions and during different developmental stages. NMDS plots 
of fungal communities based on Bray–Curtis distances; b the relative abundance of soil fungi in each sample at the phylum level
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the fungal community patterns in rhizosphere soil of L. bar-
barum in NX, QH, and XJ under three developmental stages. 
A total of 1,948,798 high-quality reads were detected from 
the 27 rhizosphere soil samples (Supplementary Table S4). 
The detection of a large number of effective reads indicated 
that this high-throughput sequencing technique is suitable 
for analysing the fungal community composition in rhizos-
phere soils of L. barbarum.

The abundance and variation of the fungal population 
are crucial for the sustainable development of soil quality, 
function, and ecosystem (Berg and Smalla 2009). The rhizo-
sphere soil fungal community structure and L. barbarum 
diversity were found to change considerably in the present 
study. The number of OTUs and alpha diversity index were 
found to increase continuously with the development of 
L. barbarum. Moreover, the fungal community was more 
diverse and abundant in NX than in QH and XJ, suggest-
ing that the soil fungal community structure is obviously 
related to the geoherbalism of L. barbarum. Most studies 
have shown that the growth stage affects the fungal com-
munity structure of plant roots. Our results indicated that 
the NX soil under different developmental stages did not 

significantly alter the community structure, which may be 
due to a low number of replicates or greater variances in 
taxonomic abundances. Soil microbial communities play 
an essential role in soil nutrient cycling and organic matter 
dynamics in agro-ecosystems, thereby serving as soil quality 
indicators. Thus, changes in the soil microbial community 
composition or total microbial biomass can affect the rhizo-
sphere soil quality (Berg and Smalla 2009). Ascomycota and 
Mortierellomycota were found to be the predominant fungal 
phyla in rhizosphere fungal communities in all samples in 
the present study. This result is in accordance with our previ-
ous results. Moreover, some Mortierella species were found 
to exhibit antagonistic activities against plant pathogens that 
cause root rot or potato scab. Therefore, Mortierella might 
act as the key factor for soil-borne disease suppression prop-
erties of the soil. At the class level, the relative abundances 
of Sordariomycetes, Dothideomycetes, Eurotiomycetes, and 
Pezizomycetes varied significantly across different samples, 
which caused differences in the quality of wolfberry across 
different regions.

The growth rate and metabolic activities of rhizosphere 
microorganisms are extremely high, which can accelerate the 

Fig. 2  RDA plot depicting the correlation between soil properties and 
fungal communities in three wolfberry production regions during the 
three developmental stages. a–c Samples from Ningxia (NX), Qing-

hai (QH), and Xinjiang (XJ) in the sprouting stage (SS), flowering 
and fruiting stage (FFS), and summer dormant stage (SDS); d, e sam-
ples from three wolfberry production regions in the SS, FFS and SDS
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effective decomposition and release of the solidified inor-
ganic mineral elements P and K and the organic mineral 
elements P and K, as well as promote the availability and 
absorption of the solidified plant nutrient elements such as 
P and K in the soil (Marschner et al. 2004; Berg and Smalla 
2009). Specific constituents of soil nutrients (e.g., C, N, P 
and K) and pH may impose physiological constraints on fun-
gal survival and growth, thereby directly altering the fungal 
community composition (Zhang et al. 2016). According 
to the RDA results, soil TK, AN and TP had the strong-
est correlation with the fungal community structure in the 
developmental process of L. barbarum. AP was significantly 
correlated with the fungal community structure in the three 
L. barbarum-producing areas, indicating that some fungal 
species effectively convert the insoluble phosphorus and 
potassium present in the soil into the soluble form, which 
increases the absorption and utilisation of phosphorus and 
potassium by plants.

The medicinal value of genuine herbs lies in the type 
of metabolites, and our results showed a significant cor-
relation of LBPs with the fungal community composition. 
LBP is one of the main active ingredients of wolfberry. In 

pharmacological experiments conducted in some studies, 
LBP of wolfberry has been shown to exert antiageing, anti-
hyperlipidemia, obesity-improving, antifatigue, antitumour, 
antioxidation, and BMD-increasing effects (Jin et al. 2013; 
Yu et al. 2020a). We also found a positive correlation of 
the Trichocomaceae, Chaetomiaceae, and Sporormiaceae 
abundances with the LBP content at the family level. Thus, 
investigations of the fungal community in rhizosphere soil 
could provide new insights into the mechanism of geoherb 
formation in NX wolfberry.
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