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Insulin resistance as a key link for the increased risk
of cognitive impairment in the metabolic syndrome

Bhumsoo Kim and Eva L Feldman

Metabolic syndrome (MetS) is a cluster of cardiovascular risk factors that includes obesity, diabetes, and dyslipidemia.

Accumulating evidence implies that MetS contributes to the development and progression of Alzheimer’s disease (AD); however,

the factors connecting this association have not been determined. Insulin resistance (IR) is at the core of MetS and likely

represent the key link between MetS and AD. In the central nervous system, insulin plays key roles in learning and memory, and

AD patients exhibit impaired insulin signaling that is similar to that observed in MetS. As we face an alarming increase in

obesity and T2D in all age groups, understanding the relationship between MetS and AD is vital for the identification of potential

therapeutic targets. Recently, several diabetes therapies that enhance insulin signaling are being tested for a potential

therapeutic benefit in AD and dementia. In this review, we will discuss MetS as a risk factor for AD, focusing on IR and the

recent progress and future directions of insulin-based therapies.
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Metabolic syndrome (MetS) is a major contributor for the
development of diabetes.1 A subject is diagnosed with MetS
when he/she has central obesity plus any two of four additional
factors, which include elevated triglycerides, reduced high
density lipoprotein (HDL) cholesterol, hypertension, or abnor-
mal fasting plasma glucose. The National Health and Nutrition
Examination Survey study found that MetS affects 34% of
adults in the US.2 The incidence increases with both higher
body mass index (BMI) and advancing age. Insulin resistance
(IR) is a state of decreased responsiveness of target tissues to
normal circulating levels of insulin and is a major feature of
type 2 diabetes (T2D), glucose intolerance, obesity, dyslipide-
mia and hypertension; that is, MetS.3 Both genetic and
environmental factors such as a lack of exercise, obesity,
smoking, stress, and aging affect the development of IR.4

Alzheimer’s disease (AD) is a slow progressing terminal
neurodegenerative disease that can that can remain asympto-
matic for several decades.5 It is the most common form of
dementia, accounting for over 70% of all cases. Aging is the
most definitive risk factor for AD, with the incidence doubling
every five years in the population over 65 years old; 50% of
people over 85 years old are affected by various degrees of AD.
Currently, 5.2 million Americans have AD, and this number is
expected to rise to 16 million by 2050 without a breakthrough
in the treatment and prevention of the disease (http://www.alz.
org/downloads/Facts_Figures_2014.pdf). AD is estimated to

cost American society $214 billion in direct medical expenses;
a cost expected to rise to $1.2 trillion (in today's dollars) in
2050. At the cellular level, the most prominent neuropatholo-
gical features of AD are the appearance of senile plaques
composed of amyloid β (Aβ) peptides and neurofibrillary
tangles (NFTs) derived from the aggregation of the
microtubule-associated protein, tau.6 Clinically, AD is char-
acterized by the loss of memory and other cognitive functions
necessary to perform complex daily activities.5

Multiple studies demonstrate a strong connection between
MetS and the increased risk of AD.7–9 Accumulating evidence
also suggests that AD is closely related to dysfunction of
bothinsulin signaling and glucose metabolism in the brain,
prompting some investigators to refer AD as type 3 diabetes or
an insulin-resistant brain state.10,11 In this manuscript, we will
review recent findings connecting MetS and AD, focusing on
IR as the major link between the two diseases.

METABOLIC SYNDROME AND INSULIN SIGNALING

Insulin plays a critical role in glucose homeostasis by regulating
the balance between glucose production by the liver and
glucose uptake by muscle and adipose tissues. In adipocytes
and myocytes, insulin regulates glucose transport by controlling
the translocation of the glucose transporter, (Glut)4.12 IR has a
rather loose definition, but generally refers to the fact that
tissues do not respond sufficiently to physiological insulin
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concentrations. T2D patients usually have hyperinsulinemia,
and poor insulin sensitivity is a common characteristic of
obesity and hyperlipidaemia.4,13

Insulin initiates its effects by binding to the extracellular α-
subunit of insulin receptor (InsR), resulting in autophosphor-
ylation of the intracellular β-subunit.14 Once activated, the InsR
recruits and phosphorylates intracellular substrates, including
InsR substrate (IRS) family proteins and Shc. Phosphorylated
tyrosine residues on IRS and Shc then recruit downstream
signaling molecules containing Src homology 2 (SH2) domains,
such as the p85 subunit of phosphatidylinositol 3 kinase
(PI3K), which activates Akt-mediated signaling, and growth
factor receptor-binding protein 2 (Grb2), which leads to the
activation of mitogen-activated protein kinase (MAPK) signal-
ing pathway.15

In addition to over 20 tyrosine residues, IRS proteins contain
more than 50 potential serine/threonine phosphorylation sites.
In general, IRS serine/threonine phosphorylation inhibits
insulin signaling by antagonizing tyrosine phosphorylation.15

Increased serine/threonine phosphorylation of IRS-1 acceler-
ates its dissociation from the InsR and downstream signaling
molecules, induces mislocalization, and accelerates its degrada-
tion by the ubiquitin-proteasome pathway. Multiple IRS serine
kinases are activated during IR, resulting in increased IRS
serine phosphorylation and impaired insulin signaling.15

Increased IRS serine phosphorylation in IR states, including
obesity and T2D, are reported in both animal and human
studies.16,17

Akt (Akt1, Akt2, and Akt3), also known as PKB (PKBα,
PKBβ, and PKBγ), is a serine/threonine kinase activated by
PI3K downstream of growth factors and various cellular
stimuli.18 Many molecules involved in Akt signaling are the
key therapeutic targets for the treatment of human diseases,
including T2D and cancer. Akt mediates the bulk of insulin’s
action, including glycogen, lipid, and protein synthesis, cell
survival, and the anti-inflammatory response. Alterations in
Akt activity are one of the key characteristics of IR. Akt2
activation is closely correlated to Glut4 translocation via
insulin-activated PI3K signals in adipocytes,19 and T2D patients
have reduced Akt activation in adipocytes and skeletal
muscle.18 Akt2 knockout mice have impaired insulin action
in liver and skeletal muscle and develop diabetes with
hyperglycemia, hyperinsulinemia, glucose intolerance, and
impaired muscle glucose uptake.18

In contrast to the decrease in PI3K-Akt activity, the MAPK
pathway is relatively unaffected by IR.20 MAPK pathway
activation by insulin signaling is responsible for gene expres-
sion, cell growth, and mitogenesis.4 MAPK acts as an IRS serine
kinase in certain conditions;15 therefore, inappropriate activa-
tion of MAPK may worsen IR by increasing serine phosphor-
ylation of IRS and interfering with insulin signaling.

INSULIN SIGNALING IN THE BRAIN

Insulin, a peptide secreted by pancreatic beta cells, enters the
central nervous system by crossing the blood–brain barrier in a
regulated and saturable fashion, although de novo synthesis of

insulin in the brain is still under debate.21 InsRs are widely
expressed in the brain, including in the olfactory bulb, cerebral
cortex, hippocampus, hypothalamus, and amygdala.22 InsRs are
more concentrated in neurons relative to glial cells and are
especially high in post-synaptic densities.22

Brain insulin signaling plays critical roles in the regulation of
food intake, body weight, reproduction, and learning and
memory.23 Intranasal insulin administration improves working
memory in both human and animal studies,24 and intrahippo-
campal delivery of insulin improves hippocampal-dependent
spatial working memory.25 In addition, InsR mRNA and
protein levels are increased in the hippocampus CA1 region
in association with short-term memory formation after a
spatial memory task,26 suggesting that neuronal insulin sensi-
tivity could be enhanced during learning.

Disruption of insulin signaling, however, makes neurons
more vulnerable to metabolic stress, thus accelerating neuronal
dysfunction. Defective insulin signaling is associated with
decreased cognitive ability and the development of dementia,
including AD.27 Poor cognitive performance in diabetes and
AD are associated with a decrease in InsR expression and
cerebrospinal fluid (CSF) insulin levels.28,29 A recent study
demonstrated decreases in the phosphorylation of similar
insulin signaling molecules in both AD and T2D patient brains,
and this decrease was more severe in the brains of the patients
with both AD and T2D.30 Decreased insulin signaling, includ-
ing altered kinase activity and IRS expression, in AD gets worse
with disease progression,31,32 and increased basal IRS-1 phos-
phorylation, a key signature of IR, is evident in the AD brain.33

Interestingly, the brain regions with the highest densities of
InsR, such as the hippocampus and temporal lobe, are also the
major targets of neurodegeneration in AD.34–36 Therefore,
impaired insulin signaling caused by IR can have a profound
effect on cognitive decline and the development of AD.

METS AND AD

Multiple studies report that patients with MetS have an
increased risk of developing AD compared to age- and
gender-matched controls, and accumulating evidence suggests
that AD is closely related to dysfunction of both insulin
signaling and glucose metabolism in the brain, prompting
some investigators to refer AD as type 3 diabetes, or an insulin
resistant brain state.10,11 The incidence of both T2D and
dementia rise in later life, increasing the prevalence of the
comorbidity of these age-related diseases. Indeed, T2D predicts
cognitive decline in older adults37 and is related not only to
vascular dementia (VD), but also to AD.32 One of the
pioneering epidemiological studies about the connection
between T2D and dementia is the Rotterdam study,38 which
demonstrates that T2D almost doubles the risk of dementia
AD; interestingly, people who were insulin-treated (therefore,
with more severe diabetes) at baseline were at the highest risk.
Another study on a Japanese-Hawaiian cohort further showed
a 1.5-, 1.8-, and 2.3-fold increased risk of total dementia, AD,
and VD, respectively, for people with diabetes.39 The Religious
Order Study demonstrated a 65% increased risk of AD among
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T2D patients.40 Among the diabetes-related factors, higher
levels of 2-hour post-load plasma glucose, fasting insulin, and
homeostasis model assessment-estimated IR (HOMA-IR) were
associated with increased risk for senile plaques after adjust-
ment for age, sex, systolic blood pressure, total cholesterol,
BMI, habitual smoking, regular exercise, and cerebrovascular
disease.8 A detailed analysis of 14 high quality longitudinal
studies from MEDLINE and EMBASE searches41 further
demonstrates that individuals with T2D have a greater than
two-fold increased risk of developing AD compared to
individuals without T2D, adjusted for age, sex, education,
and vascular risk factors (including a history of stroke,
hypertension, and heart disease). The duration of diabetes is
also a risk factor for increased cognitive decline, and this may
be related to the length of exposure to high levels of insulin
combined with the severity of disease.42 The converse is also
true, as patients with AD are also more likely to develop
diabetes. The Mayo Clinic AD Patient Registry reveals that 80%
of AD patients have either T2D or an impaired fasting glucose
level.43

Animal studies also demonstrate the connection between
diabetes and AD. We have reported that db/db mice, a model
of T2D, exhibit age-dependent increases in tau phosphorylation
and cleavage.44,45 Inducing type 1 diabetes (T1D) and IR by
streptozotocin (STZ) treatment or by feeding with a high fat
diet (HFD) in AD animal models exacerbates both amyloid and
tau accumulation.46,47 High-fat and high carbohydrate diet
feeding of AD rats significantly increased hyperphosphorylated
tau and total tau mRNA compared to rats with T2D or AD
alone, and there was also a significant difference in spatial
memory deficits between AD and AD+T2D groups.48

Obesity is a pathologic state defined by an excessive
accumulation and maintenance of adipose tissue. BMI is a
simple index of weight-for-height that is commonly used to
classify overweight and obese adults (kg m−2). Worldwide,
obesity has nearly doubled between 1980–2008, with ~ 35%
and ~ 11% of adults currently overweight or obese, respectively
(http://www.who.int/mediacentre/factsheets/fs311/en/). In the
United States, the epidemic is even worse; 35% of adults and
15% of children were obese in 2010 and 80% of obese
individuals are insulin resistant.49,50 Obesity has been asso-
ciated with several processes related to the acceleration of
aging, including the excessive production of free radicals,
oxidation, and inflammation.51 Visceral adipose tissue is a
metabolically active endocrine organ, and dysfunction in this
organ is responsible for increased plasma free fatty acids
(FFAs).51 The inappropriate accumulation of lipids in muscle
and liver due to abnormal fatty acid metabolism is one of the
main features of IR. Visceral fat is also infiltrated with
inflammatory cells and secretes proinflammatory cytokines,
such as interleukin 6 and tumor necrosis factor-α,52 which are
implicated in the development of IR. Furthermore, these
proinflammatory cytokines produced by adipocytes can cross
the blood-brain barrier (BBB) and induce neuroinflammation
and subsequent neurodegeneration.53,54 Increased inflamma-
tion induces accelerated Aβ deposition and/or decreased

clearance53 and facilitates the polymerization of tau.55 FFAs
also increase tau phosphorylation through astroglia-mediated
oxidative stress.56

Midlife obesity (measured by BMI) consistently demon-
strates a strong and independent association with late-onset
dementia and AD.57 In a 30 year longitudinal study involving
6583 members of Kaiser Permanente of Northern California,
central obesity (sagittal abdominal diameter) alone doubled the
risk of dementia after adjusting for age, sex, race, education,
marital status, diabetes, hypertension, hyperlipidemia, stroke,
heart disease, and medical utilization.58 Studies examining later
onset obesity, however, have generated mixed results. In the
Cardiovascular Health Study, which involved people 65 years
or older, underweight individuals (BMIo20) had an increased
risk of dementia (hazard ratio [HR]= 1.62), whereas obese
individuals (BMI430) exhibited a reduced risk (HR= 0.63)
relative to normal BMI controls.59 Another study found a
decreased risk of dementia with higher BMI in subjects over 76
years old, and BMI and dementia further exhibited a U-shaped
correlation in individuals younger than 76 years.60

Similar results have been observed in animal studies. Rats fed
with diets high in saturated or unsaturated fat for 3 months
display impairments in learning and memory tasks,61 and mice
fed with a HFD have impaired spatial working memory, as
assessed by a T-maze.62 Furthermore, brains of HFD-fed mice
exhibit dysfunctional Akt signaling and increased IRS serine
phosphorylation, a marker of IR, and mice fed with a high fat/
high cholesterol diet display increased APP C-terminal frag-
ment accumulation63 and increased tau phosphorylation.64

These results suggest that obesity-induced peripheral IR alters
central insulin signaling and leads to AD-like cognitive
impairment.

Dyslipidemia is an important component of IR. Because
insulin plays a critical role in lipid metabolism by stimulating
lipogenesis and suppressing lipolysis, perturbations in insulin
signaling lead to accelerated lipolysis and increased production
of FFAs.65 Approximately 30% of total body cholesterol is
contained in the brain; therefore, slight changes in lipid
metabolism may have profound effects on cognitive function.
Cholesterol is the key component of the plasma membrane,
and the processing of APP into Aβ occurs in the plasma
membrane.66,67 The interaction between cholesterol and APP
in the plasma membrane is critical for Aβ production and
clearance. In Tg2576 AD mice, a high-fat/high-cholesterol diet
significantly increased the production of Aβ,68 and cholesterol
lowering drugs reduced this brain amyloid load by more than
two-fold.69 Lowering cholesterol levels in vitro also stimulates
non-amyloidogenic processing of APP, thereby reducing Aβ
production.70

A meta-analysis of 18 prospective studies ranging from 3–29
years revealed a consistent association between high midlife
total cholesterol and an increased risk of AD and dementia.71

Interestingly, no evidence was found to support an association
between total cholesterol later in life and AD. Cohorts of the
Seven Countries Study by a Finnish group concluded that high
serum total cholesterol is an independent risk factor for AD,72
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while another Finnish study further demonstrated that high
midlife cholesterol levels are positively connected with an
increased risk of AD later in life.73 Further, a retrospective
cohort study of members of the Kaiser Permanente Medical
Care Program of Northern California showed that midlife
cardiovascular risk factors including smoking, hypertension,
high cholesterol, and diabetes are all positively connected with
increased dementia in later life, with diabetes and high
cholesterol being the strongest risk factors.74 Despite these
findings, however, the connection between cholesterol and
dementia is still complex and inconclusive, as some studies
show no correlation, and others even demonstrate a protective
role for cholesterol.75,76

IR AND TAU

Abnormal phosphorylation of tau has been implicated as a
mechanism of AD pathophysiology since the mid-1980s.77

Tau is commonly regulated by post-translational modi-
fications, including phosphorylation, glycation, glycosylation,
sumoylation, O-GlcNAcylation, and cleavage.78 In AD, tau is
abnormally phosphorylated at its over 80 serine/threonine
residues, which leads to the aggregation of tau filaments,
appearing as NFTs, in cell bodies and proximal dendrites.
Several kinases, including glycogen synthase kinase-3 beta
(GSK3β), cyclin-dependent kinase 5, MAPK, and microtubule
affinity-regulating kinases, and phosphatases, such as protein
phosphatase 2A, are responsible for tau phosphorylation.78

These kinases and phosphatases are the targets of insulin
regulation.78–80 As in peripheral tissues, IR mostly affects
PI3K-Akt signaling in the brain, and chronic hyperinsulinemia
prevents insulin-stimulated Akt phosphorylation in cortical
neuron cultures.81 Increased basal Akt phosphorylation is also
present in the cortex of T2D db/db mice, and ex vivo insulin
stimulation could not increase cortical Akt phosphorylation as
it did in non-diabetic control mouse (db+).81 GSK3β is one of
the key signaling molecules downstream of Akt82 and is a
major tau kinase. Impaired insulin signaling results in
aberrant GSK3β activation and increased tau phosphorylation
and accumulation.81 Therefore, the precise regulation of
Akt signaling is critical for both amyloid and tau
neuropathology in AD.

Impaired glucose metabolism due to IR can affect tau
pathology via the dysregulation of O-GlcNAcylation. Similar
to phosphorylation, O-GlcNAcylation is a dynamic post-
translational modification involving the attachment of
N-acetyl-D-glucosamine (GlcNAc) moieties to the hydroxyl
group of serine and threonine residues.83 O-GlcNAcylation is
affected by nutrients in circulation, especially glucose;84 there-
fore, the accumulation of excess energy associated with obesity
and IR can result in the dysregulation of O-GlcNAcylation.
Furthermore, in some cases, O-GlcNAcylation may occur at or
near the residues that can also be phosphorylated.85 Tau has at
least 12 O-GlcNAcylation sites which are mostly inversely
correlated with phosphorylation status.83 Recent reports
demonstrate that reduced brain glucose metabolism and
O-GlcNAcylation leads to increased tau phosphorylation in

both in vivo and in vitro models.86 Conversely, increased
O-GlcNAcylation prevents pathological tau accumulation.87

Thus, the failure of proper insulin signaling can promote the
accumulation of neurofibrillary tau, disrupt neuronal cytoske-
letal networks and axonal transport, and lead to a loss of
synaptic connections and progressive neurodegeneration.

Abnormal phosphorylation of IRS-1 is also a pathological
feature of AD. A recent study examining 157 human brain
autopsies demonstrated that IRS-1 serine phosphorylation is
increased in multiple sites in AD, and in other tauopathies such
as Pick’s disease, corticobasal degeneration and progressive
supranuclear palsy.88 Furthermore, increased IRS-1 serine
phosphorylation was frequently co-expressed with pathologic
tau in neurons and dystrophic neurites.88 Similar results were
observed in transgenic PS19 tau mouse brains, where abnor-
mally increased IRS-1 serine phosphorylation co-localized with
tangle-bearing neurons.89 Conversely, inducing IR by feeding
mice a HFD increased tau phosphorylation and impaired
insulin signaling,62,64,90 and high fat-feeding of animal models
of AD exacerbated the pathologies. After 23 wk on HFD,
APPswe/PS1dE9 mice displayed severe hyperinsulinemia along
with increased tau phosphorylation, Aβ levels, and amyloid
burden.91 HFD-feeding from an early age in THY-Tau22 mice
also potentiated spatial learning deficits and significantly
increased tau phosphorylation,92 and direct disruption of
insulin signaling by inducing T1D using STZ93 or IRS-2
knockout94 increased tau pathology. In addition, STZ injections
in pR5 tau transgenic mice greatly increased insoluble hyper-
phosphorylated tau and the later deposition of NFTs, features
not observed in control pR5 mice.47 Together, these results
suggest that IR accelerates the onset and increases the severity
of AD, especially in situations with a predisposition to
developing tau pathology.

IR AND AΒ
Brain insulin signaling plays a critical role in the regulation of
food intake, body weight, reproduction, and learning and
memory,23 and defective insulin signaling is associated with
decreased cognitive ability and the development of dementia
and AD.27 AD is characterized by improper expression and
processing of APP and the accumulation of insoluble neuro-
toxic Aβ into subsequent senile plaques. Studies show that
insulin signaling regulates multiple steps of the amyloid cascade
and affects Aβ aggregation in the brain. Insulin increases the
transcription of anti-amyloidogenic proteins, such as the
insulin-degrading enzyme (IDE) and α-secretase, and stimu-
lates Aβ clearance.95 While GSK3β is the major tau kinase,
GSK3α increases Aβ production by stimulating γ-secretase
activity.96 Constitutively active Akt inhibits APP trafficking and
Aβ secretion through feedback inhibition of IRS and PI3-K.97

APP is modified by O-GlcNAc in a region that may affect its
degradation, and a recent report demonstrated that O-GlcNA-
cylation of APP encourages non-amyloidogenic α-secretase
processing, thus decreasing Aβ secretion.98

Conversely, Aβ can affect insulin signaling by competing
with or reducing the affinity of insulin binding to its own
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receptor or by regulating intracellular signaling. Soluble Aβ
binds to the InsR in hippocampal neurons to inhibit receptor
autophosphorylation and subsequent activation of PI3K/Akt,99

and Aβ derived diffusible ligands (ADDLs) induce the
abnormal expression of InsR and interrupt insulin signaling,
thereby potentially contributing the development of central
IR.100,101 In addition, Aβ inhibits insulin signaling by c-Jun
N-terminal kinase (JNK)-mediated increases in IRS serine
phosphorylation.89 Intracellularly, Aβ prevents the interaction
of pyruvate dehydrogenase lipoamide kinase isozyme 1 (PDK1)
with Akt to inhibit Akt activation.102 Therefore, a feed-forward
interaction between impaired insulin signaling and increased
Aβ production exacerbates AD pathology in the presence of IR.

In a recent cross-sectional study of the Wisconsin Registry for
Alzheimer’s Prevention that included187 late middle-aged adults,
higher IR levels were connected with increased amyloid deposi-
tion, as measured by Pittsburgh compound B uptake.103 Indu-
cing IR in rats using fructose-containing water also enhanced Aβ
production by increasing the expression of β-secretase, stimulat-
ing γ-secretase activity, and decreasing IDE levels.104 In cultured
primary cortical neurons, insulin reduced Aβ buildup by
enhancing the conversion of oligomers to monomers and also
prevented Aβ oligomer-induced synaptic toxicity at the level of
both synapse composition and structure.105 In contrast, inhibit-
ing InsR activity by transfecting a kinase-dead mutant receptor
or a tyrosine kinase inhibitor increased Aβ oligomer aggrega-
tion;105 similar results were obtained through either InsR knock-
down or PI3K pathway inhibition.106 Thus, dysfunctional insulin
signaling due to IR accelerates amyloid pathology, both in
human and animal models.

In summary, peripheral MetS induces central IR in the
brain. The resulting impaired insulin signaling, which mainly
impacts the PI3K/Akt pathway, then increases APP processing/
Aβ levels and tau phosphorylation. Finally, increased Aβ further
disrupts insulin signaling to exacerbate AD pathology and
cognitive decline (Figure 1).

INSULIN SIGNALING AS A THERAPEUTIC TARGET OF

AD

Given the close correlation between brain IR and cognitive
impairment, therapeutic approaches using anti-diabetic drugs
to improve insulin levels or signaling have been tested to treat
AD. In rats, intracerebroventricular (icv) administration of
insulin improved spatial learning and memory107 and reversed
STZ-induced cognitive decline,108 and intranasal delivery of
insulin reduced HFD-induced tau phosphorylation, whereas
subcutaneous injection only had a minimal effect.109 Although
systemic insulin infusion demonstrated beneficial effects on
memory,110 it is not a viable long-term option for AD patients
due to adverse hypoglycemic effects, including cognitive deficits
and neuronal death.111 Intranasal delivery of insulin, however,
is a safe and effective alternative to increase CSF insulin
concentrations without affecting systemic insulin and glucose
levels, and studies have demonstrated the beneficial effects of
intranasal insulin on memory function.24 Intranasal insulin
delivery for 8 wk improved delayed word recall test in

cognitively normal young adults,24,112 and a single-dose intra-
nasal insulin administration improved verbal memory in
subjects with AD and mild cognitive impairment (MCI).113

In a subsequent study, chronic intranasal insulin for 21 days
resulted in enhanced declarative memory and selective atten-
tion performance in early AD patients.114 Intranasal insulin
also increased plasma Aβ40/Aβ42 ratios, suggesting decreased
amyloid pathology levels.114 Likewise, daily intranasal insulin
treatment for 4 months in 104 adults with early AD or
amnestic MCI also improved delayed memory and preserved
caregiver-rated ability to carry out daily functions.115 These
studies provide compelling evidence that intranasal insulin may
be a promising novel therapeutic approach for early AD and
MCI patients; however, it should also be noted that some
studies suggest that intranasal insulin treatment is effective only
in individuals with ApoE-ɛ4-negative genotypes.113,116

Thiazolidinediones (TZDs), rosiglitazone, and pioglitazone
are ligands for peroxisome proliferator-activated receptors
(PPARs), a family of nuclear receptors that regulate the
transcription of genes involved in lipid and glucose
metabolism.117 TZDs have been used as an anti-diabetic drug
since the 1990s due to their beneficial effects on glucose
homeostasis, which include increasing insulin sensitivity, redu-
cing blood glucose levels and improving lipid metabolism. A
number of animal and clinical studies further suggest that
TZDs improve cognitive function by enhancing insulin action.
Early treatment with PPAR agonists effectively prevented icv-
STZ-induced neurodegeneration and its associated learning
and memory deficits,118 and rosiglitazone similarly improved
learning and memory and reduced IDE mRNA levels in
Tg2576 AD mice.119 Chronic treatment with rosiglitazone also

Figure 1 MetS and AD Aβ/tau pathology may act in a feed-forward
mechanism to accelerate AD pathology in the presence of IR.
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facilitated Aβ clearance, reduced amyloid plaques, decreased
tau phosphorylation, and improved cognitive function in AD
mouse models,120,121 and pioglitazone prevented IR and Aβ
overproduction that are associated with fructose-drinking in
rats.104 Some studies, however, show inconsistent results
depending on gender and/or genotype of the selected animal
models.122,123

Likewise, there are mixed results from human clinical trials
with TZDs. An early study demonstrated that mild AD or
amnestic MCI patients who received rosiglitazone for 6 months
exhibited better delayed recall and selective attention,124 and
rosiglitazone protected cognitive decline in older individuals
with both T2D and MCI.125 Similar to intranasal insulin
treatment, the effect of rosiglitazone was effective only on the
individuals with ApoE-ɛ4-negative genotypes.126 More recent
follow-up studies show disappointing results with rosiglitazone.
A multicenter trial proved no effect of rosiglitazone on brain
atrophy or cognitive function in AD patients,127 and two large
phase III clinical trials also demonstrated no evidence of
clinically significant efficacy in cognition or global function,
regardless of ApoE-ɛ4 genotype.128,129 Pioglitazone has pro-
duced similarly mixed results. Two prospective randomized
open-labelled studies demonstrated that pioglitazone induced
cognitive and functional improvements and stabilization of the
disease in the individuals with mild AD and MCI with
T2D.130,131 However, another study evaluating the safety of
pioglitazone as the primary outcome exhibited no significant
treatment effect on cognition after 6 months of treatment in
non-diabetic AD patients.132

Incretins, glucose-dependent insulinotropic peptide (GIP)
and glucagon-like peptide-1 (GLP-1), are a group of gastro-
intestinal hormones secreted by intestinal epithelial cells in
response to food intake that can affect whole body glucose
utilization.133 GLP-1 receptors are widely expressed throughout
the body, including in the pancreas, intestines, heart, and lungs,
and in both the central and the peripheral nervous system.134

The activation of GLP-1 receptors leads to the facilitation of
glucose utilization and antiapoptotic effects in various
organs,135,136 and two long-lasting GLP-1 analogues, exenatide
(Byetta) and liraglutide (Victoza), are approved for the treat-
ment of T2D. More importantly, GLP-1 can readily cross the
BBB and enhance insulin signaling in the brain.137,138 There-
fore, GLP-1 analogues are an attractive therapeutic approach to
improve IR in AD and in T2D because they can activate
pathways common to insulin signaling and facilitate brain
synaptic plasticity, cognition, and cell survival.139,140

Excendin-4 prevented glucose-induced tau hyperphosphor-
ylation or Aβ-mediated toxicity in cultured neurons,141,142 and
subcutaneous injection of liraglutide for 30 days reduced icv-
STZ-induced tau hyperphosphorylation and significantly
improved learning and memory in mice.143 Two months of
liraglutide injections in APP/PS1 mice reduced plaque load,
APP and Aβ oligomer levels, and overall inflammation and
increased IDE levels.144 Furthermore, long-term potentiation
was significantly enhanced and liraglutide also improved
cognitive function, as measured by novel object recognition

and Morris water maze tests. Liraglutide not only has a
protective effect at an early stage of AD (7 mo),145 but it is
also able to reverse AD-related changes in older (14 mo) APP/
PS1 mice.144 Moreover, liraglutide reduced tau phosphoryla-
tion and restored Akt and GSK3β phosphorylation in a HFD-
induced model of T2D in rats.146 Other GLP-1 analogues
demonstrated similar beneficial effects on AD pathologies and
cognitive function in AD mouse models.147–149

Although the first small clinical trial of liraglutide in AD
patients did not lead to any improvement in cognition or
changes in Aβ deposition, as measured by Pittsburgh com-
pound B PET,150 a recent clinical trial of exenatide in
Parkinson’s disease patients demonstrated clinically relevant
improvements in motor and cognitive measures.151 Currently
two additional clinical trials are in progress with exenatide
(http://clinicaltrials.gov/ct2/show/NCT01255163?term) and lir-
aglutide (http://clinicaltrials.gov/ct2/show/NCT01843075?term)
in MCI and early AD patients, and completion is estimated in
2016 and 2017, respectively.

CONCLUSION

Recent evidence supports the contention that AD may be a
slow-progressing brain metabolic disease, and numerous stu-
dies demonstrate an intricate connection between MetS and
AD. Individuals with MetS features, such as T2D and obesity,
have a higher risk of developing AD, while AD patients often
develop hyperglycemia and IR. IR due to impaired insulin
signaling is a common characteristic of both MetS and AD, and
likely represents the key link between the two diseases. Insulin
signaling regulates Aβ and tau, and Aβ has negative effects on
insulin signaling; therefore, dysfunctional insulin signaling can
enhance Aβ and tau pathology, and increased Aβ production
can further exacerbate IR. Thus, several diabetes treatments
that enhance insulin signaling are being tested for therapeutic
potential in AD and dementia, and even though the results
from the TZD clinical trials were disappointing, intranasal
insulin and GLP-1 analogues are still being actively pursued as
a potential treatments for AD and have exhibited some
promising results. Intranasal insulin, however, is only effective
in early AD and MCI patients, and individuals with the ApoE-
ɛ4 allele do not respond well. In addition, exenatide and
liraglutide are still in the early stages of therapeutic develop-
ment, and large clinical trials are currently in progress.

Effective AD and MCI treatment demands the development
of specific biomarkers to support the diagnosis of these
conditions as early as possible. Currently, total tau, hyperpho-
sphorylated tau, and Aβ40/Aβ42 ratios in the CSF exhibit over
80% specificity as biomarkers of AD.152,153 Continued research
to discover the precise mechanism of how IR contributes to the
onset and progression of AD, is also imperative for the
development of improved therapeutic interventions. Given
the current obesity epidemic among all ages and increased life
expectancy, there is a critical need to understand the under-
lying causes of cognitive impairment due to IR, which may be
the key link for the increased incidence of AD in individuals
with metabolic disorders.
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