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Immunotherapy holds great promise for treating cancer. Nonetheless, T cell-based
immunotherapy of solid tumors has remained challenging, largely due to the lack of
universal tumor-specific antigens and an immunosuppressive tumor microenvironment
(TME) that inhibits lymphocyte infiltration and activation. Aberrant vascularity characterizes
malignant solid tumors, which fuels the formation of an immune-hostile microenvironment
and induces tumor resistance to immunotherapy, emerging as a crucial target for adjuvant
treatment in cancer immunotherapy. In this review, we discuss the molecular and cellular
basis of vascular microenvironment-mediated tumor evasion of immune responses and
resistance to immunotherapy, with a focus on vessel abnormality, dysfunctional adhesion,
immunosuppressive niche, and microenvironmental stress in tumor vasculature. We
provide an overview of opportunities and challenges related to these mechanisms. We
also propose genetic programming of tumor endothelial cells as an alternative approach to
recondition the vascular microenvironment and to overcome tumor resistance
to immunotherapy.

Keywords: immunity, immunotherapy, tumor microenvironment, endothelial cells, immune suppression, T cells,
infiltration, exhaustion
INTRODUCTION

Tumor vasculature has presented a complex problem to achieving therapeutic success across all
cancer treatment modalities. Solid tumors exhibit aberrant vasculature composed of tumor
endothelial cells (ECs) that present a physical barrier to treatment as well as promote aggressive
tumor phenotypes that are prone to become aggressive and metastatic. The abnormal blood
circulation leads to insufficient perfusion and drug delivery and creates pockets of hypoxia, which
enhances tumor heterogeneity and promotes resistance to cancer therapies such as chemotherapy,
radiation, and immunotherapy. Growing evidence shows that tumor ECs drive immunosuppression
through selective immune cell recruitment, metabolic competition and epigenetic remodeling,
suggesting the vascular microenvironment as an emerging target for solid tumor immunotherapy.
Of various blood vessel-targeting treatments, anti-angiogenic therapy that primarily blocks vascular
endothelial growth factor (VEGF) pathway has been widely pursued to inhibit tumor
vascularization to starve cancer of oxygen and nutrients or to normalize tumor vasculature to
overcome hypoxia-mediated treatment resistance. Combination of anti-angiogenic or other next-
generation vasculature-targeting therapies with immunotherapy may, therefore, offer exciting
opportunities for treating solid tumors. In this review we look to highlight the challenges
org December 2021 | Volume 12 | Article 8114851
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implicated in immunotherapy for solid tumors, the landscape
of the vascular microenvironment, and examine how these
unique obstacles presented by tumor ECs impact current
treatment options.
T CELL-BASED IMMUNOTHERAPY
OF SOLID TUMORS

Current Approaches
The promise of immunotherapy as an approach to solid tumors
offers a potentially significant upgrade over traditional
treatments such as chemotherapy, radiation, and molecular
targeted therapy. While the therapeutic windows of
chemotherapy and radiation are limited to when the drug is
being applied or is present inside the body, immunotherapy has
the capacity to remain active for an extended period once the
immune system has been modified to target cancer cells.
Immune checkpoint blockade and chimeric antigen receptor T
cell (CAR-T) therapy remain the two dominant approaches for
current T cell-based immunotherapy. Immune checkpoint
blockade sought to remove the “brakes” or inhibitory
checkpoints that prevented our immune systems from reaching
their full potential as a natural defense against cancer.
Monoclonal antibodies targeting immune cell expressed
cytotoxic T lymphocyte-associated protein 4 (CTLA-4) and
programmed-death 1 (PD-1) along with TME expressed
programmed death-ligand 1 (PD-L1) have led to approved
treatment options for solid tumors such as melanoma, non-
small cell lung cancer (NSCLC), and urothelial carcinoma (1).
Although approved treatments exist, many factors play a role in
whether immune checkpoint blockade will be successful such as
age, sex, gene expression, mutation burden, epigenetic and
metabolic alternation in tumor cells, and stage of disease
leaving a lot to be desired in effectiveness of the treatment (2).
The notion of exploiting antigen fragment recognition of T cells
by introducing genetic material that encodes for antibody
recognition was first proposed by Gross et al. in 1989 (3).
After development of several generations of CAR constructs,
the US Food and Drug Administration (FDA) has recently
approved drugs developed using this method such as
Novartis’s Kymriah and Kite Pharma’s Yescarta that target
tumor-associated antigens (TAAs) in hematopoietic
malignancies (4–6). As of now there are no FDA approved
CAR-T cell treatments available for solid tumors as there are
many challenges unique to solid tumors that make CAR-T cells
challenging to implement.

Therapeutic Challenges
The first major challenge that exist for implementing CAR-T cell
therapy for solid tumors is the absence of universal tumor-
specific antigens (TSAs) or TAAs in the cancer of interest. Ideally
the antigen should be expressed selectively on tumor cells or at
least highly expressed on tumor cells while being minimally
expressed on healthy tissues. The majority of current CAR-T cell
target antigens exist on healthy tissues leading to “on-target/off-
tumor” toxicity (7, 8). A second important characteristic of the
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antigen is that it should be expressed on all cancerous cells. If any
cells within the tumor do not express the target antigen, then the
chances of a treatment having a meaningful impact decrease
significantly. Even if the target antigen is present on all of the
tumor cells, loss of antigenicity can still occur through immune
escape mechanisms such as loss of antigen presentation or
mutational gains within the antigen itself (9). In addition to
antigen presentation, T-cell infiltration is vital for therapeutic
success. It is known that solid tumors have the capacity to limit
T-cell infiltration through secretion of immunosuppressive
cytokines, disruption of T-cell homing, and promoting
abnormal vasculature (10). T-cells must also combat with the
progressive loss of T cell effector functions known as T cell
exhaustion. This is due primarily to the constant presence
of antigen and inflammation, which leads to an upregulation
of immunosuppressive receptors such as CTLA-4 and PD-1
(11). Immune checkpoint blockade can help alleviate
immunosuppression that occurs during exhaustion, but the
underlying mechanisms for exhaustion are still not fully
understood making it a challenge to reinvigorate T-cells from
this state.

Tumor Microenvironment
and Immunotherapy
Reprogramming the TME is seen as a viable option to overcome
the challenges that exist for immunotherapy in solid tumors.
Normalizing tumor vasculature has the potential to reverse
immune evasion and increase the infiltration of immune cells.
Normalizing vasculature can be done using antiangiogenic
agents (12–14). It has also been hypothesized that this could be
achieved through the alternative approach of vascular
detransformation, a method that would look to reverse
endothelial-mesenchymal transition (Endo-MT) that occurs
within the TME (15). These transformed endothelial cells have
been shown in glioma to acquire a mesenchymal phenotype that
leads to vessel sprouting and outgrowth making them a novel
target (16, 17). Additionally, myeloid cells, specifically tumor-
associated macrophages (TAMs), are also a prime target to
reprogram the TME due to their ability promote angiogenesis,
metastasis, and immunosuppression across various cancer types
(12, 18). TAMs can be targeted using selective inhibitors of
colony-stimulating factor 1 receptor (CSF1R) and PI3K kinase,
neutralizing antibodies of CSF-1, Toll-like receptor (TLR)
agonists, and DNA binding agents that selectively induce cell
cycle arrest in monocytes and macrophages (18–21). Another
group of immunosuppressive cells within the TME, known as
regulatory T-cells (Treg), have been shown to be recruited by
chemokines produced by tumor cells, cancer-associated
fibroblasts, and an immunosuppressive subset of TAMs (22,
23). Tregs are normally required to balance T-cell effector
function, however they are recruited to suppress the antitumor
immune response and promote tumor progression within the
TME (12, 24). Outright Treg ablation is not seen as a viable option
to improve immunotherapy as the absence of Tregs would
increase the occurrence of adverse events due to overactive
T cell effector function (25). The reprograming of Tregs could
be achieved through metabolic manipulation via protein kinase
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B (AKT) and through downregulation of transcription factors
such as Helios, NF-kB, Eos, Bach2, and Nr4a (26). It has been
found that once Tregs have been reprogrammed they will begin to
exhibit a decrease in Foxp3 expression, gain immune-stimulating
function, and develop a T helper cell phenotype (26).
VASCULAR MICROENVIRONMENT
AND TUMOR IMMUNITY

Mechanisms Underlying Vascular
Regulation of Tumor Immunity
Aberrant vascularity characterizes malignant solid tumors,
fueling the formation of an immune-hostile TME and inducing
tumor resistance to immunotherapy, which involves
multifactorial mechanisms: tumor vasculature becomes
structurally and topologically abnormal, hampering the
infiltration and therapeutic delivery of T cells into the tumors;
expression of adhesion proteins including ICAM-1 and VCAM-
1 are down-regulated in tumor-associated ECs, impeding T cell
adhesion to and diapedesis through the tumor vessel wall; tumor
ECs form a vascular niche and produce multiple growth factors
and cytokines that induce immunosuppressive phenotypes in
TAMs and inhibit survival and activation in T cells; tumor
capillaries with functional abnormalities generate a vascular
microenvironment with locoregional stresses including
heterogeneous hypoxia and nutrient deprivation, reducing T
cell activity and inducing T cell exhaustion. All of these
mechanisms facilitate pro-tumor immunity and collectively
lead to tumor evasion of immune responses and resistance to
immunotherapies (Figure 1).

Vessel Abnormality
ECs have specialized roles in regulating many essential functions
in the body that differs from tissue to tissue (27). However, a
constant remains where endothelial cells throughout the body
Frontiers in Immunology | www.frontiersin.org 3
mediate the flow of blood, regulate the supply of nutrients,
oxygen, and other solutes, and manage the migration of
immune cells into and out of tissues. Vasculature begins to
change when in the presence of a tumor, where these tumor ECs
exhibit a defective endothelial monolayer, large intracellular
openings and holes and abnormal sprouts (28, 29). The
changes that occur within the vasculature could be initially
driven by chronic tumor-expressed vascular endothelial growth
factor (VEGF) stimulation (30), followed by EC plasticity-
mediated permanent phenotypic changes (15). In addition,
pericytes are vital cells that play an important role in vessel
maintenance and remodeling; however, in tumor vasculature
they are either absent or exhibit abnormal function leaving
vessels to become leaky. The leakiness of the tumor vasculature
results in irregular blood flow and ultimately dysfunctional
trafficking of lymphocytes (31). These structural changes lead
to vessel abnormalities and inadequate perfusion resulting in
insufficient delivery of therapeutic agents and lymphocytes.
Microenvironmental Stress
Structural and topological vessel aberrancy causes regions of
hypoxia and nutrient depletion within the tumors (29). Due to
cancer’s intensification of metabolic demands, there is less blood
oxygenation which means the vascular density does not need to
be lower than normal tissue for hypoxia to occur (32). Hypoxia
inducible factor 1-alpha (HIF1a), the master regulator of
hypoxia, further drives upregulation of VEGF which has been
shown to enhance tumor survivability through activation of the
MAPK/ERK pathway (33). Additionally, as cancer consumes
glucose within the TME, it secretes lactate creating an acidic
environment that aids in the stabilization of HIF-1amRNA (34).
The lactate produced by the cancer cells further drives
angiogenesis in tumor ECs via the lactate importer
monocarboxylate transporter 1 (MCT1) which activates NF-kB
and HIF-1a (34). Further crosstalk between tumor cells and
ECs can influence the ECs to adopt a prothrombotic,
FIGURE 1 | Role of vascular microenvironment in regulation of tumor immunity – Vascular microenvironment regulates T cell-based tumor immunity via multifactorial
mechanisms: structurally and topologically abnormal vasculature hampers T cell infiltration; downregulated expression of adhesion molecules, such as ICAM-1 and
VCAM-1 in tumor-associated endothelial cells (ECs), impedes T cell adhesion to and diapedesis through the tumor vessel wall; tumor ECs produce multiple cytokines
that induce immunosuppressive phenotypes in macrophages and inhibit T cell survival and activation; the vascular microenvironment generates locoregional stresses
including hypoxia, nutrient deprivation, and excessive immunosuppressive metabolites and enzyme, reducing T cell activity and inducing T cell exhaustion.
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proinflammatory, and cell-adhesive state known as EC
dysfunctional activation (35). These “activated” ECs can
promote aggressive tumor cell phenotypes that are drug
resistant and have an increased risk of metastasizing increasing
the difficulty of implementing a wide range of treatments (36, 37),
and also facilitate pro-tumor immunity.

Immunosuppressive Niche
Tumor ECs produce a wide range of angiocrine factors that can
promote angiogenesis, tumorigenesis, chemoresistance, and
immune suppression (38–45). One such angiocrine,
interleukin-6 (IL-6), has been shown to promote alternative
TAM polarization via induction of HIF-2a in glioblastoma
(45), leading to TAM secretion of immunosuppressive
molecules, such as TGF-b, IL-10, and Argainse-1, that inhibit
T cell activation. Tumor ECs also recruit TAMs through the
production of CCL2, M-CSF, and VEGF which upon entry into
the TME promote angiogenesis, immune suppression, and
metastasis (28, 46–48). This mechanism demonstrates how
tumor ECs can promote tumor progression through
immunosuppression, thus further highlighting the importance
of cross talk between different cells within the TME.

Adhesion Dysfunction
Adding on to the difficulties of treating solid tumors is the
interaction or lack thereof, that takes place between tumor ECs
and lymphocytes. Not only can tumor ECs activate or inactivate
the immune cells within the TME, but they may selectively recruit
immune cells to promote tumorigenesis and immune evasion.
Interactions between leukocytes and ECs are mediated by
expression of adhesion molecules on the cell surface of ECs,
which mainly include intercellular adhesion molecule-1
(ICAM-1), vascular cell adhesion molecule-1 (VCAM-1),
E-selectin, P-selectin, platelet–endothelial-cell adhesion
molecule-1 (PECAM-1, CD31), and CD99 (49, 50). Infiltration
of immune cells into the tumor is a multistep event subjected to
temporospatial regulation of lymphocyte adhesion to, rolling at,
and transmigration across the tumor ECs. Exposure of ECs to
proinflammatory stimulus with LPS, TNF-a, or IL-1b
upregulates ICAM-1 and VCAM-1 expression, as a natural
process for lymphocyte recruitment and infiltration (50, 51);
however, dysfunctional expression of adhesion molecules, such
as ICAM-1, reduces T cell adhesion to tumor endothelium, likely
due to microenvironmental cues that reprogrammed ECs,
making it harder to mount an anti-tumor immune response
(47, 52, 53). Adhesion molecules linked to leukocyte binding are
suppressed by angiogenic factors leading tumor ECs to adopt a
state known as endothelial anergy where there is a lack of an
immune response to the presence of proinflammatory stimuli
such as IL-1, TNF-a, and IFNg (47, 53–55). Additionally, tumor
cells upregulate the ligand enothelin-1 in ovarian cancer, which in
turn binds to endothelin B receptor on tumor ECs, resulting in
the inhibition of ICAM1 expression thus preventing lymphocyte
infiltration (56). Alongside this unresponsive state, tumor ECs
themselves have shown to downregulate adhesion molecules and
chemokines. The tumor vascular microenvironment creates
problems for all solid tumor treatment options, and it’s
Frontiers in Immunology | www.frontiersin.org 4
important to understand the underlying mechanisms in order
to remodel the TME to increase the efficacy of therapeutics.

Immune Cell Infiltration
It is well documented that the presence of preexisting tumor-
infiltrating lymphocytes (TILs), which include T cells, B cells,
and natural killer (NK) cells, usually indicates a positive response
to treatment (57, 58). Tumors can combat TILs by disrupting
lymphocyte homing and infiltration. Trafficking of lymphocytes
is regulated through chemokines and adhesion molecules.
Chemokines mediate chemotaxis through gradients and initiate
the active form of ligands expressed on the surface of
lymphocytes allowing them to transmigrate into the tissue.
Tumors have been shown to hinder lymphocyte chemotaxis by
suppressing expression of chemokines that promote T-cell
infiltration such as CCL4 and CCL27 in melanoma (10, 59).
Lymphocyte homing and infiltration can also be altered by
posttranslational nitrosylation of CCL2 to nullify its ability to
recruit tumor specific cytotoxic T lymphocytes (CTLs) making it
hard to implement immunotherapy using antigen specific T cells
(60). Aberrant vascularization presents a significant hindrance to
lymphocyte infiltration, which inhibits T cell adhesion to tumor
vasculature and hampers T cell delivery into the tumor. VEGF, a
pro-angiogenic factor driving tumor angiogenesis and aberrant
vascularity, likewise has also been shown to downregulate the
expression of ligands required for T cell extravasation (10, 31).

Immune Cell Function
The success of immunotherapies is not only dependent on the
trafficking of lymphocytes, but also their function. T cells and NK
cells require activation in order to produce their cytotoxic
proteins, which tumors can evade through gene regulation and
immune checkpoints. T cells require activation via their T cell
receptor (TCR) that recognizes MHC class I molecules,
conversely NK cells are inhibited by the presence of MHC
class 1 molecules. MHC class I presentation is not enough to
fully activate T cells; they must also receive signaling from
adhesion and costimulatory molecules. It is common for tumor
cells to lack these necessary components and instead express
inhibitory ligands such as PD-L1 that will shut down T cell
effector function (61, 62). Additionally, NK cells can be
influenced within the TME to adopt a pro-angiogenic
phenotype to promote tumor progression in non-small cell
lung carcinomas (NSCLC) patients (63). Tumors also have the
capability to downregulate MHC class I presentation, however, if
the tumor cell is completely negative for MHC class I molecules
then it will become susceptible to NK cells (64). In order to evade
NK cells, cancer will maintain low expression of MHC class I
molecules to prevent NK cells from initiating cell death, while
simultaneously reducing the activation of T cells (65). In order
for T cell and NK cell persistence to occur they must continually
be exposed to stimulating cytokines such as IL-2 (62, 66). IL-2
has been used in clinical trials to help stimulate the anti-tumor
response, but it is associated with dangerous toxicities and
expansion of Treg cells (62).

The components of the TME, including hypoxia,
immunosuppressive cytokines and matrix, stroma cells, and
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anti-inflammatory leukocytes, propel T cells to adopt a less
effective state known as exhaustion. Exhausted T cells exhibit a
decrease in effector function and an increase in expression of
inhibitory receptors such as PD-1 and CTLA-4 (67). Chronic
exposure to tumor antigen combined with the presence of
inhibitory ligands is thought to be the driving forces behind T
cell exhaustion (68). Additionally, expression of TGF-b by tumor
cells, fibroblasts, immune cells and tumor ECs quells the
expression of cytotoxic T cell genes including perforin,
granzymes and cytotoxins (69). The presence of other immune
cells within the TME such as TAMs and myeloid-derived
suppressor cells (MDSCs) negatively impact anti-tumor
immune response. Macrophages play an important role in
regulating immune response by adopting two different
phenotypes: the pro-inflammatory M1 phenotype and the anti-
inflammatory and immunosuppressive M2 phenotype. Upon
entering the TME, most TAMs are polarized towards the M2
phenotype through signaling from tumor cells, T helper 2 (TH2)
cells, Treg cells, and other cells or molecules in the TME (70).
These M2 TAMs promote immunosuppression through
expression of TGF-b and IL-10 thus being negatively
correlated with therapeutic response (71, 72). Even though
TAMs primarily adopt the M2 phenotype, polarization of
macrophages is all about a balance of signals with their
phenotype easily being swayed by changes in signaling opening
the potential for macrophage reeducation. Immunosuppressive
TAMs express PD-L1, the negative regulator of T and NK cells,
where blocking of PD-L1 unlocks TAMs’ potential for anti-
tumor activity, suggesting that immune checkpoint blockade
could be a possible avenue for macrophage reeducation (70).
Not only are TAMs immunosuppressive but they also stimulate
angiogenesis through the production of pro-angiogenic factors
such as VEGF, epidermal growth factor (EGF), basic fibroblast
growth factor 2 (FGF2), IL-8, CXCL12, and TNFa further
echoing the need for anti-TAM therapies (62). Similarly,
MDSCs induce tumor immunosuppression with several
additional mechanisms, such as the expression of PD-L1 and
CD-80 to abrogate antigen-specific immune responses, and
production of reactive oxygen species (ROS) which induces
posttranslational modification of TCRs rendering them
unresponsive to antigen presentation (73). MDSCs have also
been implicated in promoting angiogenesis through increased
production of fatty acid synthase which in turn activates PPARb/
d-dependent expression of genes including VEGF (63). Pro-
inflammatory neutrophils within the TME, whose primary role
is to be the first line of defense against infection, have been
negatively correlated with clinical outcome (63). These cells hold
significant influence over tumor ECs through the wide range of
secretory factors including IL-1b, VEGF, FGF2, TGFa,
hepatocyte growth factor (HGF), and angiopoietin 1
(ANG1) (63).

ECs play a significant role in immune regulation. Tumor ECs
may modify the expression of adhesion molecules to recruit
specific types of immune cells, leading to favored recruitment of
macrophages, Treg cells, and MDSCs while inhibiting CD4+ and
CD8+ T cells, NK cells, dendritic cells (DCs), and neutrophils
Frontiers in Immunology | www.frontiersin.org 5
(74). Tumor ECs lack the necessary stimulatory components
needed to fully activate naïve T cells, and downregulate MHC
associated genes to aid in immune evasion, as well as express
inhibitory ligands such as PD-1 to further suppress T cell effector
function (75). Additionally, tumor ECs can selectively induce T
cell apoptosis through expression of FasL allowing them to
eliminate CD8+ T cells while sparing Treg cells (76). Crosstalk
between tumor ECs and MDSCs creates a positive feedback loop
involving VEGF: VEGF stimulates MDSC recruitment, while
recruited MDSCs promote angiogenesis and immune
suppression (77). Similarly, a feedback loop exists between
TAMs and ECs within the hypoxic TME where tumor ECs
express common lymphatic endothelial and vascular endothelial
receptor (CLEVER1), which is an adhesion molecule that
selectively recruits immunosuppressive cells (78).

Immune Cell Metabolism
The TME is a battleground for metabolic resources with tumor
cells, effector immune cells and immunosuppressive cells vying
for limited nutrients essential for survival. Cancer cells increased
metabolic demands combined with aberrant vasculature create
an environment that is deficient of nutrients and hypoxic, greatly
influencing what metabolic pathways cells within the TME can
utilize (79). T cells switch from the mainly oxidative and fatty
acid metabolism of naive and resting T cells to increased glucose
uptake and glycolysis during activation. Metabolism of glucose is
essential for CD4+ and CD8+ effector T cells; having received
costimulatory signals these cells immediately begin to upregulate
genes associated with glycolysis and the tricarboxylic acid cycle
(TCA) to meet increased metabolic demands for proliferation
(80). Additionally, the pentose phosphate pathway (PPP) is
upregulated and provides the necessary NADPH required for
fatty acid and plasma membrane synthesis (81). Nuclear factor of
activated T cells (NFAT), which induces the vital stimulatory
cytokine IL-2, requires ROS to be present in order for expression
to occur making it strongly dependent upon the type of
metabolism pathway utilized (79). Glucose deficiency in the
TME causes the vital intermediate phosphoenolpyruvate,
involved in NFAT expression, to become expressed thus losing
IL-2 stimulation and T cell persistence (82). Mitochondrial
respiration is essential for T cell effector function and
consequently mitochondrial dysfunction has been identified as
negatively correlated to treatment response when using CAR-T
cells (83). It’s thought that a buildup of mitochondrial ROS levels
causes mitochondrial dysfunction and has strongly been
associated with the T cell exhaustion phenotype (79).
Competition within the TME for crucial amino acids impacts
the quality of the anti-tumor T cell response. Tumor cells,
MDSCs, TAMs, and cancer associated fibroblasts (CAFs)
actively deplete tryptophan through upregulation of
indoleamine 2,3-dioxygenase (IDO), which its metabolite
kynurenine has been shown to upregulate PD1 expression on
CD8+ T cells (84, 85). Depletion of tryptophan is negatively
correlated with patient outcome and further demonstrates the
importance of metabolism to obtain a therapeutic immune
response (86).
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The suppressed blood circulation that exists in the vascular
TME leads to locoregional accumulation of immune-hostile
metabolites and enzymes including lactate, 2-hydroxyglutarate
(2-HG), arginase-1, indoleamine 2,3-dioxygenase (IDO), and
tryptophan 2,3-dioxygenase (TDO). For example, lactate can
reach immunosuppressive concentrations of 20–30 mM in the
vascular TME, as opposed to around 3 mM in normal tissues
(87). Excess lactate and H+ suppress cell proliferation, survival,
cytokine production and cytotoxicity in T and NK cells (88, 89).
Oncometabolite 2-HG inhibits demethylases to increase histone
methylation, and these epigenetic changes lead to suppressed T
cell proliferation, TCR signaling, and NFAT activity (90).
Arginase-1, derived from TAMs and MDSCs, depletes
arginine, a critical amino acid for T cell activation (91). IDO
and TDO, primarily produced by TAMs and CAFs, respectively,
break down tryptophan and yield kynurenine, a suppressive
metabolite that inhibits T cell functions (91–93). In addition,
the aberrant vasculature of the TME contributes to promoting a
hypoxic environment that inhibits effector T cell function,
enhances Treg activity, and reduce NK cell cytotoxicity (94,
95). Hypoxia rewires T cell metabolism mainly via HIF-1a (96),
but the precise in vivo role of HIF-1a in regulation of T cell
function remains obscure (97): HIF-1a deficiency in CD8+ T
cells enhances fatty acid catabolism and their anti-tumor
functions (98), while HIF-1a promotes infiltration of CD8+ T
cells into the tumors and enhances their effector responses to
persistent antigen and promote tumor clearance (99, 100).

Epigenetic Regulation of Immune Cells
Epigenetic regulation of immune cells, i.e., DNA methylation and
histone modifications, determines their fate and activation.
Understanding how these epigenetic changes impact immune cells
within the TME is vital to reversal of tumor immunosuppression. As
already noted, T cell exhaustion is a major problem for long term
efficacy of immunotherapy. Exhausted T cells have been identified
to have a unique chromatic architecture induced through epigenetic
modifications (70, 101–103), implicating that epigenetic therapeutic
agents could serve in adjuvant treatment for cancer
immunotherapy. Likewise, PD1 blockade is a treatment option
used to combat T cell exhaustion, however, this treatment does
not fully restore effector T cell function suggesting the importance of
the impact that epigenetic modifications have on T cell function
(104). Recent studies identify HMG-box transcription factor TOX
as a major regulator of genetic and epigenetic remodeling that
occurs during T cell exhaustion (104–106). TOX is largely
dispensable for the formation of Teffector and Tmemory cells, but it
is required for the development for Texhaustion cells in chronic
infection (105).

The epigenetic landscape in TAMs can be remodeled in
response to acute stimulation and polarizing stimuli, which
helps integrate signaling, such as NF-kB and STATs, over time
and underlies reprogramming of TAMs to alter their gene
expression (107). Most of the epigenetic research work has
been focused on the macrophages with M1 phenotype, and the
epigenetic modifiers involved in TAMs with M2 polarization
remains largely unknown. Previous work shows that the histone
demethylase JMJD3, induced by IL-4, promotes expression of
Frontiers in Immunology | www.frontiersin.org 6
M2-promoting transcription factor IRF4 by removing negative
H3K27me3 marks at the Irf4 locus (70, 108, 109). Recent studies
identify epigenetic enzymes, including DNMT1, PRMT6, and
KDM6B, which regulate M2 polarization and tumor-promoting
functions in TAMs (110, 111), serving as targets for disrupting
TAM immunosuppressive phonotypes.

Therapeutic Effects of Radiochemotherapy
on Immune Cells
Chemotherapy and radiation have been two standard treatments
against solid tumors; understanding how these cytotoxic therapies
impact immune cells will better strategies of using synergistic
therapies. It should be noted that not all cytotoxic strategies have
a positive impact on immune cells. However, cytotoxic
radiochemotherapies have emerged as a potential immune
stimulant due to their involvement with immunogenic cell
death (ICD) (112, 113). ICD is defined by a type of cancer cell
death triggered by cytotoxic therapeutics, which activates long-
lasting antitumor immunity; ICD proceeds by the release of
damage-associated molecular patterns (DAMPs) that allow for
the processing and presentation of tumor-associated antigens, in
which priming T cells can turn the immune response from a
tolerogenic one to an anti-tumor immunogenic response. In
addition, ICD stimulates lymphocyte trafficking and infiltration,
showing promise in improving TIL numbers in breast cancer,
ovarian cancer and melanoma (114–116). Interestingly, there’s
been evidence that certain cytotoxic chemotherapuetics can
selectively target immune suppressive cells including Treg,
MDSCs and TAMs (117–119). Dosage is crucial in eliciting
these selective effects, maximum tolerated dose regimens have
been shown to deplete CD8+ T cells and NK cells while low dose
regimens have been shown to preferentially target MDSCs and
Treg cells (120–122). Better understanding of their therapeutic
effects on immune cells will help design more effective
immunotherapy. Similar to chemotherapy, radiation also elicits
an immunogenic response via DAMPs (123). In addition,
radiation can affect the tumor vasculature resulting in an
upregulation of adhesion molecules, further stimulating the
recruitment of T effector cells (124). Radiotherapy is one of the
most widely used treatment options for solid tumors (113, 125).
Recent studies show that radiation used in combination with
immunotherapy, such as checkpoint blockade, elicit significant
immune responses (126–128).
REPROGRAM VASCULAR
MICROENVIRONMENT FOR
IMMUNOTHERAPY

Anti-Angiogenic Therapy
Anti-vascular therapy was initially thought to be groundbreaking
in cancer treatment (129). The concept of conventional anti-
angiogenic therapy was to starve the tumor of oxygen and
nutrients through eradication of its vasculature, primarily by
inhibiting pro-angiogenesis factors and their downstream
pathways such as VEGF (130, 131) (Figure 2). Ultimately,
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anti-angiogenic therapy exhibits small and transient benefits in
most malignant cancers. These therapeutic difficulties and
failures are due to multiple mechanisms that contributes to the
tumor resistance to anti-VEGF treatment, including angiogenic
pathway redundancy, compensatory activation of survival
signals, and pericyte and macrophage-mediated protection
(132). Furthermore, anti-angiogenic therapy-induced vascular
shutdown can deteriorate tumor hypoxia, leading to more
aggressive tumor phenotypes in tumor growth, invasion, and
metastasis via HIF-1a; this also generates a hostile barrier for
delivery of therapeutic agents and anti-tumor lymphocytes into
the tumors. In addition, anti-angiogenesis has shown negative
side effects including cardiac toxicity, hemorrhage, thrombosis
and gastrointestinal perforation further making it hard to justify
its use as a therapeutic (133–135).

Vessel Normalization
Vessel normalization has emerged as a novel approach to combat
aberrant tumor vasculature through restoration of vessel perfusion
and oxygenation (136). The goal of this therapy is to structurally
normalize tumor vasculature, leading to a decrease in intratumor
hypoxia and an increase in the delivery of therapeutic drugs and the
efficacy of radiotherapy (Figure 2). Based on the central hypothesis
that vascular abnormalities are driven by imbalance of pro- and
anti-angiogenic factors (29, 137), current vessel normalization
therapies have focused on targeting excessive pro-angiogenic
factors, such as VEGF and PlGF, using neutralizing antibodies
and pharmacological inhibitors of their downstream tyrosine
kinases. However, these therapies have shown transient effects on
tumor oxygenation and small benefits (138–146). Ideally, these
vessel-normalizing treatment can reduce intratumoral hypoxia and
enhance delivery of immunotherapeutic agents or cells into the
TME, providing certain opportunities for improving
immunotherapy, which needs further optimization of the
therapeutic dose and duration to reach maximal and persistent
effects on vessel normalization.

Another therapeutic field of vessel normalization is vascular
maturation, as the tumor vasculature is characterized by
disrupted coverage of pericytes that stabilize vascular structure
and maintain its functional integrity (137). VEGF2 blockade can
recruit pericytes through activation of Ang1 and Tie2 signaling
(138). The risk of hemorrhage or venous thromboembolism
exists whenever targeting VEGF, which has led to research into
other targets to normalize vasculature. Targeting the
Frontiers in Immunology | www.frontiersin.org 7
upregulation of PDGF-b is seen as another option as it has
been reported in mouse models to increase pericyte recruitment
while decreasing EC proliferation (147, 148). However, there has
been instances reported where upregulation of PDGF-b led to
tumor growth (17).

Endothelial Reprogramming
As an alternative process to the vascular abnormality mechanism
driven by angiogenic factor-mediated vessel sprouting and
outgrowth, tumor ECs undergo genetic programming to induce
aberrant vascularity. Robust cell plasticity in ECs has been well
characterized in embryonic development (149–153). ECs undergo
endothelial mesenchymal transition (Endo-MT) to de novo generate
fibroblasts, stem-like cells, and smooth muscle cells in pathological
settings including cardiac, renal and liver fibrosis, ossifying myositis,
vascular inflammation, and cerebral cavernous malformation (154–
160). Our recent work reveals that tumor ECs retain key endothelial
functions but acquiremesenchymal phenotypes including enhanced
proliferative and migratory capacities via cell transformation, i.e.,
partial Endo-MT, therefore driving aberrant vasculature in TME
(16, 161, 162); this cell plasticity-mediated mechanism provides a
new insight into vascular abnormality in TME, suggesting vascular
de-transformation as a new strategy for cancer therapy (15)
(Figure 2). Theoretically, tumor ECs are driven by plasticity-
mediated genetic reprogramming where the hope of reversing this
would offer a non-transient effect on reforming vessel morphology
in the TME. The strategy for EC reprogramming focuses on the key
regulatory node that drives the abnormal structure features. Our
recent kinome-wide genetic screening of mesenchymal-like
transcriptional activation in tumor ECs identifies PAK4 as an
innovative target to reprogram ECs in glioblastoma (163). Genetic
ablation or pharmacological inhibition of PAK4 showed an increase
in expression of adhesion molecules in tumor ECs, a decrease in
vessel abnormalities with improved T-cell infiltration, rendering
tumors more sensitive to CAR T immunotherapy (163).

Additional benefits for endothelial reprogramming include
the potential effects on anti-tumor immunity via improving
vessel perfusion to remove immunosuppressive metabolites
and enzymes in the TME as well as via directly reconditioning
immunosuppressive vascular niche. Our recent work reveals that
transformed ECs in TMEs form an immunosuppressive vascular
niche via producing IL-6 that induces M2 phenotypes in TAMs,
which inhibits T cell infiltration into and activation at the TME
(45, 164); endothelial reprogramming may, therefore, generate a
FIGURE 2 | Strategies for anti-vascular therapy – Three therapeutic strategies have been developed for vasculature-targeting anti-cancer treatments, including anti-
angiogenesis, vessel normalization, and endothelial programming.
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locoregional host-friendly TME with anti-tumor immunity that
allows a successful immunotherapy. These findings offer proof of
concept that reprograming tumor ECs is a viable option to
reverse immune suppression within the TME and improve the
efficacy of T cell-based immunotherapy.

In summary, we overview the role of the vascular TME in tumor
evasion of immune responses and resistance to immunotherapy,
with a focus on vessel abnormality, dysfunctional adhesion,
immunosuppressive niche, and microenvironmental stress
(Figure 1). We propose that development of new therapeutic
approaches in order to reprogram tumor ECs may offer exciting
opportunities to recondition the TME and to overcome tumor
resistance to T cell-based immunotherapy (Figure 2).
Frontiers in Immunology | www.frontiersin.org 8
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