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The ability to predict responsiveness to drugs in individual patients is lim-

ited. We hypothesized that integrating molecular information from data-

bases would yield predictions that could be experimentally tested to

develop transcriptomic signatures for specific drugs. We analyzed lung ade-

nocarcinoma patient data from The Cancer Genome Atlas and identified a

subset of patients in which xanthine dehydrogenase (XDH) expression cor-

related with decreased survival. We tested allopurinol, an FDA-approved

drug that inhibits XDH, on human non-small-cell lung cancer (NSCLC)

cell lines obtained from the Broad Institute Cancer Cell Line Encyclopedia

and identified sensitive and resistant cell lines. We utilized the transcrip-

tomic profiles of these cell lines to identify six-gene signatures for allopuri-

nol-sensitive and allopurinol-resistant cell lines. Transcriptomic networks

identified JAK2 as an additional target in allopurinol-resistant lines. Treat-

ment of resistant cell lines with allopurinol and CEP-33779 (a JAK2 inhibi-

tor) resulted in cell death. The effectiveness of allopurinol alone or

allopurinol and CEP-33779 was verified in vivo using tumor formation in

NCR-nude mice. We utilized the six-gene signatures to predict five addi-

tional allopurinol-sensitive NSCLC cell lines and four allopurinol-resistant

cell lines susceptible to combination therapy. We searched the transcrip-

tomic data from a library of patient-derived NSCLC tumors from the

Jackson Laboratory to identify tumors that would be predicted to be sensi-

tive to allopurinol or allopurinol + CEP-33779 treatment. Patient-derived

tumors showed the predicted drug sensitivity in vivo. These data indicate

that we can use integrated molecular information from cancer databases to

predict drug responsiveness in individual patients and thus enable precision

medicine.
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1. Introduction

Lung cancers are the most common cause of death

related to cancers worldwide (World Health Organiza-

tion, 2017). Non-small-cell lung cancer (NSCLC) is a

widely occurring lung cancer that includes three main

subtypes: adenocarcinoma, squamous cell carcinoma,

and large-cell carcinoma (Chen et al., 2014). Targeted

treatment for lung cancer based on attacking the

major mutational characteristics and responsiveness to

immunotherapy has significantly increased life span

(Harvey, 2014; Kris et al., 2014; Rotow and Bivona,

2017). Often, many of the mutated gene products that

are drivers of the cancers are part of, and controlled

by, complex networks of cellular components within

cancer cells. Such cellular regulatory networks give rise

to the biological capabilities that are characteristic of

cancer cells (Hanahan and Weinberg, 2011). Despite

the steady advances in the treatment of lung cancers, a

targeted therapy often works only on a subset of

patients with the target driver mutation. One approach

to search for other possible therapies rests with the

possibility that many pathways are uniquely dysregu-

lated in individual patients, and these pathways can be

used to find targets for potential efficacious drugs. Sys-

tems-level analyses that consider different types of

omics data can provide both the breadth and depth

needed to identify pathways that can be targeted ther-

apeutically. Such analyses can also enable the discov-

ery of prognostic genomic biomarker sets associated

with the therapeutic targets and thus represent an

important step in precision medicine.

Lung cancer is the leading cause of death due to

cancer in the USA, and lung adenocarcinoma (LUAD)

is the most diagnosed group of NSCLC (Cancer Gen-

ome Atlas Research Network, 2014; Travis, 2011).

Adenocarcinomas, which represent 40% of all lung

tumors (Bunn et al., 1998), develop from the small-air-

way epithelium of the lung (Schuller, 2002). Smoking

and other risk factors such as genetic and environmen-

tal elements are considered as predisposing factors in

adenocarcinoma of the lung. Patients with LUAD who

have never smoked carry mutations of the epidermal

growth factor receptor and are sensitive to tyrosine

kinase inhibitors. On the other hand, those patients

with a history of smoking carry KRAS mutations and

show resistance to tyrosine kinase inhibitors (Cancer

Genome Atlas Research Network, 2014; Ding et al.,

2008; Le Calvez et al., 2005; Pao et al., 2004). A com-

prehensive analysis of 230 LUADs in The Cancer

Genome Atlas (TCGA) has provided a general plat-

form for molecular biomarkers in LUAD (Cancer

Genome Atlas Research Network, 2014). While this

study has provided insights regarding mutational and

aberrant RNA transcripts in the adenocarcinoma of

lung, a systems pharmacology approach to decode

clinical patterns of all biomarkers including transcrip-

tomic profiles and gene expression is required to find

new therapeutic targets.

We used a combination of cancer databases for data

integration to identify specific drugs that are effective

in a predictable manner in individuals. We started with

TCGA (Cancer Genome Atlas Research Network,

2014) to test our hypothesis that integrated considera-

tion of the molecular characteristics of individual

patient tumors will allow us to identify actionable drug

targets. TCGA contains both clinical and molecular

data from individual patients for different types of

cancers including lung cancer. These data have led to

the reclassification of many cancers based on molecu-

lar characteristics (Cancer Genome Atlas Research

Network, 2017a,2017b; Robertson et al., 2017). We

focused on LUAD. We explored TCGA data from

LUAD patients to find new pathways and targets,

which had not previously been used for drug therapy

of lung cancer. Our strategy was to focus on targets

that are not well-known mutations or that have pro-

tein kinase activity, to be able to explore unidentified

potential cancer genes (McDonald et al., 2017). We

found the xanthine dehydrogenase (XDH) gene highly

expressed in a subset of patients with lower survival

rates in TCGA LUAD data. XDH and its intercon-

vertible form xanthine oxidase have been known as

drug targets for over 50 years. In fact, an inhibitor of

XDH, allopurinol, was synthesized and tested as an

early potential anticancer agent. Although allopurinol

was a not a successful antileukemic drug (Pacher et al.,

2006), it has been used successfully to treat gout for

over 50 years and is also used to prevent kidney stones

associated with hyperuricemia caused by cancer

chemotherapy (Howard et al., 2011; Neogi, 2011). We

then experimentally analyzed LUAD cell lines in the

Cancer Cell Line Encyclopedia (CCLE) (Barretina

et al., 2012) to identify cell lines that are either sensi-

tive or resistant to allopurinol. We used molecular

data associated with these cell lines to identify the

transcriptomic signatures that predict sensitivity or

resistance to allopurinol. We also used network analy-

sis to predict that cell lines resistant to allopurinol

alone could be successfully treated with combination

therapy of allopurinol with a JAK2 inhibitor. We

tested this prediction experimentally and found it to be

valid. We then used the molecular signatures from the

integration of TCGA and CCLE data to analyze
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transcriptomic data from patient-derived xenograft

(PDX) tumors from Jackson Laboratory and were

able to identify tumors that had allopurinol sensitivity,

indicating that molecular signatures for allopurinol

sensitivity can be identified.

2. Methods

2.1. Ethics statement

All animal experiments adhered to a protocol

approved by the Institutional Animal Care and Use

Committee (IACUC) at the Icahn School of Medicine

at Mount Sinai and were performed according to the

Office of Laboratory Animal Welfare (National Insti-

tute of Health) and Animal Welfare Act (United States

Department of agriculture) guidelines.

2.2. Materials

Agmatinase (AGMAT), 5-aminoimidazole-4-carboxam-

ide ribonucleotide formyltransferase/IMP cyclohydro-

lase (ATIC), XDH, JAK2, and scrambled siRNA were

purchased from GE Healthcare (Lafayette, CO, USA)

Anti-XDH antibody was purchased from Sigma-

Aldrich (St. Louis, MO, USA). Anti-GAPDH, cleaved

caspase-3, and JAK2 were purchased from Cell Signal-

ing Technology, Inc. (Danvers, MA, USA). The anti-

cd31 antibody was purchased from Fisher Scientific

Company. Allopurinol was purchased from Cayman

Chemical Company, and CEP-33779 was purchased

from Selleck Chemicals LLC (Houston, TX, USA).

For in vitro experiments, allopurinol and CEP-33779

were dissolved in DMSO and then diluted in complete

medium to a final DMSO concentration < 1%. For

in vivo experiments, allopurinol and CEP-33779 were

diluted in PBS.

2.3. Cell Lines

The human NSCLC cell lines HCC827, NCI-H1437,

NCI-H1734, NCI-H358, NCI-H1781, NCI-H2170,

NIC-H1650, NCI-H2106, NCI-H2087, NCI-H2347,

NCI-H441, Hs 618.T, NCI-H1299, NCI-H460, NCI-

H1975, NCI-H1568, NCI-H23, Calu-3, and A549 were

obtained from the American Type Culture Collection

(Manassas, VA, USA). The human NSCLC cell line

COR-L105 was purchased from Sigma-Aldrich, and

human NSCLC cell line HCC-15 was purchased from

Creative Dynamics (Shirley, NY , USA). The HS618.T

cell line was cultured in Dulbecco’s Modified Eagle’s

medium, supplemented with 10% FBS. A549 was

cultured in F-12K medium, supplemented with 10%

FBS. NCI-H2106 was cultured in HITES medium sup-

plemented with 5% FBS. Calu-3 was cultured in

Eagle’s Minimum Essential Medium supplemented

with 10% FBS. NCI-H2087 was cultured in RPMI-

1640 medium supplemented with 5% FBS. All other

cell lines were maintained in RPMI-1640 medium sup-

plemented with 10% FBS. Cells were grown at 37 °C
in a humidified 5% CO2 : 95% air atmosphere.

2.4. Cell cycle and cell viability assay and

calculation of IC50 and CI

For cell cycle analysis, cells were fixed in 70% ethanol.

Fixed cells were treated with RNase for 20 min before

addition of 5 lg�mL�1 propidium iodide and analyzed

by FACS. Cell viability was detected by luminescent

cell viability dye (CellTiterGlo; Promega Corporation,

Madison, WI, USA). Cells were seeded in triplicate

into 96-well plates in full growth media. After 24 h,

drugs of interest (allopurinol and/or CEP-33779) were

added in 12 different concentrations (varying from 0

to 4 mM), and after 48 h of drug treatment, 20 lL of

dye was added to each well containing 100 lL of trea-

ted media. Cell viability was calculated by dividing

each luminescent reading by the average of the lumi-

nescent readings obtained for vehicle control. Concen-

tration–response curves were generated and fitted in

PRISM 7.0 (GraphPad Software, Inc., San Diego, CA,

USA). The IC50 values were generated using the log

inhibitor-normalized response variable slope function:

Y ¼ 100=ð1þ 10ðX�LogIC50ÞÞ. IC50 values are shown

with 95% confidence interval from at least three inde-

pendent experiments. To evaluate synergism, CI values

were calculated based on the method proposed by

Chou and Talalay (1984) using COMPUSYN software

(Chou and Martin, 2005). The following single doses

of allopurinol were used: 400, 800, and 1000 lM. The
following single doses of CEP-33779 were used: 1.6,

3.2, and 16 lM. The following combination doses were

used: allopurinol = 400 lM combined with CEP-33779

(1.6, 3.2, and 16 lM) and allopurinol = 800 lM com-

bined with CEP-33779 (1.6 and 3.2 and 16 lM).

2.5. Xenograft cell line in vivo experiments

NCR-nude female athymic mice were purchased from

Taconic Farms, Inc. (Rensselaer, NY, USA) Mice

were injected in the flank region with 1.5*106 cells,

while anesthetized with a combination of ketamine

and xylazine. Size of tumors was measured in three

dimensions using a caliper, and tumor volume was cal-

culated by this formula: V = 0.5*length*width*height.
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When tumors reached a minimum size of 100 mm3,

mice were randomly assigned to treatment groups, and

drug treatment was administered by oral gavage.

Allopurinol (200 mg�kg�1 three times a week) and

CEP-33779 (10 mg�kg�1 three times a week) were

diluted in PBS for treatment groups, and PBS was

given to the control group as placebo. Tumors and

weights of the mice were measured three times a week.

2.6. Colony formation in soft agar

Cells (1 9 105 to 2 9 105 per plate) were suspended in

soft agar containing 5% serum, dosed with vehicle and

drugs, and allowed to grow for 2–3 weeks with peri-

odic dosing to keep the dosing media fresh and the

agar hydrated. Viable colonies were stained with

iodonitrotetrazolium chloride at 0.5 mg�mL�1 over-

night. Colonies larger than 0.3 mm in each field were

manually scored using a light microscope.

2.7. Immunofluorescent and western blot

analysis of tumor tissue

Mice bearing subcutaneous tumors were sacrificed after

the treatment course, and tumors were resected. These

resected tumors were snap-frozen in isopentane, sub-

merged in liquid nitrogen, and sectioned onto positive

slides. Unstained frozen sections were fixed for 15 min

in ice-cold acetone, dried, rehydrated in PBS, and

blocked in Tris-buffered saline containing 1% BSA,

10% goat serum followed by overnight (4 °C) incuba-
tion with primary antibodies for caspase-3 and CD31.

After washing, Alexafluor 568 Goat Anti-Rabbit sec-

ondary antibodies (Fisher Scientific Company, Pitts-

burg, PA, USA) were incubated with the tissue for 1 h

at room temperature, followed by 40,6-diamidino-2-

phenylindole (DAPI; Thermo Fisher Scientific, Molecu-

lar Probes, Pittsburg PA, USA) staining. Staining was

visualized using an Olympus MVX10 Macroview

(Olympus Life Science Solutions, Waltham, MA, USA)

microscope with a 29 Apochromat lens with 59 zoom.

For western blot analysis, a 2- to 3-mm cross-sectional

slice of the tumor was lysed in RIPA buffer by sonica-

tion, and the resulting lysates were analyzed by western

blot following standard methods. Quantification of

western blots and immunofluorescent images was done

by IMAGEJ software (National Institutes of Health,

Bethesda, MD, USA).

2.8. PDX models in vivo experiments

Patient-derived xenograft models were purchased from

the Jackson Laboratory, and they were received as a

single tumor engrafted subcutaneously in an NSG

mouse (The NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ). This

original mouse was sacrificed, and the tumor was

divided and engrafted in five other NSG mice subcuta-

neously and allowed to grow. Then, each of the new

tumors was engrafted in 5–10 more mice. Drug treat-

ments were started at passage four when enough

tumor samples were available. All NSG mice were pur-

chased from the Jackson Laboratory. When tumor

sizes were between 50 and 150 mm3, mice bearing

tumors were randomly assigned to treatment groups.

Each group had at least eight mice at the beginning of

the experiments. Drug preparation, administration,

and tumor measurements were the same as in the

xenograft cell line in vivo experiment, but the allopuri-

nol, CEP-33779, and combination therapy were

applied at the following doses: allopurinol (70 mg�kg�1

daily), CEP-33779 (10 mg�kg�1 daily), and combina-

tion therapy (allopurinol 50 mg�kg�1 daily + CEP-

33779 2.5 mg�kg�1 daily). We reduced the dose of

allopurinol and CEP-33779 for combination therapy

since this strain of mice was not capable of tolerating

higher doses of these drugs together based on our ini-

tial study. Tumors and weights of the mice were mea-

sured three times a week. After the treatment course

(30 days), three mice from each group were used for

in vivo imaging using Pan Caspase (VAD-FMK) near-

infrared assay (Vergent Bioscience) in the IVIS� (Per-

kinElmer, Inc., Waltham, MA, USA) Spectrum in vivo

imaging system. Image processing was done by LIVING

IMAGE
� 4 software (PerkinElmer, Inc.).

2.9. Statistical analysis

All experimental data are shown as mean � SEM.

Unpaired t-test and one-way ANOVA were used, and

P < 0.05 was considered as significant. All statistical

analyses of experimental data were done in GRAPHPAD

SOFTWARE 7 (GraphPad Software, Inc, San Diego, CA,

USA).

2.10. TCGA candidate gene signature

identification

In brief, we identified patients with both methylation

data and gene expression data from the TCGA LUAD

dataset (Snapshot 12/2012). Also, we excluded any

patient who did not have tissue level control samples.

We divided samples into four categories: case male,

case female, control male, and control female. We

evaluated the significance of the difference between

case and control by determining the absolute differ-

ence among the mean divided by the square root of
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the sum of variance among each of the groups for

each gene. This is given by the formula below:

tg ¼ lcm þ lcf � lom � lofffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
cm þ r2

cf þ r2
om þ r2

of

q :

In this formula, tg is the significance of a gene

expression, lx is the average gene expression for the

specified category, and rx is the standard deviation of

the gene expression for the specified category. The

gene expressions were determined by the Agilent

4502A microarray. We selected for gene targets that

had a positive gene expression change where tg > 1.5.

We repeated this procedure selecting for methylation

markers assessed by Illumina Human Methylation 27k

microarray (Illumina, San Diego, CA, USA). In this

procedure, we selected for markers that had a tg < �2.

We repeated the procedure for markers assessed by

Illumina Human Methylation 450k microarray. We

identified methylation patterns that were selected based

on both array formats. We then selected genes that

were selected by both gene expression and methylation

differentials.

Upon identifying gene signatures of interest, we corre-

lated the gene expression signatures and methylation

signatures to the ‘days to death’. We used linear correla-

tions to evaluate the associations between molecular

data and clinical data. A gene signature was identified

as correlated if it had a correlation coefficient that had a

one-sided P < 0.05 as evaluated by Student’s t distribu-

tion. Through this, we identified genes that had either

positive correlations between ‘days to death’ and DNA

methylation signatures or negative correlations between

‘days to death’ and gene expression signatures.

2.11. Extracting the gene signatures of

sensitivity and resistance to allopurinol

Cancer Cell Line Encyclopedia gene expression data of

12 cell lines tested for siRNA screening were used.

Welch’s t-test, with P < 0.001, was used to compare

the differentially expressed genes in two sets of cell

lines of allopurinol-sensitive and allopurinol-resistant.

Twelve genes were found (six in each set), which were

differentially expressed.

2.12. Network analysis of gene signatures

To find a gene set capable of forming a protein-pro-

tein interaction network, we selected the top 10 upreg-

ulated genes and top 10 downregulated genes. We

used X2K (Chen et al., 2011) to build a protein-pro-

tein interaction network using these new gene sets.

2.13. Selecting cell lines for validation of gene

signatures

For predicting new cell lines as allopurinol-sensitive

and allopurinol-resistant, we extracted CCLE gene

expression data of all NSCLC cell lines. We then used

the mean of normalized expression of all genes in gene

signature of allopurinol sensitivity to rank all of these

cell lines; this rank of cell lines was called sensitivity

rank. We also used the mean of normalized expression

of all genes in the gene signature of allopurinol resis-

tance to rank all of these cell lines; this rank of cell

lines was called resistance rank. We calculated the sen-

sitivity score as Sensitive Score = Resistance Rank-

Sensitive Rank, and we calculated resistance rank as

Resistance Score = Sensitivity Rank-Resistance Rank.

We selected the top five cell lines (those available to

purchase) with highest sensitivity score as allopurinol-

sensitive cell lines (if a cell line was not available, we

used the next available cell line in the ranked list of

allopurinol-sensitive cell lines). The same method was

used to select allopurinol-resistant cell lines, and four

cell lines were selected for validation in vitro.

2.14. Selecting PDX models for validation of

gene signatures

We extracted gene expression and RAS mutation data

of all NSCLC PDX models provided by the Jackson

Laboratory (Farmington, CT, USA). We analyzed the

data based on the technology used for measuring gene

expression separately. There were 35 NSCLC PDX

models available with RNAseq expression data and 18

NSCLC PDX models available with Affymetrix hg10st

gene expression data. For selecting allopurinol-sensi-

tive models, we first calculated the sensitive score and

resistance score the same way we calculated them for

the cell lines. Then, among models with highest sensi-

tivity score and positive for RAS mutation, we selected

a model for validation as an allopurinol-sensitive

model using RNAseq and Affymetrix hg10st gene

expression data (TM0153 model and TM00206 model,

respectively).

Among models with highest resistance score and

negative for RAS mutation, we selected a model for

validation as an allopurinol-resistant model using

Affymetrix hg10st gene expression data (TM00188).

2.15. Gene set enrichment analysis

The sets of gene signatures (allopurinol sensitivity and

allopurinol resistance) were used for gene set enrich-

ment analysis by Enricher [Gene Ontology (GO) and
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WikiPathways) and MBC ontology (Hansen et al.,

2017; Kuleshov et al., 2016).

2.16. Fuzzy metabolic switch model

A form of the Wilson–Cowan equation (Tavassoly

et al., 2015) was used as a fuzzy member function to

generate a phenomenological model of a fuzzy meta-

bolic switch as follows:

Metabolic Dependency ¼ e
�0:5ðx�cÞ2

r :

For the phenomenological model presented in

Fig. S9, x was considered to be XDH protein level,

r = 1.5, 1, and 0.9 and c = 0.1, 0.05, and 2.9. The

model was simulated in MATLAB R2017a.

3. Results

3.1. Analysis of TCGA and identification of XDH

as a target in NSCLC

We analyzed methylation and gene expression data

(12 905 genes) from patients with LUAD in TCGA.

All differentially expressed genes and methylation

markers were identified. The genes which were com-

mon to both the set of differentially expressed genes

and the set of differentially expressed methylation

markers were selected (25 genes). These 25 genes then

were evaluated for correlation with ‘days to death’ for

individual patients. Among these 25 genes, we found

16 genes which had either positive correlations

between ‘days to death’ and DNA methylation signa-

tures or negative correlations between ‘days to death’

and gene expression signatures. Of these 16 genes, four

of them were selected as novel and druggable:

AGMAT, ATIC, family with sequence similarity 83

member A (FAM83A) and XDH. We selected

AGMAT, ATIC, and XDH for experimental validation

because all had enzymatic activity while FAM83A has

no known enzymatic function (Figs 1A and S1).

Using a panel of twelve NSCLC cell lines from

CCLE, we evaluated the effect on cell viability of

knocking down the expression of AGMAT, ATIC, and

XDH genes by siRNA. Immunoblotting analyses

showed that all siRNAs efficiently suppressed the

expression of each of the genes tested (Fig. S2A), indi-

cating that the screen results were ‘on-target’. The

siRNA knockdown experiments showed differing cell

viability in cell lines subjected to gene knockdown

(Fig. 1B). To further investigate the role of these genes

in cell survival, we used siRNA gene knockdown on

three of the cell lines (NCI-H358, NCI-H460, and

A549) each of which had its viability decreased by a

third or more after knockdown of each of the three

genes. Apoptosis, indicated by percent of annexin V-

positive cells, was significantly induced by knockdown

of each of these three genes compared to nontargeting

siRNA (Fig. 1C). Knockdown of each of these three

genes also resulted in changes in cell cycle phases.

Knockdown of XDH in NCI-H358 and NCI-H460

cells significantly increased the cells arrested in G2/M

phase compared to control and nontargeting siRNA

(Fig. S2B).

3.2. Allopurinol-sensitive and allopurinol-

resistant phenotypes in NSCLC

We selected XDH for subsequent investigations,

because there is already an FDA-approved drug, allop-

urinol, that inhibits the enzyme, and that failed as an

antineoplastic drug when it was first synthesized and

tested (Pacher et al., 2006). Based on our correlation

Fig. 1. (A) Analysis of 12 905 genes in TCGA led to finding 25 differentially regulated genes in patients with LUAD; of these genes, 16

correlated with clinical outcome. Four of these 16 genes were novel druggable genes, and three of them were selected for siRNA knockdown

validation. (B) siRNA knockdown validation of three gene targets in 12 NSCLC cell lines; the results are shown as percent cell viability

(mean � SEM). (C) Percent of apoptosis in cells (expressed as percent of annexin V-positive cells) induced by siRNA knockdown of these three

gene targets in three NSCLC cell lines (mean + SEM). siRNA knockdown increased apoptosis compared to control. (one-way ANOVA,

*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001). (D) List of 12 cell lines, their histology, their RAS mutation status, the allopurinol IC50

for reduction of viability and its 95% confidence interval. (E) Comparing allopurinol IC50s in the different cell lines (error bars are 95% confidence

intervals). An IC50 < 754 lM (red dotted line) was chosen as the criterion for considering a cell sensitive to allopurinol. (F) Log concentration–

response plots for cell lines sensitive to and resistant to allopurinol. (mean � SEM). (G) Allopurinol-induced apoptosis (expressed as percent of

annexin V-positive cells) in NCI-H358 and NCI-H460 cell lines in a concentration-dependent manner (mean + SEM, one-way ANOVA,

*P < 0.05, **P < 0.01). (H) Xenograft models were used to assess the effect of allopurinol on two cell lines sensitive to allopurinol (NCI-H358

and NCI-H460) and one cell line resistant to allopurinol (NCI-H1975). Allopurinol (200 mg�kg�1) was administered by oral gavage three times a

week to treatment groups (n = 15 for NCI-H358, n = 10 for NCI-H460, and n = 8 for NCI-H1975) and PBS by oral gavage to the placebo groups

(n = 7 for NCI-H358, n = 4 for NCI-H460, and n = 9 for NCI-H1975). The tumor size in mice bearing NCI-358 and NCI-H460 cells and receiving

allopurinol was significantly decreased compared to placebo at days 23 and 14, respectively. (mean � SEM, unpaired t-test, *P < 0.05,

****P < 0.0001) Allopurinol did not have any significant effect on tumor size of mice bearing NCI-H1975 cells.
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analysis of TCGA data, XDH was among those genes

whose higher level of expression correlated with lower

survival rates for a subset of patients. Hence, we rea-

soned that inhibiting XDH could potentially change

the course of cancer cell progression. We treated our

panel of twelve NSCLC cell lines with allopurinol and

calculated the IC50 of allopurinol for cell viability. Fig-

ure 1D shows a list of these cell lines, their histology,

IC50 of allopurinol and its 95% confidence interval,

and the presence of RAS mutations. All of these cell

lines were adenocarcinoma. Rank ordering of mean

IC50s revealed a greater than twofold increase between

NCI-H460 (431 lM) and Calu-3 (1172 lM), and their

95% confidence intervals did not overlap. We thus

chose an IC50 = 754 lM (midway between the upper

bound of the confidence interval for NCI-H460 and
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the lower bound of the confidence interval for Calu-3

as the dividing line between sensitivity and resistance

to allopurinol; Fig. 1D,E). This range of allopurinol

dose has been already used to study the effects of

allopurinol on different human cell lines (Sun et al.,

2015). Of the five sensitive cell lines, four were positive

for KRAS mutations, and one for NRAS. The log

concentration–response plots for the five sensitive cell

lines and the seven resistant cell lines are presented in

Fig. 1F. Allopurinol could also, in a concentration-de-

pendent manner, induce apoptosis in sensitive cell lines

(Figs 1G and S3A), and it also could increase the per-

centage of cells arrested in the G2/M phase of the cell

cycle compared to vehicle control (Fig. S3B).

The basal level of expression of XDH protein in

these 12 cell lines negatively correlated with the IC50

for allopurinol (Spearman’s r = �0.8667, P = 0.002),

which implies an addiction to XDH protein in sensi-

tive cell lines (Fig. S4).

We then tested two allopurinol-sensitive (NCI-H358

and NCI-H460) and one allopurinol-resistant cell line

(NCI-H1975) in an NCR-nude mouse xenograft

model. Mice were injected in the flank region with

1.5*106 cells; when tumors reached a minimum size of

100 mm3, mice were randomly assigned to treatment

groups. Allopurinol (200 mg�kg�1) in PBS for treat-

ment groups and PBS as control were administered by

oral gavage three times per week. Tumors and weights

of the mice were measured three times a week.

Administration of allopurinol reduced the tumor

size significantly in mice bearing NCI-358 and NCI-

H460 cells at days 23 and 14 compared to the placebo

group, but had no significant effect on tumor size in

mice bearing NCI-H1975 cells (Fig. 1H; Comparisons

were made on the last day all mice in each group were

alive; some of the mice either died or were sacrificed

prior to 30 days based on IACUC protocols for treat-

ment of animals). Expression of cleaved caspase-3 in

tumor samples after 30-day allopurinol treatment

showed apoptosis induction in sensitive cells engrafted

in mice compared to placebo groups. There was no

remarkable increase in cleaved caspase-3 levels in

tumors formed by NCI-1975 cells, which are allopuri-

nol-resistant (Fig. S5A). Immunofluorescence images

of tumor samples from xenograft models revealed

allopurinol-induced apoptosis indicated by cleaved cas-

pase-3 expression as well as decreased blood vessel

density indicated by CD31 expression (Fig. S5B,C).

Figure S6 shows the changes in body weight for the

xenograft models of all treatment regimens.

3.3. Genomic signatures of responsiveness to

allopurinol

A key mutation differentiating allopurinol-sensitive

and allopurinol-resistant cell lines appears to be

KRAS. However, it is neither necessary nor sufficient.

KRAS mutations were found in four out of five sensi-

tive cell lines (the remaining one had an NRAS muta-

tion), but in only one out of seven resistant cell lines

(one other of which had an NRAS mutation). Given

this variability, we reasoned that additional molecular

determinants could provide a more predictive signa-

ture. To find the genomic determinants of responses of

these cell lines to allopurinol, we used CCLE transcrip-

tomic data to find differentially expressed genes in

allopurinol-sensitive and allopurinol-resistant cells. We

used a t-test (P < 0.001) to identify the genes with the

highest expression levels in each group (Figs 2A,B and

S7). Gene set enrichment analysis using these sets of

signatures revealed possible pathways involved in

responses to allopurinol treatment (Fig. S8). In sensi-

tive cells, pathways and processes related to oxidative

stress were most prominent. Reactive oxygen species

(ROS) and their metabolic functions are possible path-

ways regulating this response. Previous integrative

analysis of TCGA data of NSCLC (Cancer Genome

Atlas Research Network, 2014) has shown that alter-

ations of oxidative stress pathways are among the

recurrent aberrations of key regulatory processes in

LUAD. In resistant cells, fatty acid catabolic processes

and other functions related to metabolism of lipids are

Fig. 2. (A, B) Genomic signatures of sensitivity and resistance to allopurinol. Each genomic signature includes a set of six genes considered

to have high expression in either sensitive or resistant cell lines. The sensitive phenotype is also characterized by the presence of a RAS

mutation. (C) Protein-protein interaction network built using genomic signatures. Relaxation of stringency led to a gene set capable of

forming a network with additional intermediary nodes like JAK2. (D) Validation of combination treatment with allopurinol (400 lM) and

knockdown of JAK2 in three cell lines. Percent of cell viability compared to control is shown. Combination treatment significantly decreased

cell viability compared to allopurinol treatment alone and JAK2 knockdown alone (mean + SEM, one-way ANOVA test, ***P < 0.001,

****P < 0.0001). (E) Effects of combination treatment with CEP-33779 and allopurinol on cell viability of NCI-H1975 and HCC827 cell lines.

Combination therapy significantly decreased cell viability compared to allopurinol treatment alone. Percent of cell viability compared to

vehicle control is shown (mean � SEM, one-way ANOVA, *P < 0.05, **P < 0.01, ****P < 0.0001). (F) CI for different doses of CEP-33779

and allopurinol in NCI-H1975 and HCC827 cell lines. CI lower than 1 indicates a synergistic effect; which is the case for most of the

combination doses. (G) CI for different doses of CEP-33779 and allopurinol for three resistant cell lines.

1732 Molecular Oncology 13 (2019) 1725–1743 ª 2019 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

Precision treatment of lung cancer by allopurinol I. Tavassoly et al.



1733Molecular Oncology 13 (2019) 1725–1743 ª 2019 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

I. Tavassoly et al. Precision treatment of lung cancer by allopurinol



likely to be dominant. Gene signatures (combined and

separately) also were subjected to pathway enrichment

analysis using Molecular Biology of the Cell Ontology

(Hansen et al., 2017), (Fig. S8A). Bar diagrams visual-

ize the negative log10 (P-values; Fisher’s exact test) of

the top five predicted subcellular processes of the levels

1 (brown), 2 (red), and 3 (blue) (Hansen et al., 2017).

Among processes enriched for combined signatures (all

12 genes) were cellular responses to stress, lipid meta-

bolism, cellular responses to oxidative stress, and the

JAK-STAT signaling pathway.

Based on the pathways enriched by gene signatures

and the known biochemistry of XDH activity in pur-

ine metabolism and redox balance in cells (Pacher

et al., 2006) (Fig. S9A), we built a phenomenological

mathematical model of addiction to XDH. The obser-

vation of higher XDH protein expression in allopuri-

nol-sensitive cell lines (Fig. S4) suggests that the XDH

level regulates reprogramming of metabolic depen-

dency of LUAD cells. Fig. S9B presents a phenomeno-

logical mathematical model to explain this

phenomenon using arbitrary parameters and a fuzzy

membership function (Tavassoly, 2015). Increased

XDH protein expression (Fig. S4) is assigned to

dependency on the pentose phosphate pathway (PPP),

which balances higher ROS levels produced by XDH

activity. This balance is important for cell survival, as

otherwise, increased ROS will induce apoptosis.

Inhibiting XDH should dramatically affect PPP, and

this perturbation leads to cell death because cells are

addicted to PPP. This is the case in allopurinol-sensi-

tive cells. However, resistant cells have lower levels of

XDH which makes them not require PPP because they

can use fatty acid catabolism instead. Reducing XDH

activity cannot cause cell death in these cells.

3.4. Combination therapy: allopurinol with a

JAK2 inhibitor

We used analysis of transcriptomic networks to find

additional drug targets in allopurinol-resistant cells.

Statistical cutoffs with high stringency (P = 0.001)

resulted in small lists of genes (six genes in each cate-

gory) that do not form networks. Relaxation of strin-

gency and selecting the top 10 downregulated and the

top 10 upregulated genes from differentially expressed

genes led to a larger list (20 genes) that could form

networks with the addition of intermediary nodes from

the human protein–protein interaction network

(Fig. 2C). One of these nodes was JAK2 which is a

target for FDA-approved drugs. For example, ruxoli-

tinib is approved for the treatment of myelofibrosis

and tofacitinib is approved for the treatment of

rheumatoid arthritis and psoriatic arthritis (Fleis-

chmann et al., 2012; Gladman et al., 2017; Verstovsek

et al., 2012). JAK2 inhibitors like baricitinib, gando-

tinib and lestaurtinib are being tested in clinical trials

for a variety of diseases including acute myeloid leuke-

mia (Hexner et al., 2008; Kubo et al., 2016; Verstovsek

et al., 2017). Another line of evidence for the role of

JAK2 in responsiveness to allopurinol is the gene set

enrichment analysis of gene signatures (Fig. S8). We

significantly decreased JAK2 protein expression

(Fig. S10A) using siRNA knockdown in one allopuri-

nol-sensitive cell line (NCI-H358) and two allopurinol-

resistant cell lines (NCI-H1650 and NCI-H1975).

Allopurinol treatment (400 lM) after JAK2 gene

knockdown significantly decreased cell viability com-

pared to treatment with allopurinol alone or JAK2

gene knockdown alone, indicating boosting and

restoration of the sensitive phenotype (Fig. 2D). Treat-

ment of resistant cells (HCC827 and NCI-H1975) with

a combination of allopurinol and a JAK2 inhibitor

(CEP-33779) significantly decreases cell viability com-

pared to treatment with allopurinol alone. Treatment

with a combination of allopurinol and CEP-33779 is

synergistic (Fig. 2E,F). We calculated the combination

index (CI) (Chou and Talalay, 1984) for six different

combinatory concentrations of allopurinol and CEP -

33779, and the resulting CI was < 1 in five combina-

tions in each of these two cell lines indicating a syner-

gistic effect (Fig. 2F). CI analysis also shows the

Fig. 3. (A, B) Cell viability after treatment with allopurinol, CEP-33779, and combined allopurinol and CEP-33779 represented by proliferation in

soft agar gel in one resistant and one sensitive cell line (allopurinol 400 lM and CEP-33779 1.6 lM). The quantification in panel B is presented as

mean � SEM. Comparison was done between all three treatments and vehicle control (**P < 0.01, ****P < 0.0001). (C) Combination therapy

with CEP-33779 and allopurinol in xenograft models using three different cell lines. PBS, allopurinol (200 mg�kg�1) alone, CEP-33779

(10 mg�kg�1) alone, and combination doses of allopurinol (200 mg�kg�1) and CEP-33779 (10 mg�kg�1) were administered by oral gavage three

times a week. [placebo group (n = 6 for HCC827, n = 6 for NCI-H1650, and n = 5 for NCI-H1975), allopurinol treatment group (n = 6 for

HCC827, n = 6 for NCI-H1650, and n = 5 for NCI-H1975), CEP-33779 treatment group (n = 7 for HCC827, n = 6 for NCI-H1650, and n = 6 for

NCI-H1975), and combination therapy group (n = 7 for HCC827, n = 7 for NCI-H1650, and n = 8 for NCI-H1975)]. The tumor size in mice

bearing HCC827 and NCI-H1650 and receiving combination therapy was significantly decreased compared to placebo and single treatment

groups at day 18. The tumor size in mice bearing NCI-H1975 and receiving combination therapy was significantly decreased compared to

placebo and single treatment groups at day 14 (mean + SEM, unpaired t-test, *P < 0.05, **P < 0.01, ****P < 0.0001)
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synergism of allopurinol and CEP-33779 in three other

allopurinol-resistant cell lines (Fig. 2G). These syner-

gistic effects were observable even at low concentra-

tions of CEP-33779 (1.6 and 3.2 lM) combined with

allopurinol (Fig. 2E–G). Combination treatment also

significantly diminished colony formation for both an

allopurinol-sensitive (NCI-H358) and an allopurinol-

resistant (NCI-H1975) cell line in soft agar gel com-

pared to vehicle control (Fig. 3A,B). These observa-

tions indicate that combination therapy with

allopurinol and CEP-33779 also can boost the antineo-

plastic effect of allopurinol in sensitive cells.

We evaluated the effect of combination therapy with

allopurinol and CEP-33779 on xenograft models with

three resistant cell lines (Figs 3C and S11). NCR-nude

mice bearing HCC827, NCI-H1650, and NCIH-1975

cells were administered either placebo (PBS), allopurinol

(200 mg�kg�1 in PBS), CEP-33779 (10 mg�kg�1 in PBS),

or the combination of both drugs three times per week

by oral gavage. Mice were injected in the flank region

with 1.5 9 106 cells; when tumors reached a minimum

size of 100 mm3, mice were randomly assigned to treat-

ment groups. The tumor size in mice bearing HCC827

and NCI-H1650 and receiving combination therapy was

significantly decreased compared to placebo and single

treatment groups at day 18. The tumor size in mice

bearing NCI-H1975 and receiving combination therapy

was significantly decreased compared to placebo and

single treatment groups at day 14. Comparisons were

made on the last day all mice in each group were alive;

some of the mice either died or were euthanized prior to

30 days in compliance with IACUC protocols for treat-

ment of animals. These protocols restrict the size of the

tumors in vehicle-treated mice (Figs 3C and S11).

Wang et al. (2008) have shown that under hypoxic

stress (which induces ROS production), the JAK-

STAT pathway including JAK2 is activated before

activation of XDH in lung microvascular endothelial

cells (Wang et al., 2008). They have further shown that

secretion of IL6 increases the activity of JAK2 result-

ing in increased activation of XDH and that XDH

activation can be blocked by a JAK2 inhibitor (Wang

et al., 2008). Zhang et al. (2016) reported similar find-

ings of decreased XDH activity with inhibition of

JAK2 in endothelial cells. The JAK/STAT pathway is

also involved in metabolic reprogramming and resis-

tance to therapies in solid tumors (Bourgeais et al.,

2013; Quint�as-Cardama and Verstovsek, 2013; Thomas

et al., 2015; Wang et al., 2018; Yu and Jove, 2004).

Our pathway analysis based on gene signatures has

shown the involvement of JAK/STAT pathways, meta-

bolic pathways, and oxidative stress, indicating a pos-

sible mechanism for the synergism between JAK2

inhibition and XDH inhibition. Basically, based on

findings of Wang et al. (2008) and Zhang et al. (2016),

JAK2 inhibitors help to deactivate XDH and increase

the efficacy of inhibition of XDH by allopurinol.

3.5. Gene signatures are capable of predicting

responsiveness to allopurinol and combination

therapy

The gene signatures derived from CCLE data were used

to evaluate their predictive capability on additional

NSCLC cell lines in the CCLE. For this, we used a scor-

ing system, which was able to rank CCLE cell lines based

on gene signatures and assign a quantitative characteris-

tic to them for defining the likelihood of sensitivity to

allopurinol (Fig. 4A). This algorithm was used to identify

the most likely resistant and sensitive NSCLC cell lines in

CCLE. These cell lines are listed in Fig. 4B,C. Using a

cell viability assay, we calculated the IC50 of allopurinol

in each of these cell lines. Among the five cell lines pre-

dicted as sensitive, three had a RAS mutation, and all

had an allopurinol IC50 < 754 lM. None of the four pre-

dicted resistant cell lines had any RAS mutation, and all

had an allopurinol IC50 > 754 lM (Fig. 4B,C). The cell

line with the highest IC50 for allopurinol in the sensitive

group, HCC15 was a squamous cell lung carcinoma, and

all others were adenocarcinomas, the cell type used to

establish the IC50 cutoff. Figure 4D shows log concentra-

tion–response curves in both sensitive and resistant cell

lines. Except for NCI-H2106, the three other predicted

allopurinol-resistant cell lines showed a synergistic effect

of combination treatment with allopurinol and CEP-

33779. NCI-H2106 is unique among all other cell lines

tested. This cell line is a large-cell carcinoma from a

metastatic site and that may be the reason for its lack of

response to allopurinol or combination therapy. Fig-

ure 4E presents the comparison of cell viability after

treatment with allopurinol and CEP-33779 alone and

four combinatory doses of both drugs in COR-L105 and

NCI-H1568 cell lines. Combination of both drugs signifi-

cantly decreased cell viability compared to single treat-

ment with allopurinol. Figure 4F shows the CI for six

combinatory doses of these drugs in these two cell lines

indicating synergism, and Fig. S12 shows the CI for the

NCI-H2170 cell line. Figure S13 shows the effects of

combination treatment with CEP-33779 and allopurinol

on cell viability of NCI-H2106.

3.6. Gene signatures and the allopurinol

sensitivity in PDX models of NSCLC

To test the efficacy of allopurinol and combination

therapy with CEP-33779 in patient-derived xenograft

1736 Molecular Oncology 13 (2019) 1725–1743 ª 2019 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

Precision treatment of lung cancer by allopurinol I. Tavassoly et al.



(PDX) models of NSCLC, and to evaluate the power

of gene signatures to assign tumors for best treatment

options, we used the gene signatures of sensitivity

and resistance to allopurinol in the PDX models of

NSCLC provided by the Jackson Laboratory. We

analyzed the gene signatures in two sets of data avail-

able from the Jackson Laboratory NSCLC PDX

models: RNAseq data were used to select one PDX

model as allopurinol-sensitive, and Affymetrix gene

expression data were used to select one PDX model

as allopurinol-sensitive and one as allopurinol-resis-

tant. We used an algorithm similar to cell line selec-

tion by defining a score for sensitivity and resistance

based on gene signatures, and we also considered the

Fig. 4. (A) Flowchart describing the process of selecting new cell lines as allopurinol-sensitive and allopurinol-resistant. (B) List of predicted

cell lines, their histology, RAS mutation status, calculated IC50 for allopurinol and its 95% confidence interval. (C) IC50 comparison for the

predicted cell lines shown as mean � SEM; error bars are 95% confidence intervals. The IC50 cutoff to determine sensitive and resistant

cells was considered to be 755 lM (red dotted line). (D) Concentration–response curves for allopurinol treatment in predicted sensitive and

resistant cell lines (mean � SEM). (E) Effects of combination treatment with allopurinol and CEP-33779 on two cell lines predicted as

resistant (COR-L105 and NCI-H1568). Combination therapy significantly decreased cell viability compared to treatments with allopurinol

alone. Percent of cell viability compared to vehicle control is shown. (mean + SEM, one-way ANOVA, *P < 0.05, **P < 0.01, ***P <

0.001). (F) CI for different concentrations of allopurinol and CEP-33779 in COR-L105 and NCI-H1568 cell lines; most of the combinations

showed synergistic effects (CI < 1).
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RAS mutation status (Fig. 5A). In this algorithm,

carrying a KRAS or NRAS mutation was a Boolean

function to select sensitive models, as RAS mutation

was previously observed in most sensitive cell lines.

These PDX models were grafted as subcutaneous

tumors in NSG mice. When the tumor sizes were

between 50 and 150 mm3, mice bearing tumors were

randomly assigned to treatment groups: allopurinol

(70 mg�kg�1 in PBS daily), CEP-33779 (10 mg�kg�1

in PBS daily), or combination therapy (allopurinol

50 mg�kg�1 and CEP-33779 2.5 mg�kg�1 in PBS

daily) was administered by oral gavage for 30 days.

Control mice received placebo (PBS) daily. In models

predicted to be allopurinol-sensitive (TM01563

selected using RNAseq data and TM00206 selected

using Affymetrix data), treatment with allopurinol

alone significantly decreased the tumor size in mice

bearing them compared to the placebo-treated group.

After 30 days of treatment, tumor weights in the

allopurinol group were significantly lower than those

in the placebo group (Fig. 5B).

Mice bearing TM00188 and TM00939 model tumors

(predicted as allopurinol-resistant using Affymetrix

data and RNAseq data, respectively) showed a signifi-

cant decrease in tumor size after receiving combination

therapy compared to the placebo group while neither

allopurinol alone nor CEP-33770 alone had a signifi-

cant effect on tumor size compared to the placebo

group. After 30 days of treatment, tumor weights in

the combination therapy group were significantly lower

Fig. 5. (A) Flowchart describing how the sensitive and resistant PDX models were selected from a set of available PDX models. (B, C) Post-

treatment tumor size and tumor weight in four PDX models; TM00206 and TM01563 models (Panel B) were predicted as sensitive to

allopurinol and TM0188, and TM00939 models (Panel C) were predicted as resistant to allopurinol based on the genomic signatures. In

allopurinol-sensitive tumors (TM00206 and TM01563 models), tumor size was significantly lower in the allopurinol treatment group

compared to the placebo treatment group, and at the end of the study, tumor weights were significantly lower in the allopurinol treatment

group compared to the placebo treatment group. Combination therapy decreased the post-treatment tumor size and tumor weight

significantly in allopurinol-resistant tumors (TM0188 and TM00939 models) compared to single treatment with allopurinol while allopurinol

alone and CEP_33779 alone were not able to decrease the tumor size compared to placebo (PBS). (mean + SEM, unpaired t-test,

*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001; allopurinol (70 mg�kg�1 daily), CEP-33779 (10 mg�kg�1 daily), combination therapy

(allopurinol 50 mg�kg�1 and CEP-33779 2.5 mg�kg�1 daily), and PBS as placebo daily). The gene signatures of sensitivity and resistance to

allopurinol are shown on the top of panels B and C.
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than in placebo, allopurinol alone, and CEP-33779

alone groups (Fig. 5C).

Figure S14 shows the images of three tumors from

each treatment group after sacrificing the mice at the

end of treatment, showing the size reduction in allop-

urinol groups for allopurinol-sensitive tumors

(TM01563 and TM00206) and combination therapy

groups for allopurinol-resistant tumors (TM00188 and

TM00939).

Cleaved caspase-3 was expressed in TM01563 (sensi-

tive) tumors receiving allopurinol and in TM00188 (re-

sistant) tumors receiving combination therapy

indicating apoptotic cell death (Fig. S15).

Using a pan-caspase in vivo assay revealed activation

of caspases as indicators of cell death in mice bearing

allopurinol-sensitive tumors and receiving allopurinol.

This assay also showed that mice bearing allopurinol-

resistant tumors receiving combination therapy had

more activation of caspases and more cell death (Figs

S16 and S17). Drug treatment did not lead to any sig-

nificant weight loss in mice bearing tumors (Fig. S18).

Taken together, these data indicate that genomic sig-

natures derived from TCGA can correctly predict

allopurinol and allopurinol/CEP-33779 responsiveness

in patient-derived tumors.

4. Discussion

Elevated expression of XDH has reported as a predic-

tor of poor prognosis in LUAD patients (Konno

et al., 2012). In this study, we reached the same con-

clusion through analyses of TCGA data. TCGA has

been very useful in developing molecular classifications

of cancer subtypes that underlie key concepts of preci-

sion medicine. Also, as TCGA contains both molecu-

lar and clinical data, it is possible to analyze the

relationship between these classes of data to develop

predictive signatures for the progression of cancers in

individuals.

Additionally, as our study shows, TCGA data sets

are a potential gold mine for identifying targets for

new drugs, drug repurposing, and combination ther-

apy. A fundamental premise for such mining is that

particular drug therapy is likely to be effective in only

a subset of patients. The transcriptomic signature pro-

vides a clear way to identify these patients. While our

study was being completed, several papers have

described the potential value of transcriptomic signa-

tures. Shukla et al. (2017) have published a computa-

tional study using TCGA data to identify a four-gene

transcriptomic signature that predicts survival in the

TCGA cohort. Li et al. (2017) have used a combina-

tion of transcriptomic data sets to identify an

individualized immune signature for the prediction of

survival. These two studies have focused on predicting

survival without specifying the nature of the drug ther-

apy. Lee et al. (2016) used transcriptomic signatures to

predict the repositioning of drugs for cancer therapy.

Although superficially similar, our approach differs

from these studies in the following important ways. In

our initial search of TCGA, we considered all molecu-

lar changes including genomic and epigenomic varia-

tions individually, not just transcriptomic changes, for

predictions (Fig. 1A). We subsequently focused on

gene expression levels, as this was a facile way to inte-

grate TCGA and CCLE data, using the signatures to

identify individual NSCLCs, both in the CCLE cell

lines and in the PDX tumors. We used network build-

ing and analyses to identify relationships between drug

targets. The two approaches we have used should be

broadly useful in identifying additional drug targets

and predicting responsiveness for these drugs in other

cancers as well. Combining identification of targets for

a drug with the specification of which patients might

benefit from treatment with that drug can be a sub-

stantive step forward in precision medicine.

We focused on allopurinol both for historical and

practical reasons. As described by Elion in her Nobel

Prize essay (Elion, 1989), allopurinol was among the

earliest potential anticancer drugs synthesized in the

1950s. Although some of the original biochemical rea-

soning from over 50 years ago for focusing on allop-

urinol remains valid today, anchoring its use in

molecular characteristics of an individual’s tumor

enables accurate prediction of drug sensitivity. Thus, it

appears that systems biology approaches have enabled

the rediscovery of allopurinol as an anticancer drug.

At a practical level, allopurinol is a relatively safe and

inexpensive FDA-approved drug that could readily be

tested in the clinic for patients whose molecular profil-

ing indicates that it could be effective.

Our data indicate that two characteristics predict

effectiveness: a RAS mutation and a precision tran-

scriptomic signature. Both characteristics are necessary

for the treatment of NSCLCs with allopurinol and

combination therapy with allopurinol and a JAK2

inhibitor. The role of RAS mutation in NSCLC is

related to heterogeneity in metabolic dependencies and

metabolic reprogramming (Davidson et al., 2016;

Hensley et al., 2016). It has been shown that transcrip-

tomic profiles of tumors present a metabolic hetero-

geneity among individual patients, which needs to be

taken into account for designing precision therapeutics

(Uhlen et al., 2017). In our cell line studies, most, but

not all, sensitive cell lines had a RAS mutation and

most, but not all, resistant cells lacked a RAS
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mutation. This fact indicates the need for a dual signa-

ture set including both RAS mutation and gene

expression pattern for assignment for treatment with

allopurinol or allopurinol plus a JAK2 inhibitor.

Although the histology of all cells and tumors in this

study was NSCLC, the TCGA data were from adeno-

carcinoma tumors and all but one of the cell lines used

to find the signatures were also adenocarcinoma while

some of the predicted cell lines and PDX models were

not adenocarcinoma. Interestingly, one of the cell lines

predicted as sensitive with squamous cell carcinoma

histology was at the border of sensitivity and resis-

tance compared to other predicted cell lines which

were adenocarcinoma.

5. Conclusions

This study starts with data from individual patients

and ends with a predictive treatment of tumors from

individual patients. Although cost considerations pre-

vented us from testing a large number of PDX tumors,

the two tumors we predicted would be allopurinol-sen-

sitive were shown to be so. This combination of com-

putational predictions and experimental testing

demonstrates the potential power of integrating molec-

ular data in both TCGA and CCLE when used in

training sets to predict responsiveness of new patients.

We anticipate that clinical decision support systems

that integrate molecular characteristics with clinical

outcomes can become a useful tool for drug selection

for individual patients and an important component of

a precision medicine strategy in cancer.
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Fig. S1. The pipeline used to analyze TCGA data

combining molecular alterations and clinical outcome

to find new targets that are determined by the clinical

outcomes in patients.

Fig. S2. (A) Western blots showing the protein levels

of three selected gene targets after siRNA knockdown

in two of the 12 cell lines tested. (B) Comparison of

cell cycle phases in two cell lines after knockdown of

AGMT, ATIC and XDH compared to control. XDH

knockdown increased cells arrested in G2/M phase

(one-way ANOVA, *P < 0.05, **P < 0.01,

***P < 0.001, ****P < 0.0001).

Fig. S3. (A) Apoptosis induction by allopurinol shown

by detection of cleaved caspase-3 in NCI-H358 and

NCI-H460 cell lines. (B) Compared to control-vehicle,

allopurinol arrested the cells (NCI-H358 and NCI-

H460) in G2/M phase shown by cell cycle analysis

using flow cytometry.

Fig. S4. (A) Basal XDH protein levels in the NSCLC

cell lines. (B) XDH protein levels negatively correlate

with the IC50 for allopurinol in cell lines (Spearman

r = �0.8667, P = 0.0022). Cell lines sensitive to

allopurinol have higher levels of XDH protein indicat-

ing an addiction to XDH protein.

Fig. S5. (A) Allopurinol-induced apoptosis presented

as the expression of cleaved caspase-3 in xenograft

models of allopurinol-sensitive cell lines (NCI-H358

and NCI-H460) but not in NCI-1975 which is allopuri-

nol-resistant. T1-T3 show three different tumor sam-

ples. (B) Immunofluorescence images of xenografts

from PBS and allopurinol-treated mice. Apoptosis

induced by allopurinol is indicated by cleaved caspase-

3 expression while decreased blood vessel density is

indicated by CD31 expression. C) Quantification of

caspase-3 and CD31 protein expressions shown as %

ratio in the all of allopurinol treatment groups (three

cell lines in panel B) compared to their controls from

the immunofluorescence images in panel B.

Fig. S6. Changes in body weight for the xenograft

models of all treatment regimens.

Fig. S7. The number of genes in genomic signatures

(genomic signature size) is determined by the strin-

gency of statistical analysis on genomic profiles of

samples (cell lines). By increasing the P value, the

genomic signature size increases. Using P = 0.001

leads to a genomic signature with a size of 12 (sensitiv-

ity signature size of 6 and resistance signature size of

6). Panel A shows changes of size of genomic signature

(Resistance and Sensitivity together) for different P

values. Panel B shows changes of size of sensitivity

genomic signature (red line) and resistance genomic

signature (blue line) for different P values.

Fig. S8. Gene set enrichment analysis of genomic sig-

natures of allopurinol sensitivity and resistance using
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GO terms (A and B, for sensitivity genes set and resis-

tance genes set respectively) MBC ontology (B) and

WikiPathways (C).

Fig. S9. (A) Schematic mechanism of allopurinol and

function of XDH protein in cells. (B) A mathematical

phenomenological model (A Fuzzy Metabolic Switch)

that can explain addiction to XDH protein in allopuri-

nol-sensitive cells which have higher levels of basal

XDH protein. Based on the genomic signatures and

enrichment analysis these cell lines can be more depen-

dent to PPP by increasing their XDH protein level

while resistant cell lines can be more dependent on

Fatty Acid Oxidation (FAO) and Glycolysis. Allopuri-

nol inhibits XDH protein leading to metabolic stress

and cell death.

Fig. S10. Western blots showing the protein levels of

JAK2 after siRNA knockdown. The JAK2 panels

were cut from three different blots that included

knockdown of other proteins not related to this com-

munication and those bands have been removed. The

GAPDH panels were run in one blot.

Fig. S11. Changes in the body weight of mice used as

xenograft models for three different cell lines to evalu-

ate combination therapy with CEP-33779 and allopuri-

nol (mean � SEM).

Fig. S12. CI for different doses of allopurinol and

CEP-33779 in NCI-H2170.

Fig. S13. Effects of combination treatment with CEP-

33779 and allopurinol on cell viability of NCI-H2106.

This cell line was inactive in response to single treat-

ments and combination treatments.

Fig. S14. Images of three tumors of different treatment

groups after treatment of 4 different PDX models.

(Allopurinol (70 mg�kg�1 daily), CEP-33779

(10 mg�kg�1 daily), combination therapy (Allopurinol

50 mg�kg�1 and CEP-33779 2.5 mg�kg�1 daily) and

PBS as placebo daily).

Fig. S15. (A, B) Western blots of tumor samples after

treatment course; apoptosis was measured by the pres-

ence of cleaved caspase-3 in TM01563 and TM00188

models. (Allopurinol (70 mg�kg�1 daily), CEP-33779

(10 mg�kg�1 daily), combination therapy (Allopurinol

50 mg�kg�1 and CEP-33779 2.5 mg�kg�1 daily) and

PBS as placebo daily). (C) Quantification of ratios of

cleaved caspase-3 to beta actin in western blots in

panel A and B.

Fig. S16. In vivo imaging in mice bearing PDX tumor

models to detect apoptosis using a pan-caspase assay

done after the treatment course. The increased signal

indicates higher caspase activity and apoptosis. A

mouse with no tumor and no assay was used in each

treatment group for comparing the signal. (A)

TM01563 PDX Model. 1: A mouse with no tumor

and with no pan-caspase assay (One mouse for all

cases) 2: A mouse with no tumor but receiving pan-

caspase assay (One mouse for all cases) 3: Three differ-

ent mice from placebo treatment group receiving pan-

caspase assay 4: Three different mice from allopurinol

treatment group receiving pan-caspase assay. (B)

TM0188 PDX Model. 1 (I, II, III): A mouse with no

tumor and with no pan-caspase assay (One mouse for

all cases). 2 (I, II, III): A mouse with tumor and pan-

caspase assay but not getting any treatment (One

mouse for all cases). 3 (I, II, III): Three different mice

from placebo treatment group receiving pan-caspase

assay. 4 (I): Three different mice from allopurinol

treatment group receiving pan-caspase assay. 4 (II):

Three different mice from CEP-33779 treatment group

receiving pan-caspase assay. 4 (III): Three different

mice from combination therapy group receiving pan-

caspase assay. (C) TM00206 PDX Model. 1: A mouse

with no tumor and with no pan-caspase assay (One

mouse for all cases). 2: A mouse with tumor and pan-

caspase assay but receiving no treatment (One mouse

for all cases) 3: Three different mice from placebo

treatment group receiving pan-caspase assay. 4: Three

different mice from allopurinol treatment group receiv-

ing the pan-caspase assay.

Fig. S17. Quantification of signals from pan-caspase

assay shown in Fig. S16. In this assay, a higher signal

means a higher apoptosis rate. In each treatment

group, the total radiant efficacy of the signal was com-

pared to that from the mouse with no tumor and with

no pan-caspase assay. (mean + SEM, unpaired t-test,

**P < 0.01, ***P < 0.001). (Signals in foot pads and

tails were not included in these plots).

Fig. S18. Changes in body weights for the mice used

for in vivo study of PDX tumor models.
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