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ABSTRACT Parasitic protozoan infections represent a major health burden in the
developing world and contribute significantly to morbidity and mortality. These in-
fections are often associated with considerable variability in clinical presentation. An
emerging body of work suggests that the intestinal microbiota may help to explain
some of these differences in disease expression. The objective of this minireview is
to synthesize recent progress in this rapidly advancing field. Studies of humans and
animals and in vitro studies of the contribution of the intestinal microbiota to infec-
tious disease are discussed. We hope to provide an understanding of the human-
protozoal pathogen-microbiome interaction and to speculate on how that might be
leveraged for treatment.
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Unlike for major bacterial and viral pathogens, established and readily available
vaccines do not exist to prevent parasitic protozoan infections. A better under-

standing of the factors that influence immunity to these diseases may provide a
foundation to design novel public health interventions. Transmission of the enteric
protozoa typically occurs through the fecal-oral route. The intestine is densely popu-
lated by commensal bacteria well situated to influence the behavior of the protozoan
parasites with which they directly interact (1). The potential influence of the microbiota
on parasites is not, however, limited to the intestinal protozoa. Protozoa that live in the
blood or tissue of humans may also be affected by the interplay between the gut
microflora and the host metabolism and immune system (1–6). The focus of this review
will therefore be the impact of the human microbiota on the parasitic protozoa that
infect the intestine (Entamoeba histolytica, Giardia, Cryptosporidium, Blastocystis homi-
nis) or vagina (Trichomonas vaginalis) or cause systemic infections (Plasmodium falci-
parum) (7). Changes in the composition of the intestinal microbiota may increase
resistance to infection at mucosal sites, as well as alter systemic immunity to these
parasites (Fig. 1).

PARASITIC PROTOZOANS AND THE SCOPE OF THE PUBLIC HEALTH IMPACT

Worldwide, diarrhea is currently the second leading cause of death in children
younger than 5 years of age and is associated with around 500,000 deaths per year
(8–10). Although diarrhea can be caused by many pathogens, in a large proportion of
cases, the causal organism is a parasitic protozoan (11). In 2010, an estimated 357
million cases of illness with at least one of three enteric protozoa, Entamoeba, Crypto-
sporidium, and Giardia, resulted in 33,900 deaths and the loss of 2.94 million disability-
adjusted life years (12). In a recent study of moderate-to-severe diarrhea in African and
Asian children, Cryptosporidium spp. were some of the top diarrhea-associated patho-
gens (13).

Despite the significant health burden that protozoans cause, infections can be
asymptomatic. For instance, in a Bangladeshi childhood cohort, Entamoeba histolytica,
the causative agent of amebiasis, was found to be associated with diarrhea in only 1 of
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4 infections (14, 15). Cryptosporidium and Giardia infections are also marked by wide
variations in clinical presentation (16–19). Plasmodium infections result in clinical
presentations that range from asymptomatic to severe malaria and result in �1 million
deaths annually. Despite this toll, the factors that determine disease severity remain
poorly understood (20). Host genetics and variation in immune response contribute to
protection from parasites; however, it is increasingly clear that the intestinal microbiota
may have a significant influence on the disease progression of both the enteric
protozoa (1) and blood-borne malaria parasites (4).

INTESTINAL MICROBIOTA

The intestinal bacterial microbiota (21, 22) is a complex community of bacteria
which is comprised of at least several hundred species. These organisms form a
symbiotic relationship that influences human physiology and disease progression (23,
24). Epidemiological studies have shown that the composition of the intestinal bacterial
microbiota can correlate with the development of, or resistance to, obesity (25),
malnutrition (26, 27), and allergic disease (28) and may also influence cognitive function
and development (29). The intestinal microbiota is not limited to prokaryotes (30), with
archaea and eukaryotes potentially contributing to clinical variation (31, 32).

Microbiota compositions can vary significantly from one person to the next (33),
even within healthy individuals or twins in the same household (34). Several studies
have noted that the bacterial microbiota may influence the virulence of individual
pathogens and potentially add variability to the outcomes of parasitic protozoan
infections (1, 22). For example, coculture with Escherichia coli strains can augment or
attenuate the virulence of Entamoeba histolytica (35, 36). Recently reported studies

FIG 1 Host intestinal microbiota and interactions with host and parasite. Changes in the composition
of the intestinal microbiota (image 1) may increase resistance to parasite infection at mucosal sites, such
as the intestine, by mechanisms such as decreased virulence or parasite adherence (image 2). Changes
in the microbiota may also alter systemic immunity to parasites by alteration of granulopoiesis or
adaptive immunity (image 3). A better understanding of the mechanisms underlying microbiota-
mediated protection may help explain clinical variability and help treat parasitic protozoan infections.
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highlight the impact of the microbiota on infections with enteric protozoa and on
infection with extraintestinal Plasmodium parasites.

MUCOSAL PARASITES AND MICROBIOTA INTERACTIONS IN HUMAN
POPULATIONS

Mucosal infection with the enteric protozoa Entamoeba, Giardia, Cryptosporidium,
and Blastocystis can be asymptomatic or cause diarrhea, abdominal pain, and/or weight
loss. The infecting parasites reside in the intestinal mucosa and therefore are sur-
rounded by the mucosa-associated microbiota. It has been proposed that the dynamic
interplay that occurs between the protozoan parasite, host microbiota, and host
immune system shapes the clinical outcome of enteric infections (1, 37).

Infection with the gut parasite Entamoeba was significantly correlated with fecal
microbiome composition and diversity. Entamoeba species infection was predicted by
the composition of an individual’s gut microbiota with 79% accuracy in a study of the
farming and fishing populations in southwest Cameroon (38). One of the most impor-
tant taxa in predicting an infection with Entamoeba was Prevotellaceae. In a separate
independent study focused on the E. histolytica-associated diarrhea that is common in
Bangladeshi infants, levels of Prevotella copri, a member of the Prevotellaceae, were
found to be elevated in patients with diarrheagenic E. histolytica infections (39) (Table
1). The Cameroonian study was focused on infected adults who were not experiencing
symptomatic amebiasis; therefore, it is interesting that both P. copri and Prevotella
stercorea were significantly downregulated in infected individuals (38, 40, 41). Both
studies suggest that microbiota composition may play a significant role during an E.
histolytica infection. These studies also highlight the potential influence of inflamma-
tion driven by the gut microbiome in altering parasite infection outcomes (37, 39).
Elevated levels of P. copri have been associated with severe inflammation and an
increased risk of autoimmune disease and colitis, suggesting that the organism is
proinflammatory (41).

Cryptosporidium, Giardia, Blastocystis, and Trichomonas infections may also be influ-
enced by the gut microbiota. A retrospective study of volunteers who were originally
enrolled in Cryptosporidium infectivity studies (42) examined the relationship between
the relative abundances of several bacterial taxa commonly found in adults prior to or
within 48 h of infection and infection outcomes. The patients that were protected from
infection had a greater abundance of Proteobacteria and lower Bacteriodetes and
Verrucomicrobia levels than infected subjects. There was a higher ratio of Firmicutes to
Bacteriodetes in uninfected subjects than in infected subjects. Seven specific taxa had
differences of at least 2.5-fold between the two groups. Specifically, uninfected subjects
had increased relative abundances of the indole-producing bacteria Escherichia coli
CFT073 and Bacillus spp., as well as Clostridium spp. In contrast, infected subjects had
increased relative abundances of Bacteroides fragilis, Bacteroides pyogenes, and Pre-
votella bryantii, as well as Akkermansia muciniphila (Table 1). Presently, the mechanism
by which increased indole production may protect from Cryptosporidium is unknown.

TABLE 1 Specific components of the microbiota during human protozoan infection

Protozoan Microbiota component Influence Reference

E. histolytica Prevotellaceae Predicted infection 38
E. histolytica Prevotella copri Predicted diarrhea 39
Cryptosporidium Proteobacteria, Firmicutes, Escherichia coli CFT073,

Bacillus spp., Clostridium spp.
Increased relative abundance in Cryptosporidium-negative

subjects
42

G. duodenalis Bifidobacterium Increased relative abundance in Giardia-positive subjects 47
Blastocystis Clostridia, Enterobacteriaceae Increased Clostridia levels but lower Enterobacteriaceae levels

in Blastocystis-positive subjects
50

T. vaginalis Lactobacilli, Mycoplasma, Parvimonas, Sneathia Decreased lactobacilli and increased Mycoplasma,
Parvimonas, and Sneathia abundances in T. vaginalis-
positive subjects

52

Plasmodium
falciparum

Bifidobacterium, Streptococcus Higher proportion of Bifidobacterium and Streptococcus
organisms in a low-infection-risk group

4
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Indole may directly adversely affect the parasite or perhaps alter host tissues to
enhance the innate response by increasing epithelial integrity (43) and/or stimulating
anti-inflammatory pathways (42, 44).

A study of intestinal parasite infection in individuals in southern Côte d’Ivoire
utilizing PCR-temporal temperature gel electrophoresis (TTGE) and quantitative PCR
demonstrated that TTGE profiles clustered into four significantly different groups, i.e.,
groups that are positive for Giardia duodenalis, positive for Entamoeba spp. and
Blastocystis hominis, negative for protozoa, and positive for all three parasites. Quanti-
tative PCR of selected bacterial species in these four groups showed that there was a
significant increase in the relative abundance of Bifidobacterium in G. duodenalis-
positive patients. This study suggested that the tested intestinal protozoans can induce
significant changes in the microbiome which result in substantially different bacterial
communities (Table 1).

The relative abundances of Faecalibacterium prausnitzii and E. coli have been used
as a marker of the inflammatory bowel disease (IBD)-induced dysbiosis associated with
increased E. coli levels (45, 46). Application of this tool to samples from a patient cohort
in Côte d’Ivoire suggested that the Côte d’Ivoire and Cameroonian study results were
in agreement and that an increase in microbiome diversity occurs in asymptomatic
Entamoeba species infections. The Côte d’Ivoire results also suggest that this observa-
tion may be extended and that an increase in microbiome diversity also occurred
during Blastocystis hominis infections (47). It is controversial, however, whether Blasto-
cystis can cause diarrhea (48). Part of the reason for this controversy might be due to
the tremendous genetic diversity within Blastocystis spp. Blastocystis hominis consists of
at least seven morphologically identical but genetically distinct organisms (49). The gut
microbiome which Blastocystis encounters upon infecting a human host may also
influence clinical outcomes. Audebert et al. compared the microbiomes of Blastocystis-
colonized and Blastocystis-free patients in a case-control study design that controlled
for environmental and clinical risk factors, such as seasonal variation (50). The authors
also reported a higher bacterial diversity in the fecal microbiota of Blastocystis-
colonized patients, with a higher abundance of Clostridia as well as a lower abundance
of Enterobacteriaceae (Table 1). These results suggested that Blastocystis colonization
may be associated with expansion of members of the intestinal microbiota generally
associated with a healthy gut microbiota, rather than with expansion of bacteria
associated with gut dysbiosis.

Trichomonas vaginalis, the causative agent of trichomoniasis and an extracellular
parasite of the human urogenital tract, is the most common nonviral sexually trans-
mitted infection globally (51). Women are disproportionally impacted by trichomonia-
sis, with symptomatic infection primarily impacting the vaginal mucosa. Variation in
clinical presentation of disease may be impacted by the composition of the vaginal
microbiota. In a study of the vaginal microbiota of T. vaginalis-positive and T. vaginalis-
negative women, infection was associated with vaginal microbiota consisting of low
proportions of lactobacilli (52) (Table 1). T. vaginalis interactions with various Lactoba-
cillus species inhibit parasite interactions with human cells (53).

In summary, the referenced human studies suggest that there is a strong link
between the composition of the intestinal bacterial microbiota and mucosa-associated
enteric protozoa (Table 1). Future studies are needed to understand the nature of the
connection and how it can be utilized for disease prevention.

PLASMODIUM AND GUT MICROBIOTA

Approximately 60% of the world’s population is at risk of infection with Plasmodium
(54, 55). However, the distribution of clinical malaria is highly heterogeneous. In studies
in Kenya and Senegal, the number of clinical episodes of disease ranged from 0 to 40
per child over a 5-year period in the same community (56, 57). Clinical variation has
been attributed to genetic differences. For example, heterozygous carriers of the
hemoglobin variant HbS, associated with sickle cell disease, are healthy and are
protected from severe forms of malaria, including cerebral malaria (58). Variation in
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exposure and variance in immune response are also implicated. However, these factors
may not completely explain such a large clinical variation (55, 59). The intestinal
bacterial microbiota might represent an environmental factor that may contribute to
this variability.

In a recent study, stool samples were collected from a cohort of Malian children and
adults just before the P. falciparum transmission season (4). The compositions of gut
bacterial communities in these individuals were determined and compared to the risks
of acquiring P. falciparum infection and febrile malaria. A significant association was
found between microbiota composition and the prospective risk of P. falciparum
infection. The intestinal microbiota of subjects who did not become infected had a
significantly higher proportion of Bifidobacterium and Streptococcus species than sub-
jects who became infected with P. falciparum. However, no relationship was observed
between microbiota composition and the risk of developing febrile malaria once P.
falciparum infection was established. The authors note that this is possibly due to a lack
of statistical power. The preliminary finding of an association between gut microbiota
composition and P. falciparum infection risk suggests that alteration of the composition
of the intestinal microbiota may decrease the risk of P. falciparum infection in areas
where malaria is endemic and may potentially augment partially effective malaria
vaccines (4) (Table 1).

Gut bacteria might influence extraintestinal disease via many pathways, such as by
alteration of adaptive immunity and augmentation of the magnitudes of T cells and B
cell-mediated responses and perhaps by enhancement of innate immune pathways via
trained immunity (60). Mechanisms underlying these extraintestinal effects are poorly
understood. Metabolic products, such as short-chain fatty acids (61, 62), or host-derived
factors, such as damage-associated molecular pattern molecules induced by the mi-
crobiota (63, 64), might be partially responsible for these effects. The metabolite pools
present in animal models with differential, microbiota-dependent susceptibility to
Plasmodium infection varied significantly in one study, with decreases in nucleotides,
amino acids, and the substrates involved in the biosynthesis of these compounds in
resistant mice, along with more-robust T and B cell responses (20, 65). The gut
microbiota has also been shown to have a systemic influence on serum metabolites in
both animal models and humans (66, 67). Blood-stage parasites have been shown to be
highly susceptible to metabolic dysregulation induced by antimalarials (68) and might
also be influenced by changes induced by the microbiota. Therefore, the intestinal
microbiota may influence the clinical outcome of a Plasmodium infection via alteration
of the metabolome and modulation of innate or adaptive immunity.

ALTERATION OF THE MICROBIOTA AS A THERAPY FOR PROTOZOAN
INFECTIONS?

Patient cohorts and future microbiome epidemiological studies will establish a more
complete understanding of variation in clinical presentations of infection with parasitic
protozoa. However, population-based studies do not allow us to test the effects of the
microbiota on parasite survival and proliferation. Therefore, in vitro and in vivo disease
models provide a useful tool to understand how the intestinal bacterial microbiota may
influence severity and progression of infection and what mechanisms might underlie
that progression.

In vitro culture models allow interactions between infecting agents and individual
components of the microbiota to be analyzed. A study of the in vitro effects of six
Lactobacillus acidophilus strains and Lactobacillus johnsonii La1 on Giardia duodenalis
survival, for example, demonstrated that L. johnsonii La1 significantly inhibited the
proliferation of Giardia trophozoites. The potential protective role of L. johnsonii La1
(NCC533) was independently confirmed by in vivo experiments with La1-treated gerbils,
which were protected against Giardia infection and mucosal damage (69–71). In
another in vitro study, common human commensal bacteria were cocultured with E.
histolytica. Culture of Lactobacillus casei and Enterococcus faecium alone with amebas
reduced parasite survival by 71%. When both bacteria were used in combination,
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survival was reduced by 80%. A previous study demonstrated a link between decreased
Lactobacillus and amebiasis in Indian patients (72), further supporting a potential link
between these bacteria and resistance to ameba infection.

As mentioned previously, lactobacilli may impact susceptibility to T. vaginalis infec-
tion in women (52). Mechanisms underlying this effect are still being studied; however,
inhibition of adhesion of the parasite might help explain protection. In one study,
adhesion assays were carried out by incubating vaginal epithelial cells (VECs) with T.
vaginalis and lactobacilli together and by comparing levels of parasite adhesion to
nonlactobacillus recipient controls. Lactobacillus gasseri ATCC 9857 and CBI3 caused
significant parasite adhesion inhibition in a dose-dependent manner (53).

Studies such as these may lay the foundation for utilizing individual components of
the microbiota to provide cost-effective prophylactic treatment for parasite infection
without the overuse of antimicrobial agents (Table 1) (73). Unfortunately, current
coculture experiments do not allow us to explore the influence of the host immune
system. Although differences exist between the murine and human gut microbiotas,
murine models provide a powerful tool to explore host-microbiota-pathogen interac-
tions in the context of an active immune system (74).

HOST-MICROBIOME INTERACTIONS AND MUCOSAL PARASITE INFECTION IN
MURINE MODELS

The development of murine models of parasitic protozoan infections has allowed for
more-detailed immunophenotyping of the mammalian host response to changes in the
microbiota and its influence on infectious disease (1, 75). Murine models have also
offered unexpected advancements in our understanding of interactions between the
microbiota and the host due to variation in the communities of bacteria present in
commercial animal vendors facilities, notably segmented filamentous bacteria (SFB) (44,
45, 93). Alteration of the intestinal microbiome in model systems and careful observa-
tion of variation between models in different environments therefore allow for a better
understanding of immune factors that may help explain clinical variation in parasitic
disease.

Variation in the microbiota in commercial animal facilities can result in significant
changes in the progression of inflammatory and infectious diseases (76, 77). A salient
example of this is colonization with a single murine commensal Clostridium SFB (78, 79).
It was observed that C57BL/6 mice from Jackson Laboratories did not have significant
interleukin 17A (IL-17A) induction in their intestinal mucosa but that C57BL/6 mice from
Taconic Farms did (80). This suggested that a difference in the microbiotas of mice
between these two vendors might underlie the difference in cytokine induction. Ivanov
et al. (80), utilizing specific-pathogen-free mice from both vendors and germfree mice,
showed that SFB, which were present in mice from Taconic Farms, were the component
of the microbiota underlying the changes in immune function. Research in murine
models has also shown that the immune response induced by SFB alters the severity of
extraintestinal autoimmune encephalomyelitis (77, 80–82).

Recently, with a murine model of E. histolytica infection, we demonstrated that mice
colonized with SFB are protected from experimental amebiasis (83). In exploring the
responsiveness of immune cells in these mice, it was discovered that bone marrow-
derived dendritic cells (BMDCs) from SFB-colonized mice produced significantly higher
levels of IL- 23. There was also an increase in neutrophils in the intestine, which resulted
only after ameba infection (28). IL-23 is a cytokine (29) linked to induction of IL-17A and
neutrophils, which in turn have been shown to be important in immunity to the ameba
(30, 31). Transfer of BMDCs derived from mice colonized with SFB provided protection
from E. histolytica infection. This work suggested that a gut-associated commensal
might alter the responsiveness of bone marrow-derived cells to subsequent inflamma-
tory challenges (Fig. 2).

In this model of amebiasis, a host damage-associated molecular pattern molecule,
serum amyloid A (SAA) (84) was also increased in the sera of SFB-colonized mice
compared to the level in the sera of mice lacking the commensal. Transient gut
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colonization with SFB or SAA administration alone increased the H3K27 histone de-
methylase Jmjd3 in the bone marrow and persistently increased bone marrow Csf2ra
expression as well as granulocyte monocyte precursors (GMPs), and protected from
ameba infection. Protection was associated with increased intestinal neutrophils (63).
Pharmacologic inhibition of Jmjd3 H3K27 demethylase activity during SAA treatment or
blockade of granulocyte-macrophage colony-stimulating factor (GM-CSF) signaling in
SFB-colonized mice prevented GMP expansion, decreased gut neutrophils, and blocked
protection from ameba infection. These results indicate that alteration of the microbi-
ota and systemic exposure to host SAA can influence granulopoiesis and susceptibility
to amebiasis, potentially via epigenetic mechanisms. Gut microbiota-marrow commu-
nication is a previously unrecognized mechanism of innate protection from ameba
infection (63, 83) (Fig. 1 and 2). The intestinal microbiota likely has significant extraint-
estinal effects on the host immune response to parasites. These changes may be
relatively long term, perhaps via induction of immune memory pathways, such as
trained innate immunity (60), or via influences on adaptive immunity that are yet to be
fully understood.

Antibiotic treatment which disrupts the commensal microbiota is often utilized to
establish infection with pathogens in model systems. Observation of differences be-
tween the immune response in antibiotic-treated mice and untreated mice may
therefore lead to insights into the role of the microbiota in the host response. In a
model of Giardia duodenalis infection, for example, antibiotic alteration of the micro-
biome was shown to prevent CD8 T cell activation by Giardia (6). Giardia-infected mice
that were not treated with antibiotics had more activated CD8� �� T cells in the small

FIG 2 Model of SFB-mediated protection against E. histolytica colonization. SFB (segmented filamentous bacteria) colonization of the intestine
may induce soluble mediators, including SAA, which may increase intestinal immune responses against ameba as well as trigger systemic
epigenetic changes in bone marrow that support more-robust granulopoiesis and protection against intestinal E. histolytica infection. (Repub-
lished with modifications from mBio [83].)
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intestinal lamina propria than uninfected mice. The increase in CD8� T cells was absent
in antibiotic-pretreated, Giardia-infected mice. One potential mechanism is that during
infection, the parasite promotes breakdown of the intestinal barrier. Translocation of
luminal bacteria into the mucosa leads to activation of CD8� T cells; therefore, reducing
the bacterial load by antibiotic treatment may reduce this and prevent pathological
CD8� T cell activation (6).

Giardia duodenalis infections can have a long-term impact on human heath, and the
reduction of host disaccharidases associated with Giardia infections may play an
important role. Disaccharidases are required for the complete assimilation of nearly all
carbohydrates present in food and drinks. The deficiency in disaccharidases has been
thought to result from epithelial damage and shortening of the intestinal epithelial
microvilli. However, in Giardia-infected mice, deficits in disaccharidase can be reversed
by blocking CD8� T cell activation by either CD4 signaling or antibiotic treatment (6).
This study suggests that differences in antibiotic usage and their effects on the human
microbiome might be important factors to consider when evaluating the clinical
outcome of a Giardia infection.

MURINE PLASMODIUM INFECTION AND THE MICROBIOTA

Recently, the influence of the microbiota on Plasmodium infection was explored by
utilizing genetically similar inbred strains of mice (C57BL/6) maintained by different
vendors, Jackson Laboratory, Taconic Farms, the National Cancer Institute/Charles River
(NCI), and Harlan (20). C57BL/6 mice from each of these vendors were infected with
Plasmodium yoelii. Following infection, significant differences in parasitemia were
observed between the genetically identical mice from different vendors, with mice
from Jackson Laboratory and Taconic Farms being resistant to the parasite. Germfree
mice that received cecal transplants from “resistant” or “susceptible” mice had low and
high parasite burdens, respectively, demonstrating that the intestinal microbiota may
shape the severity of malaria. Resistant mice exhibited increased abundances of
Lactobacillus and Bifidobacterium compared to those in susceptible mice. Additionally,
susceptible mice treated with antibiotics followed by probiotics made from these
bacterial genera displayed a decreased parasite burden. Consistently with differences in
parasite burden, resistant mice exhibited an increased antibody profile and increased
CD4� T cells and B cells compared with those of susceptible mice. Therefore, the
composition of the gut microbiota may be an unidentified risk factor for severe malaria
and alteration of the intestinal microbiota might augment the host response to
extraintestinal parasites.

ROLE OF THE PROTOZOAN MICROBIOTA IN INFECTION AND INFLAMMATION

The primary focus of this review has been parasitic protozoa and influences of the
bacterial microbiota on host immunity to these protozoa. However, it is important to
note that an emerging body of work suggests that protozoa may also alter host
immunity to subsequent exposures (30). Fecal-oral ingestion of Giardia cysts leads to
varied clinical syndromes ranging from acute or chronic diarrhea to long-term asymp-
tomatic colonization (16). A recent study of children in Bangladesh showed that
early-life Giardia exposure neither increased nor decreased the odds of acute diarrhea
from any cause. However, Giardia infection was a risk factor for stunting but not poor
weight gain (85). It has also been noted that patients that have been infected with
Giardia often have gut dysfunction well after their infection is cleared (86, 87). Giardia
infection has been associated with protection from diarrhea in other cases (17, 88, 89).
Mechanisms underlying these disparate outcomes in Giardia infection in humans are
not presently well understood. However, recent work in murine models provides a
demonstration of how protozoan infection might provide protection from infection
while exacerbating colitis.

Tritrichomonas musculis is a common murine commensal found in wild mice and
some animal colonies. It has recently been shown to cause expansion of tuft cells, a
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unique epithelial cell subtype important in the generation of type 2 immune responses
(90). This work suggests that commensal protozoa may be important in establishing the
basic structure of the mammalian intestine. The protozoon has also just been shown to
lead to expansion of adaptive Th1 cells and Th17 effector cells in the colonic mucosa.
This expansion was dependent on distinct, migratory DC subsets but also required the
production of IL-18 by epithelial cells. These results together with the high expression
of the IL-18 receptor IL-18R� on colonic-infiltrating effector T cells suggested that T.
musculis-specific T cell immunity is likely initiated in the draining lymph nodes by
migratory colonic DCs and is likely propagated at the tissue site by epithelial IL-18 (91).
Interestingly, T. musculis colonization also conferred significant protection from Salmo-
nella infection-driven enteritis in an IL-18-dependent manner (91). However, coloniza-
tion with T. musculis, along with having a role as a “protistic” antibiotic, exacerbated the
development of T-cell-driven colitis and resulted in the development of sporadic
colorectal tumors in colonized mice. This effect of T. musculis was also observed in an
independent study of murine colitis (92). Combined, these studies revealed novel
host-protozoan interactions that led to increased mucosal host defenses while also
increasing the risk of inflammatory disease.

CONCLUSIONS

Recent studies have highlighted the potential contribution of the intestinal micro-
biome to clinical variation in parasitic protozoan infections. The microbiome and
parasites may interact in various ways, which may include (i) alteration of parasite
virulence, (ii) induction of dysbiosis or perhaps even beneficial shifts in the microbiota
that increase competition for the niche of the lumen of the gut, and finally, (iii)
modulation of host immunity to the parasite. The courses of both mucosal and systemic
parasite infection may also be shaped by specific members of the microbiota, and in
turn parasite infection may alter the microbiota in such a way that the unique signature
can be diagnostic of the presence of the parasite.

The exact mechanisms underlying microbiota modulation of host immunity are not
yet fully understood; however, it is becoming increasingly apparent that components
of the microbiota can alter both innate and adaptive immune cell populations so that
a more robust response is mounted following subsequent challenge with infectious
agents, including parasitic protozoa. Mechanisms underlying this shift might include
the recently described concept of trained innate immunity, in which epigenetic
changes enable innate immune cells to more effectively clear unrelated pathogens, and
by enhancement of adaptive immunity. Ultimately, further exploration of interactions
between the gut microbiome and parasitic protozoans will provide additional tools and
approaches that will help in the diagnosis and treatment of infectious and inflamma-
tory diseases. Study of protozoan interactions with the host immune system and the
microbiota also help us to better understand fundamental mechanisms of mammalian
immunology.
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