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Selective interaction and its effect 
on collective motion
Zhicheng Zheng1, Xiaokang Lei2 & Xingguang Peng1*

Plenty of empirical evidence on biological swarms reveal that interaction between individuals is 
selective. Each individual’s neighbor is selected based on one or more featured factors. Based on the 
self-propelled model, we develop a general probability neighbor selection framework to study the 
effect of four typical featured factors (i.e., distance, bearing, orientation change and bearing change). 
In this work, two common cases are involved to comprehensively analyze the impact of the four 
featured factors on the collective motion. One is the flocking, the other is the responsivity to stimulus. 
The impact of different selection strengths of the featured factors on both cases are investigated. The 
effect of noise on flocking and different stimulus intensities on responsivity to stimulus are analyzed. 
This study allows us to get the insight of selective interaction and suggests the potential solution to 
overcome the trade-off between flocking and responsivity quality.

Collective motion is a common phenomenon in nature, such as the colony of bacterial clusters1, school of fish2, 
flock of birds3 and active granular media4. Many efforts have been devoted to uncovering the mechanism of 
collective motion. Reynolds first proposed an approach to reproducing the flock of birds based on three simple 
rules (i.e., separation, alignment and cohesion), namely the Boid model5. Vicsek et al.6 proposed the simplest 
self-propelled model to investigate the phase transition in the non-equilibrium system and reproduced the 
ordered movement by velocity alignment. Aldana et al.7 described the original Vicsek model as the network 
system and found that the way that noise introduced into the system determines the order of phase transition in 
the self-propelled model. Chaté et al.8 studied the Vicsek model with cohesion and formed the liquid–gas phase 
transitions. Couzin et al.9 assumed the interaction between individuals is divided into three non-overlapping 
behavioral zones (i.e., zone of repulsion, orientation and attraction) and produced several complex collective 
behaviors by adjusting the width of each zone.

In recent years, plenty of empirical evidence has revealed selective interaction phenomena in animal 
groups10–13. Instead of considering all sensible neighbors, an individual selects its neighbors to react accord-
ing to one or more featured factors. Such featured factors could be transient or dynamic determined by the 
relative motion of the focal individual. The transient featured factors are the stationary states of neighbors at a 
moment, such as the distance5,6,9,14 and bearing15–17. On the other hand, the dynamic featured factors are usually 
coupled with the time, which suggests that neighbor selection depends on the change of the neighbors’ states 
within a period, e.g., orientation change18–20 and bearing change21,22. Although different featured factors have 
been observed, there is no agreement on how to use these factors when modeling a desired collective motion. 
Comprehensive analysis is necessary to obtain an insight view about selective interaction.

To this end, in this paper we firstly developed a general probability framework of neighbor selection to study 
the effect of four typical featured factors (i.e., distance, bearing, orientation change and bearing change) on 
the collective motion based on the self-propelled model. Then, we considered two common cases of collective 
motion, i.e., the flocking and responsivity to stimulus when comprehensively analyzing the effects of featured 
factors. Specifically, the flocking suggests that individuals form the highly parallel-group9 from a disordered state. 
For the responsivity to stimulus, the stimulus can be interpreted as a kind of environmental cue23, which triggers 
the collective turn of the group. Additionally, the effects of different selection strength (i.e., the probability of 
being selected) of featured factors were analyzed in both cases. Also, different intensities of noise and stimulus 
were introduced when considering flocking and responsivity to stimulus, respectively. Interestingly, we found 
that solely increasing the strength of featured factors is harmful to the flocking; meanwhile, dynamic featured 
factors (i.e., orientation change and bearing change) are more responsive to the stimulus.

The rest of this paper is organized as follows. In “Methods” section, the general probability framework of 
neighbor selection is introduced to model self-propelled particle swarms. In “Results” section, the effects of each 
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featured factor are analyzed from the perspective of selective interaction. The conclusions and further discussion 
are summarized in “Discussion” section.

Methods
Here we consider a group composed of N individuals moving in the continuous two-dimensional X-Y plane 
without boundary. The position of the i-th individual changes according to

where vi is the velocity of the i-th individual.
Each individual is self-propelled with a preferred speed v0 and interacts with neighbors under random noise 

η (uniform distribution). The individual’s sensing radius is an infinite range, which suggested that all individuals 
could be the neighbor of individual i. The velocity of the i-th individual can be calculated as follows:

where γ0 is the relaxation rate, which characterizes the self-propelled force. An individual will reach the preferred 
velocity v0 faster with a larger γ0 and vice versa. The second term Fi accounts for the interactions between individ-
uals. For simplicity, we assume that Fi only depends on velocity alignment. Thus, Fi is defined as Fi = K(vd − vi) . 
K represents the strength of alignment and vd is the velocity with which vi should align.

Characterizing the neighbor selection according to different featured factors in a general way is the main part 
of our modeling framework. Inspired by Bode et al.24, we develop a probability framework. For a given individual 
j, the probability of being selected by the i-th individual obeys the following five selection models. Figure 1 shows 
the geometry of each featured factor.

Random selection model (RAND‑S model).  In the RAND-S model, the focal individual selects one 
neighbor randomly (uniform distribution) at each time step. This model is actually equal to the Vicsek model 
(all sensible neighbors’ states are averaged) if we consider time accumulation. In this paper, we use the RAND-S 
model as the baseline.

Distance‑based selection model (DIST‑S model).  In the DIST-S model, the focal individual selects 
one neighbor at each time step according to the relative distances between the focal and its neighbors. The 
distance-based selection rule was first proposed by Reynolds5 and has been widely used to investigate the inter-
action network and the emergence of collective motion6,9,14,25. The probability of being selected in the DIST-S 
model is given as follows:

where xi and xj are the position of individual i and j, respectively. cd ≥ 0 is a parameter of tuning selection 
strength on the nearest neighbor. When the cd is small, individuals prefer the distant neighbors. On the contrary, 
with a large cd , individuals tend to choose adjacent neighbors.

Bearing‑based selection model (BEAR‑S model).  In the BEAR-S model, the focal individual selects 
on neighbor at each time step according to the bearing between the focal and its neighbors. The BEAR-S model is 
inspired by the evidence of anisotropic sensory behavior in some animal species, which suggests that neighbors’ 
bearing has an influence on the neighbor selection. Especially, the anisotropy of frontal preference has been 
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Figure 1.   An illustration of the featured factors. Pink striped area represents the frontal preference of the focal 
individual i. dij = ||xi − xj|| is the distance between individuals i and j (Eq. (3)); xij = xj − xi is the relative 
position of j with respect to i (Eq. (4)); vjt , vjt−1 are the velocity vector of individual j at time t and t − 1 in 
Eq. (5); xijt , xijt−1 are the position vector at time t and t − 1 defined in Eq. (6), respectively.



3

Vol.:(0123456789)

Scientific Reports |         (2022) 12:8601  | https://doi.org/10.1038/s41598-022-12525-6

www.nature.com/scientificreports/

found to have significant effect on the collective motion. For example, Pita et al.15 found that both the golden 
shiner and zebrafish have an acute vision in the fronto-dorsal region, which is in favor of group coherence. Luke-
man et al.17 found that the interaction of surf scoters is within the frontal sector of ± 30◦ , which facilitates the 
collision avoidance in the group. The corresponding probability pbearij  is described as follows:

where vi represents the velocity (unit vector) of individual i, and xij is the unit position vector directed from i 
to j. ∠(·, ·) represents the angle between two unit vectors. The strength of attention in front can be adjusted by 
cb ≥ 0 . For a large strength cb , the focal individual tends to choose the neighbor that appeared straight ahead.

Dynamic‑orientation selection model (DYO‑S model).  Inspired by the result18 that the selection on 
neighbors is related to the orientation change of individuals rather than the distance in shoals of rummy-nose 
tetra species (Hemigrammus rhodostomus). Thus, we consider the orientation change within a period as a fea-
tured factor. For simplicity, we consider the time period as a single preceding step. The probability of DYO-S 
model is expressed as follows:

where �t is the step time interval in simulations. The vjt and vjt−1 are the velocity of individual j at time t and 
t − 1 . co ≥ 0 is used to adjust the strength of selection. For a large co , the focal individual tends to select the 
neighbor with the large orientation change.

Dynamic‑bearing selection model (DYB‑S model).  Much empirical research has revealed that the 
animal could be sensitive to the bearing change of their neighbors through the visual pathway21,22. The change in 
bearing is the manifestation of the apparent movement, which conveys information that can directly influence 
the individuals’ movement. To be general, we assume that the time period of the bearing change is the same as 
that in the DYO-S model (i.e., one preceding step). The probability pdybij  of selecting individual j can be described 
as follows:

where xijt and xijt−1 are the position vector directed from i to j at time step t and t − 1 , respectively. cm is used to 
adjust the selection strength from small to large. When the cm is large, the focal individual tends to choose the 
neighbor with large bearing change.

To emphasize on the effect of the featured factors, we assumed that individuals only select one neighbor at 
each time step. Particularly, our framework includes the tunable parameter that controls the selection strength 
of the featured factors, which is able to select that specific neighbor from randomness to exclusiveness. In brief, 
our selection models comprise three steps. 

(1)	 Calculation on the cumulative distribution function (CDF) of being selected based on a certain featured 
factor (Eqs. (3)–(6)),

(2)	 Choose one neighbor by sampling from the calculated CDF,
(3)	 Update the position and velocity of each individual using Eqs. (1) and (2).

Results
To investigate the property of each selection model, two cases are taken into account: flocking and responsivity 
to stimulus.

Flocking.  It is common for animal groups to take off at the same time and form the ordered movement spon-
taneously, which is crucial to maximizing the chance of survival26,27. In the flocking case, we measure the ability 
to form the ordered movement from the random initial state. Here, we consider two experimental parameters: 
the intensity of noise η and the selection strength. The selection strength of each model is termed as follows: cd 
(DIST-S model), cb (BEAR-S model), co (DYO-S model) and cm (DYB-S model).

Two metrics are used to evaluate the simulation results. First, the polarization φ6 is used to evaluate the degree 
of consensus, which represents the flocking quality. The polarization φ is defined as follows:

here φ ∈ [0, 1] . When the group moves along with same direction, φ = 1 . Otherwise, if individuals diffuse with 
different directions, φ ≈ 0 . Second, we evaluate the flocking efficiency using convergence time Top

28 which is 
the time consumption before the polarization φ first reaches the given threshold. The definition of Top is given 
as follows:
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εflock is the threshold of the ordered movement ( εflock = 0.95 in this paper).

Responsivity to stimulus.  For biological swarm, the group constantly changes the moving direction to 
avoid the attack from predators. The responsivity to such sudden turning represents the effectiveness of infor-
mation transfer within group29. To investigate the responsivity of featured factors, we consider the directional 
information as the stimulus. As suggested in the previous study30, a predefined number (i.e., IFnum ) of informed 
individuals are randomly chosen from the group and abruptly turn with pi/2 respect to the current average mov-
ing direction. Moreover, we introduce stimulus intensity (i.e., the number of informed individual IFnum ) and 
selection strength to conduct insightful analysis. Here, we use response accuracy δgroup and response time Tturn 
to evaluate the quality and efficiency of the responsivity to stimulus, respectively. The response accuracy δgroup 
is defined as follows:

where A = 1
N

∑N
i=1

1+vi ·hs
2  is the average difference between the stimulus direction hs with the velocity of each 

individual vi . hs is orthogonal to the group’s moving direction. Ano represents the degree of consensus between 
the group’s moving direction (averaged direction of all individuals) and the stimulus direction hs at one preced-
ing step of the informed individual’s turning moment, which is defined as Ano =

(1+vno·hs)
2  . vno is the group’s 

moving direction before the abruptly turning of the informed individual.
The time cost Tturn during the response to stimulus is given as follows:

here εturn is the threshold if the group completes the response. tgroup is the turning moment of the informed 
individual. We set εturn = 0.9 and tgroup = 10 in the following simulations.

Simulations are run with the following parameters: N = 100 , �t = 0.02 , v0 = 5 , γ0 = 5 and K = 3 . The 
number of informed individual IFnum is no more than 5% of total number ( IFnum ∈ [1, 5] ). All simulations are 
executed for 800 steps. Unless otherwise specified, any selection model discussed in this paper is the same as the 
RAND-S model if the selection strength is equal to zero.

Distance‑based selection model.  As for the DIST-S model, the preference on the nearest neighbor 
weakens the ability to form the ordered movement. Under the non-noise condition, when the selection strength 
is small ( cd < 1.5 ), the polarization φ and convergence time Top keep around the optimal value (Fig. 2A-(1–
2)), which suggests that individuals achieve the flocking efficiently (Fig. 2A-(4)). However, when the selection 
strength is large ( cd > 1.5 ), the group splits into a few subgroups with different sizes and moving directions 
(Fig. 2A-(3–5)), which implies the declination of flocking quality. Moreover, as the further increase of selection 
strength cd > 3 , individuals are scattered around and completely collapse (Fig. 2A-(6)). This is because the focal 
individual overlooks the other individuals and only aligns with the nearest neighbor, which leads to the pairwise 
interaction. As a result of that, the slight directional deviation between individuals is hard to eliminate in time, 
resulting in the transform of group formation from coherence to disperse and the decay of flocking quality.

Under the noise condition, it is inevitable that the polarization and flocking efficiency decline with the noise 
increases. As shown in Fig. 2B-(1–2), the movement of individuals is disrupted by large noise intensity ( η > 2 ). 
When the noise intensity and selection strength is both small ( η < 1 and cd < 1.5 ), the group is able to form 
the ordered movement efficiently. However, when the selection strength cd > 1.5 , the polarization and flocking 
efficiency significantly reduce under the same noise intensity ( η < 1 ). To sum up, the strong preference on the 
nearest neighbor has a negative impact on noise tolerance.

The responsivity to stimulus is promoted by the preference on the distant neighbor rather than the nearest 
neighbor. According to Fig. 2C-(1), when the stimulus intensity is weak ( IFnum = 1 ), the response accuracy δgroup 
never exceeds 0.5, which means that the group is unable to response to the stimulus (Fig. 2C-(3)). Additionally, 
from Fig. 2C-(1–2), it can be seen that the response accuracy and efficiency show an apparent upward trend 
with the stimulus intensity increases, which implies that individuals require more stimulus information to make 
response. The trajectory of the response under a large stimulus intensity ( IFnum = 5 ) is shown in Fig. 2C-(4). 
However, under the maximum stimulus intensity ( IFnum = 5 ), the response accuracy and efficiency still decrease 
consistently as the increase of cd . Basically, the reason for low responsivity is that individuals only focus on their 
nearest neighbors during the response process, which blocks the stimulus information transfer within the group. 
In other words, directional information is hard to efficiently spread in the DIST-S model.

Bearing‑based selection model.  For the BEAR-S model, the frontal preference has a negative impact on 
forming ordered movement. In the non-noise situation, according to Fig. 4A-(1–2), when the frontal preference 
is weak ( cb < 10 ), individuals achieve the ordered movement efficiently. As the increase of cb , the group tends 
to split into two or more clusters. These clusters are still likely to form the ordered movement when the frontal 
preference is at an intermediate level ( cb ≈ 20 ), as shown in Fig. 4B-(1). When the selection strength is large 
( cb > 25 ), the group splits into two clusters with totally different moving directions (Fig. 4B-(2)). Meanwhile, 
the polarization φ declines to 0.6, and the convergence time Top rises to 600 simulation steps. It arises from the 
fact that the frontal preference restrains the individuals’ interaction range. The neighbor in front directly affects 

(8)Top = min
φ>εflock

t, t > 0,

(9)δgroup =
A− Ano

1− Ano
,

(10)Tturn = min
δgroup>εturn

t, t > tgroup,
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the individual at the back. On the contrary, the back-end individual never has an influence on the neighbor in 
front. In other words, the interaction becomes regional and its topology switches slowly. This leads to the group 
dispersion and it is difficult for individuals to keep ordered.

In the noise situation, it is interesting that different strength of frontal preference leads to quite different decay 
tendencies. When the selection strength is small ( cb < 10 ), the polarization and flocking efficiency decline mono-
tonically with the increase of noise intensity. Counterintuitively, under the strong frontal preference ( cb > 10 ), 
the BEAR-S model exhibits a non-monotonic decline tendency. Specifically, as shown in Fig. 4A-(3–4), when the 
noise intensity varies in η ∈ [0, 1] , the polarization φ takes an upward trend while the convergence time Top has 
a rapid decrease. This suggests that under this situation the flocking quality and efficiency have been promoted 
evidently. The polarization and flocking efficiency achieve the optimal value at η ≈ 0.8 rather than that under 
the non-noise condition ( η = 0 ). It is because that the involvement of noise makes it easier for individuals to 
interact with more neighbors. As shown in Fig. 4B-(3–4), the neighbor density under the noise η = 0.1 (Fig. 4B-
(3)) is narrower than that under the large noise intensity η = 1 (Fig. 4B-(4)). The individuals’ interaction range is 
expanded to the larger level, which means that the flocking quality is promoted as the result of noise perturbation.

Frontal preference is negative for the stimulus transfer within the group. According to the Fig. 4C-(1–2), 
with the increase of cb , the general trend in response accuracy δgroup decreases consistently while the response 
time Tturn shows an apparent growth for any number of the informed individual. More evidence can be seen in 
Fig. 4C-(3), individuals with strong frontal preference barely respond to the stimulus. The group cannot follow 
the turning of the informed individuals until the stimulus intensity increasing to IFnum = 5 (Fig. 4C-(4)). Nev-
ertheless, with the increase of cb , the response accuracy and efficiency still decrease rapidly. It is due to that the 
strong frontal preference limits the individuals’ perception and breaks the stimulus propagation link within the 
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Figure 2.   (A) The property of flocking with the evolution of cd in the DIST-S model. (A-(1)) The polarization 
φ as a function of cd . (A)-(2)) The convergence time Top as a function of cd . (A-(3–6)) The trajectories of 
flocking with different cd . (B) The property of flocking with the evolution of noise η in the DIST-S model. (B-
(1)) The polarization φ as a function of noise η . (B-(2)) The convergence time Top as a function of noise η . (C) 
The property of responsivity to stimulus with the evolution of cd in the DIST-S model. (C-(1)) The response 
accuracy δgroup as a function of cd . (C-(2)) The response time Tturn as a function of cd . (C-(3–4)) The trajectories 
of response to stimulus with different cd . Top = 800 or Tturn = 800 indicate that the group is unable to finish the 
corresponding case within the total simulation time. Each data point represents the average of 50 simulation 
runs with the boxplot. Boxplots in the block divided by the dotted line belong to the same data point but are 
shifted at different positions on the x-axis to be more distinguishable.
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Figure 3.   The responsivity of the BEAR-S model with the single informed individual ( IFnum = 1 , cb = 20 ). (1) 
Response accuracy δgroup . (2) The time cost of response Tturn (simulations of the uncompleted response is not 
drawn).
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Figure 4.   (A) The property of flocking as the evolution of cb and η in the BEAR-S model. (A-(1)) The 
polarization φ as a function of cb . (A-(2)) The convergence time Top as a function of cb . (A-(3)) The polarization 
φ as a function of noise η . (A-(4)) The convergence time Top as a function of noise η . (B) The trajectories of 
flocking with different cb . (C) The property of responsivity to stimulus with the evolution of cb in the BEAR-S 
model. (C-(1)) The response accuracy δgroup as a function of cb . (C-(2)) The response time Tturn as a function of 
cb . (C-(3–4)) The trajectories of response to stimulus with different cb . Top = 800 or Tturn = 800 indicate that the 
group is unable to finish the corresponding case within the total simulation time. Each data point represents the 
average of 50 simulation runs with the boxplot. Boxplots in the block divided by the dotted line belong to the 
same data point but are shifted at different positions on the x-axis to be more distinguishable.
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group. As shown in the Fig. 4C-(1–2), the variance of response accuracy δgroup and response time Tturn are both 
high. There is another interesting finding shown in Fig. 3, the informed individual in the front of the group does 
promote the responsivity to stimulus, but it is still unable to transfer the stimulus effectively on occasions. The rea-
son might be that the frontal preference is highly related to the neighbors’ bearing. Thus, the group responsivity 
becomes sensitive to the the initial position of stimulus (i.e., the spatial distribution of the informed individual).

Dynamic‑orientation selection model.  For the DYO-S model, the polarization is not sensitive to the 
increase of co , while the flocking efficiency declines significantly with large selection strength co . As shown in 
Fig. 5A-(1), in non-noise situation, when the selection strength co becomes extremely large ( co ≈ 60 ), the polari-
zation φ declines to 0.65. At the same time, the group is slightly dispersed and keeps the ordered formation 
(Fig. 5B-(1)). As for the flocking efficiency, as shown in Fig. 5A-(2), the convergence time Top rises consistently 
with the increase of co . The decrease of flocking efficiency is due to that the orientation change of each individual 
is lack of discrepancy. The switching of neighbors is driven by the stochastic factor in simulations. The effective-
ness of neighbor selection is heavily reduced, which leads to the blind movement.

In the noise situation, the noise tolerance is impaired by the large selection strength co . According to Fig. 5A-
(3), when the selection strength co is small ( co < 1 ), the group is able to keep the high polarization even with the 
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Figure 5.   (A) The property of flocking as the evolution of co and η in the DYO-S model. (A-(1)) The 
polarization φ as a function of co . (A-(2)) The convergence time Top as a function of co . (A-(3)) The polarization 
φ as a function of noise η . (A-(4)) The convergence time Top as a function of noise η . (B) The trajectories of 
flocking with different co . (C) The property of responsivity to stimulus with the evolution of co in the DYO-S 
model. (C-(1)) The response accuracy δgroup as a function of co . (C-(2)) The response time Tturn as a function of 
co . (C-(3–4)) The trajectories of response to stimulus with different co . Top = 800 or Tturn = 800 indicate that 
the group is unable to finish the corresponding case within the total simulation time. Each data point represents 
the average of 50 simulation runs with the boxplot.Boxplots in the block divided by the dotted line belong to the 
same data point but are shifted at different positions on the x-axis to be more distinguishable.
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noise intensity η = 1.5 . However, with the increase of co , individuals become vulnerable to the noise. As for the 
polarization, the decline tendency shifts from a gradual decrease to a rapid drop as the approximately discontinu-
ous transition manner. The critical noise intensity of the disorder–order transition is decayed from η ≈ 1.5 ( co = 
1) to η ≈ 0.8 ( co = 40). The DYO-S model’s intrinsic mechanism (i.e., identification of the neighbor with a large 
orientation change) is responsible for the significant impairment of the noise tolerance. Individuals suffer from 
the false information (i.e., the wrong alignment direction) under the large selection strength co , which means 
that the group cannot form the ordered movement (Fig. 5B-(2)).

As for the flocking efficiency, as shown in Fig. 5A-(4), with the increase of noise, different selection strength 
co results in the different decline tendencies of flocking efficiency. Specifically, when the selection strength is 
small ( co < 1 ), it is reasonable to find that the convergence time Top maintains an upward trend with the increase 
of noise intensity. Counterintuitively, with the large selection strength ( co ≈ 40 ), the effect of noise on the con-
vergence time Top shows a non-monotonic decline tendency. Interestingly, as shown in Fig. 5A-(4), there is an 
unexpected decrease in the convergence time Top with the noise intensity ( η ∈ [0, 0.5] ). Such promotion of flock-
ing efficiency is mainly attributed to that the neighbor switch becomes more frequent under the noise condition, 
which implicitly expands the interaction range. As shown in Fig. 5B-(3–4), comparing with the condition of 
noise intensity η = 0.1 , the interaction range is expanded by larger noise intensity η = 0.5.

The large selection strength co improves the response accuracy and efficiency to the stimulus. As shown in 
Fig. 5C-(1–2), under the low stimulus intensity ( IFnum = 1 ) and also the increase of co , the response accuracy 
δgroup rises up fast while the response time Tturn decreases significantly. Even if the selection strength is large 
( co > 10 ), the response accuracy δgroup and time cost Tturn remain stable at their optimal values regardless of 
stimulus intensity changes. However, when the selection strength co < 10 , the response accuracy and efficiency 
have two different trends depending on the different levels of stimulus intensity. On the one hand, when the 
stimulus intensity IFnum ≤ 2 , the response accuracy and efficiency increase monotonically to the optimal value. 
On the other hand, with the large stimulus intensity ( IFnum ≥ 3 ), the promotion of responsivity shows a non-
monotonic tendency (i.e., first decreasing and then increasing). For example, when the stimulus intensity IFnum 
is up to 3, it is sufficient for the group to respond under the influence of average interaction ( co = 0 ), as shown 
in Fig. 5C-(3). Since the focal individual takes the limited focus on the neighbor with large orientation change 
( co < 5 ), the influence of average interaction is neutralized and leads to the reduction on responsivity to stimulus 
(Fig. 5C-(4)).

Dynamic‑bearing selection model.  For the DYB-S model, the large selection strength cm leads to the 
decrease in polarization and has an unfavorable effect on the flocking efficiency. In the non-noise situation, 
as shown in Fig.  6A-(1), with the increase of cm , the polarization falls gradually at φ ≈ 0.8 . Meanwhile, as 
shown in Fig. 6A-(3–7), the group disperses laterally as a line-like formation but still forms the ordered move-
ment. According to Fig. 6A-(2), the convergence time Top shows an evident upward trend. When the selection 
strength cm > 20 , the flocking efficiency reaches the lowest level ( Tturn ≈ 500 simulation steps). The reason for 
the decrease in flocking efficiency is that preference on neighbors is changed. Specifically, when the selection 
strength cm is large, the individuals’ preference on neighbors converts from the bearing change to the close prox-
imity. Additionally, when traveling with the same distance, the bearing change is more noticeable for the closer 
individuals, as shown in Fig. 6A-(8). This conversion leads to the regional interaction between individuals. It is 
difficult for the group to keep coherent and achieve the ordered movement efficiently.

In the noise situation, the group that pays more attention to the neighbor with the large bearing change has 
less tolerance on the noise. From Fig. 6B-(1), we can see that the polarization declines from gradually to rapidly 
with the increase of cm . When the selection strength cm is small ( cm < 2 ), individuals are able to keep the high 
polarization and flocking efficiency when the noise intensity η < 1 (Fig. 6B-(1–2)). When the selection strength 
cm is large ( cm > 2 ), polarization and flocking efficiency declines accordingly under the same noise intensity 
( η < 1 ). This is because that the noise affects the neighbors’ bearing perception and confuses individuals during 
the neighbor selection process.

The preference on the neighbor with the large bearing change allows the group to transfer the stimulus 
accurately and efficiently. According to the Fig. 6C-(1–2), even with the low stimulus intensity ( IFnum = 1 ), the 
response accuracy δgroup increases rapidly and the response time Tturn falls sharply as the increase of cm . When 
the selection strength cm > 2 , the response accuracy δgroup and efficiency reaches their optimal value, respectively. 
Moreover, with the increase of stimulus intensity, the responsivity of the group keeps at the optimal level regard-
less of any selection strength cm ( cm > 0 ). The reason for such great responsivity is that the interaction topology 
that emerged in the group facilitates the stimulus transfer. In other words, the interaction topology based on 
bearing change can efficiently spread the directional information within the group.

Discussion
In summary, we analyzed the effect of different featured factors on the collective motion based on the probability 
framework, as it is necessary to get the insight of the selective interaction.

For the flocking, in the non-noise situation, it is important to find that the increase of selection strength 
has a negative impact on the flocking for both transient and dynamic featured factors. In the noise situation, it 
is interesting that the proper noise intensity promotes the flocking quality in both the BEAR-S model and the 
DYO-S model.

On the other hand, the responsivity of different featured factors differs greatly. The information transfer 
by dynamic featured factors (i.e., orientation change, bearing change) is more efficient than that through the 
transient. Generally, the most significant difference between the dynamic and transient featured factors is the 
introduction of the change of neighbor’s state. The dynamic featured factors consider the neighbors’ state at not 
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only a particular moment but also the collection of the neighbor’s state over a period. The dynamic featured fac-
tor represents the gradient of the stimulus. Comparing with the transient featured factors, the dynamic featured 
factors are intrinsically suitable to transfer the stimulus within the group.

According to the simulation results, we found that there is a trade-off between the flocking quality φ (i.e., 
persistence) and the responsivity quality δgroup . Especially for the DYO-S and DYB-S model, the group is bound 
to choose either high flocking quality or high responsivity when they exhibit collective motion. Persistence and 
responsivity are two distinct perspectives of collective motion, which can not be achieved simultaneously. The 
persistent (coordinated) movement is achieved by ruling out deviations from group’s moving direction, which 
demands the overdamped interaction dynamics. However, the responsivity is obtained by spreading fast turns 
across the group, which requires the underdamped interaction dynamics23,31. In this work, our results suggest 
that there may be two possible ways to reconcile this trade-off in the view of selective interaction. For one thing, 
the combination of different featured factors could be an effective solution. As an instance, the DYB-S model 
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Figure 6.   (A) The property of flocking as the evolution of cm in the DYB-S model. (A-(1)) The polarization φ 
as a function of cm . (A-(2)) The convergence time Top as a function of cm . (A-(3–6)) The trajectories of flocking 
with different cm . (A-(3–7)) The illustration of bearing change of neighbor with different distance. When the 
distance d1 < d2 , it is evident to find that θ1 > θ2 if the traveling distance is the same. (B) The property of 
flocking as the evolution of η in the DYB-S model. (B-(1)) The polarization φ as a function of noise η . (B-
(2)) The convergence time Top as a function of noise η . (C) The property of responsivity to stimulus with the 
evolution of cm in the DYB-S model. (C-(1)) The response accuracy δgroup as a function of cm . (C-(2)) The 
response time Tturn as a function of cm . (C-(3–4)) The trajectories of response to stimulus with different cm . 
Top = 800 or Tturn = 800 indicate that the group is unable to finish the corresponding case within the total 
simulation time. Each data point represents the average of 50 simulation runs with the boxplot. Boxplots in the 
block divided by the dotted line belong to the same data point but are shifted at different positions on the x-axis 
to be more distinguishable.
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incorporated with the proper frontal preference (i.e., BEAR-S model) is likely to promote the noise tolerance 
and remain the high responsivity to stimulus. For another thing, featured factors shift in accordance with dif-
ferent tasks. At the beginning of the flocking, it is reasonable to adopt the distance in the collective model for 
its simplicity. In addition, the neighbor’s bearing (i.e., the frontal preference) could be involved to improve the 
noise tolerance in the complex environment. Importantly, when individuals are under stimulus, the featured 
factors of change in orientation and bearing have potential to promote the responsivity of the group. Switching 
the featured factors in the collective model will make it easy to handle different situations.

In this paper, we only involve the single-neighbor interaction in our proposed framework. However, the 
number of selected neighbors is another significant part of the neighbor selection strategy. It has been shown 
that the emergent coordinated movement depends strongly on how many neighbors a focal individual can pay 
attention to in Refs.32–34. To be general, we also conduct some preliminary experiments on the interaction with 
multiple neighbors in the case of flocking. The main conclusions remain consistent with the experiments of 
single-neighbor interaction. The general trend of flocking quality φ and efficiency Top declines with the increase 
of selection strength for any number of selected neighbors. Interestingly, with the increase of the number of 
selected neighbors, the declination trend of flocking quality and efficiency becomes much smoother, which sug-
gests that further analysis is necessary to have a better understanding on the effects of multi-neighbor interaction. 
Additionally, there is no agreement on the number of selected neighbors in the biological swarm, which might 
be different from animal species, e.g., the starling birds usually interact with 6–7 neighbors16, while the interac-
tion in the fish group appears to be restricted to a rather low number of neighbors (one or two individuals)14,18. 
Therefore, we plan to comprehensively investigate the influence of the number of selected neighbors on a robust 
ordered motion in the future.

Data availability
The datasets generated and/or analysed during the current study are available from the corresponding author 
on reasonable request.
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