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Abstract: The material characteristics and properties of transition metal dichalcogenide (TMDCs) have
gained research interest in various fields, such as electronics, catalytic, and energy storage. In particular,
many researchers have been focusing on the applications of TMDCs in dealing with environmental
pollution. TMDCs provide a unique opportunity to develop higher-value applications related to
environmental matters. This work highlights the applications of TMDCs contributing to pollution
reduction in (i) gas sensing technology, (ii) gas adsorption and removal, (iii) wastewater treatment,
(iv) fuel cleaning, and (v) carbon dioxide valorization and conversion. Overall, the applications of
TMDCs have successfully demonstrated the advantages of contributing to environmental conversation
due to their special properties. The challenges and bottlenecks of implementing TMDCs in the actual
industry are also highlighted. More efforts need to be devoted to overcoming the hurdles to maximize
the potential of TMDCs implementation in the industry.

Keywords: transition metal dichalcogenide (TMDCs) nanomaterials; layered materials; nanocatalysis;
gas cleaning; catalysis; pollution reduction; emission control

1. Introduction

Transition metal dichalcogenides (TMDCs) are a large family of two-dimensional (2D) layered
materials, which are scientifically interesting and industrially important. These materials have
attracted tremendous attention because of the unique structural features and interesting properties,
such as optoelectronics, electronics, mechanical, optical, catalytical, energy-storage, thermal, and
superconductivity properties [1–7]. TMDCs are the compounds of the chemical formula MX2, where
M is a transition metal element of groups IV-VII B (Mo, W, V, Nb, Ta, Ti, Zr, Hf, Tc, and Re) and X is
a chalcogen element (S, Se, and Te). The X-M-X unit layer consists of three atomic layers, in which
one centre atom layer (M) is sandwiched between two chalcogen atom layers (X). TMDCs occupy the
layered structures, which resemble that of graphite. The interlayers are stacked by weak van der Waals
force, leading to the formation of monolayers or nanolayers from the bulk materials via exfoliation [8].

Nanomaterials 2020, 10, 1012; doi:10.3390/nano10061012 www.mdpi.com/journal/nanomaterials

http://www.mdpi.com/journal/nanomaterials
http://www.mdpi.com
https://orcid.org/0000-0002-2988-8053
https://orcid.org/0000-0003-3275-845X
https://orcid.org/0000-0002-0969-9167
http://dx.doi.org/10.3390/nano10061012
http://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/2079-4991/10/6/1012?type=check_update&version=2


Nanomaterials 2020, 10, 1012 2 of 33

Different stacking of the layers along c-axis determines polymorphic crystal structures in TMDCs, and
the common phases are 1T, 2H, 3R, and Td phases (T—trigonal, H—hexagonal, R—rhombohedral, and
Td—distorted octahedral) [9].

There are more than 40 different TMDC types, including metals (such as TiS2 and VSe2),
superconductors (such as TaS2 and NbS2), semimetals (such as MoTe2 and WTe2), and semiconductors
(MoS2, MoSe2, WS2, and WSe2). TMDCs exhibit interesting band structures with tunable bandgaps.
The bandgap is one of the most important factors in 2D materials for determining the properties and
applications. For instance, graphene is a semimetal with zero bandgap, which limits its applications
in electronics and photo-electronics. TMDCs exhibit variable bandgaps from 0 to 3 eV, which can be
tuned by thickness [10], defects [11], dopants [12], and mechanical deformations (by applying the
tensile strain or compressive strain) [13,14]. The most studied semiconducting TMDCs (e.g., MoS2,
MoSe2, WS2, and WSe2) have shown typical features in electronic structures. The bandgap increases
with the decreasing thickness and it possesses the transition from indirect in the bulk crystals to direct
in the monolayers [10,15]. For instance, the indirect bandgap of −1.29 eV will be changed to a direct
bandgap of −1.8 eV when bulk MoS2 is down to a monolayer [16].

Benefiting from their unique crystal structures and electronic structures, TMDCs have shown
great potential in various fields, including electronics/optoelectronics [1,17], catalysis [18], energy
storage [19] and conversion [20], sensing [21,22], and so on. The application of TMDCs in pollution
reduction is a compelling research topic. The increasing environmental pollution issue has been one
of the most serious problems on Earth. Enormous efforts have been made to search the efficient
and low-cost methods for addressing the environmental pollution issue. TMDCs may be a kind
of promising materials for tackling these problems with several advantages. Firstly, TMDCs have
a high surface-to-volume ratio. They offer more effective active sites on the surface, as well as
abundant unsaturated surface sites. Thus, the layered TMDCs are excellent platforms for the anchor
of semiconductor nanoparticles in various photocatalytic applications [23,24]. Due to their high
surface-to-volume ratio, TMDCs are extremely sensitive to the surrounding atmosphere and can
be utilized in toxic gas sensing and adsorption. Secondly, TMDCs have tunable bandgaps, which
enhances the photocatalytic performance in nanocomposite by offering appropriate bandgap and band
alignment [25]. Thirdly, defect engineering can be easy to implement in 2D materials, which have
been confirmed to be an efficient method for intensifying the catalytic activities in TMDCs [26–29].
Lastly but importantly, there is a large variety for TMDCs (about 40 kinds) and they have an abundant
amount in nature or can be synthesized [9]. So far, MoS2, WS2, MoSe2, and ReS2 have been naturally
found [30–32]. Specifically, MoS2 exists as molybdenite in nature and is the main source of molybdenum
with a large amount [33]. The main metals (W and Mo) in TMDCs are both abundant, cheap, and
widely used in industry [34]. TMDCs can be prepared by using various techniques, such as chemical
vapor deposition (CVD) [35,36], chemical vapor transport (CVT) [37,38], flux growth method [39],
hydrothermal synthesis [40], Langmuir−Schaefer deposition [41], etc. In addition, the top-down
exfoliated method can be also used to fabricate few-layer TMDCs from bulk crystals, e.g., mechanical
exfoliations and liquid phase exfoliations [42–44]. With increasing interests in TMDCs for applications,
we aim to prepare an overview of the recent progress of TMDCs in reducing the environmental
pollution. We will summarize the representative efforts, including gas adsorption and removal, gas
sensing, wastewater treatment, fuel cleaning, CO2 valorization, and conversion.

2. Gas Adsorption and Removal

In recent years, TMDCs have been used as gas removal (via adsorption) in pollution reduction.
Figure 1 presents the number of research articles that involved the use of TMDCs in gas adsorption
applications. The increasing trend (the total number of related articles published in the year 2019
is more than three-fold than that of the year 2015) indicates the potential of TMDCs in gas removal
processes. Based on the bibliology search, MoS2 is still the most widely studied TMDCs among the
TMDCs considered in this review. However, researchers started to realize that there are other TMDCs
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(e.g., MoSe2 and WS2) that offer better performances as compared to MoS2 (e.g., greater charge storage
ability [45]). This further led to a gradual increase in research articles that studied the use of other
potential TMDCs, since the year 2018. Figure 2 outlines the schematic diagrams of each gas adsorption
process. In general, the mechanism of these adsorption processes is mainly driven by the charge
transfer process between the adsorbates and the TMDCs-based adsorbent, where the charge movement
is dependent on the nature of the gas adsorbate (i.e., oxidizing or reducing) [46]. For instance, carbon
monoxide (CO) in Figure 2a is an example of reducing gas. Due to the existence of lone pair on
the carbon atom, CO will donate electrons to the TMDC surface, which further cause the CO to be
chemisorbed on the surface. Whereas, oxidizing gas such as nitrogen dioxide (NO2) in Figure 2c, will
uptake the electron from the surface instead (mainly due to the existence of unpaired electron on the
nitrogen atom). To note, such electron movement will lead to the deviation in electrical conductivity of
the TMDC materials [47]. The following subsections discuss various gas adsorption processes.
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Elsevier B.V., 2020.
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2.1. Adsorption of Carbon Monoxide (CO)

Carbon monoxide (CO) is by far the most hazardous greenhouse gases, which is 210 times easier to
bind with hemoglobin as compared to the oxygen [49]. To date, numerous studies have discovered the
use of TMDCs as a catalyst to adsorb CO and further convert it into other products via catalytic reaction.
For instance, Li et al. [50] proposed the use of aluminum oxide-doped MoS2 as the nanocatalysts to
promote the CO methanation process (CO + 3H2 → CH4 + H2O) and enhance the stability of this
catalytic reaction (MoS2 with 25.6% of Al2O3 provides the greatest methanation stability). The schematic
diagram of this process is shown in Figure 2a. The incorporation of metal-based promoters, in this
case, Al2O3 powder has effectively reduced the aggregation effect between MoS2 (lower tendency to
pore blockage) [50]. Aside from that, researchers also adopted the density functional theory (DFT)
calculation to explore the theoretical potential of each TMDC as the alternative catalyst for CO oxidation
(CO + O2 → CO2 + O) and CO dissociation. For instances, studies showed that metal-doped MoS2

(e.g., Au29, Cu, Ag, Co, Rh, Ni, Ir, and Fe [51–53]) can significantly enhance the O2 dissociation (which
is the essential step for CO oxidation). On the other hand, the latter five mentioned metals possess the
greatest potential as they favor CO dissociation [52]. More recently, application of other TMDCs (e.g.,
Pt and Au nanoclusters with WSe2, where the carbon atom in CO will be strongly adsorbed on the
Pt/Au decorated WSe2 monolayer [54]; Rh-doped MoSe2 [55]), in CO adsorption have also been carried
out. Since CO dissociation is the first step of the Fischer–Tropsch process [56], the aforementioned
TMDC-based nanocatalysts can be served as the substituent cheap and stable catalyst to convert CO
into other valuable liquid hydrocarbons.

2.2. Adsorption of Water Vapor (H2O)

Water vapor (H2O) is the largest contributor to the current global warming issue (i.e., roughly
accounted for 60% of the entire warming effect [57]). Numerous works have proposed the use of
TMDC-based nanocatalysts to convert H2O into clean hydrogen (H2) via hydrogen evolution reaction
(HER) (see Figure 2b). In general, hydrogen atoms in H2O will be adsorbed on the active site of the
HER nanocatalysts. With the aid of the doped metal, the dissociation of the O–H bond in H2O is
enhanced. The gas is then desorbed as H2 [58,59]. This can mitigate the warming effect attributed to
the water vapor content in the atmosphere, and at the same time, serves as an alternative greenway for
hydrogen production. The past two decades ago, MoS2 was referred to as one of the most prominent
alternatives to substitute the conventional HER catalysts [60]. Nevertheless, the commercialization
of TMDC-based HER nanocatalysts is still hindered due to various technical challenges (e.g., poor
HER stability under acidic conditions [61,62] and weak intrinsic conductivity [63]). Numerous works
have discovered ways to enhance the HER performance of MoS2. Just to name a few, these works
proposed to improve the HER activity by (i) coating the MoS2 with metals (e.g., palladium [64],
aluminum [65], gold [66], platinum [67], etc.); (ii) using a novel electrochemical approach to deposit
the MoS2 nanosheet [68]; (iii) introducing the use promising support for the MoS2 nanoparticles (e.g.,
multi-wall carbon nanotubes [69]); (iv) varying the choice of dispersion media used [70]; and (v)
coupling with other electrocatalysts (e.g., molybdenum carbide [71]). On the other hand, some
researchers also proposed the use of other TMDCs in HER applications. For instance, Wang et al. [72]
proposed to use a low-cost MoSe2 nanosheet, which offers decent active sites for HER activity and
better HER performance as compared to the aforementioned MoS2-based catalysts. On the other hand,
Seok et al. [73] have reported the intrinsic activity for HER on MoTe2 nanosheet via the first-principle
calculation and scanning tunneling microscopy (STM) study. Besides, numerous researchers also
successfully developed promising WS2-based and WSe2-based electrocatalysts recently (e.g., Te–WS2

nanosheet by Pan et al. [74]; and Ni-WSe2 nanosheet by Kadam et al. [75]).
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2.3. Adsorption of Carbon Dioxide (CO2)

Aside from water vapor, carbon dioxide (CO2) is another key contributor to climate change
issues (accounting for more than 75% of the total emitted greenhouse gases [76]). To address this
issue, some researchers have attempted to apply MoS2 nanosheets as an effective membrane [77] and
adsorbent [78,79] to separate CO2 from the gaseous mixture. Sun et al. [78] reported that the adsorption
force between CO2 and MoS2 varies according to the strength of the applied electric field. Generally,
CO2 will adsorb on the surface when an electric field is applied and desorb when the electric field
is relieved (see Figure 2d). This unique feature makes it become a potential carbon capture media.
In addition to the carbon capture process, TMDCs can be modified so that the captured CO2 can be
catalytically converted into other CO2-reduction products. Shi et al. [80] were the first to discover
the potential of copper modified MoS2 nanosheets in the CO2 reduction process. The incorporation
of Cu nanoparticles has enhanced the adsorption capability as CO2 can now be adsorbed not only
on the MoS2 nanosheets but also on the doped metal nanoparticles [80] (see Figure 2d). This work
found that most of the CO2 was converted into CO (i.e., faradaic efficiency (FE) = 33–41%), followed
by methane (FE = 7–17%) and with a trace amount of ethylene (FE = 2–3.5%) [80]. More recently,
a research project in Korea has discovered the potential of a composite catalyst that encompasses
MoS2 nanosheets and n-type Bi2S3, in the CO2-to-CO photoreduction process [81]. DFT calculations
of various modified-TMDC nanosheets (e.g., SnO2-loaded MoS2 nanosheet [82]; TiO2-doped MoS2

nanosheets [83]) for the CO2 reduction process were also conducted recently. Nevertheless, the research
on the potential of other TMDCs in CO2 adsorption is still considered scarce. To date, only a few have
discovered their potential for the CO2 sensor [84,85].

2.4. Sulphur Content Removal

Based on the air quality data observed by the NASA Ozone Monitoring Instrument (OMI) satellite,
about 60% of the total sulphur emissions in 2018 were anthropogenic emissions [86]. Despite the
recent advancement in renewable energy and air treatment technologies have reduced the global
sulphur emissions (sulphur emissions in 2015 is about 30% less as compared to that of 1990 [87]),
the health impact of sulphur content in the atmosphere can still be severe. Thus, the sulphur emissions
(including SO2, H2S, etc.) must still be monitored and controlled closely. Wei et al. [56], based on
the DFT simulation, have explored the adsorption performance of SO2 and H2S on the Ni-doped
MoS2 monolayer material. To note, due to the large number of free electrons offered by the doped
metals, the overall adsorption capability of the TMDC-based adsorbents are, therefore, gradually
enhanced [88]. This study is then extended by other researchers, by testing the effect of other doped
metal atoms (e.g., palladium [89], platinum [90], gold [89], and copper [91]). All these studies show
that the metal-doped MoS2 monolayer materials can offer promising adsorption properties to SO2

and H2S gases, where both gases are chemisorbed on the surface with strong interactive forces.
Similarly, various DFT studies have also been conducted to study the potential of using metal-doped
MoSe2 nanosheets (e.g., rhodium-doped MoSe2 monolayer material [55] and palladium-doped MoSe2

monolayer material [92]) and WSe2 nanosheets (e.g., N-doped TiO2/WSe2 nanocomposite [93] and
silver-doped WSe2 monolayer material [94]) in sulphur content removal applications. Dan et al. [95],
on the other hand, studied the photocatalytic H2S splitting (H2S→ H2 + S) on the proposed novel
composite catalysts, MnS/In2S3-MoS2 based on first-principles calculations. This is an attractive
and cost-effective way to generate clean H2 that can substitute conventional coal-derived hydrogen
production [96]. In other words, this also indirectly contributes to pollution mitigation. The schematic
diagram for the aforementioned sulphur removal process is shown in Figure 2e, where the desorption
process can be conducted by altering the operating conditions (e.g., temperature and pressure).
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2.5. Nitrogen Oxide (NOx) Removal

Nitrogen oxide (NOx) has adverse effects on human health and ecosystems. To date, numerous
works have revealed the potential of applying TMDCs for NOx removal purposes. Notably, a novel
Cu2O-anchored MoS2 nanocomposite developed by Yuan et al. [97], can achieve up to 53% NOx

removal. In another research conducted in China, a similar NO removal rate (about 51%) can also
be obtained using the MoS2-g-C3N4 nanocomposite [98]. In the same year, Xiong et al. [99] managed
to develop a novel (BiO)2CO3/MoS2 photocatalysts that could achieve 50% NO removal for five
consecutive cycles. The study was extended by incorporating the use of carbon nanofibers into
nanocomposites fabrication [100]. The developed Bi2O2CO3-MoS2-CNFs nanocomposites can attain
almost 70% of NO removal rate. Under visible light irradiation, the oxidative power offered by the
nanocomposites is sufficient to oxidize the NOx into NO3− (see Figure 2c). Besides, first-principle
studies were also conducted to determine the metal-doping effects on the adsorption capabilities
on MoS2 (e.g., (vanadium, niobium, tantalum)-doped MoS2 [101]), MoSe2 (e.g., palladium-doped
MoSe2 [92] and rhodium-doped MoSe2 [55]), and WSe2 [102] monolayer materials to NOx gases.

3. Gas Sensing for Pollution Reduction

Gas pollution is commonly caused by direct greenhouse gases (CO, CO2, N2O, CH4, Fluorinated
Gas, etc.) [103], indirect greenhouse gases (NH3, NOx, H2S, etc.) [104], and other traces of toxic
gases. These gas pollutants may cause climate change, ozone pollution, and even threaten food
security [105] Further adverse effects that are caused by these problems include reduced photosynthesis
performances [106], increased chances of respiratory problems [107], and acid rain [108].

Gas sensing can be deployed in multiple locations to act as an environmental monitoring
system [109]. More recent applications of gas sensing products include gas monitoring using
drones [110], wearable gas sensing devices [111], and the internet of things (IoT) multi-gas sensing
modules [112]. For gas sensing TMDC-material in the device, the most common working principle is
for adsorption of gas particles towards the TMDCs for a charge transfer, giving a change of resistivity in
material, then desorption from the TMDCs [113]. In this field, researchers are constantly searching for
TMDC materials that can provide a very low limit of detection (LOD), high sensitivity, short response
and recovery time [114–116].

3.1. NOx Detection

NOx detection by TMDCs has received much research interest due to its effectiveness and
applicability. The measurement of NOx in environmental monitoring is a common requirement [117]
while the design of a perfect NOx sensor poses some challenges. Traditional SnO2 sensors have
problems with the dual response towards oxidizing gases and reducing gases, giving low sensitivity
when performing measurements in a multi-gas environment [118]. The selectivity of the gas between
NO2 and NO is also a crucial challenge for NOx sensors [119].

A popular TMDC material for NO2 detection is MoS2 [113,120,121]. Earlier works [121] used
CVD-grown MoS2 to detect NO2 gas at room temperature with LOD down to parts per billion (ppb)
ranges, however, the recovery time was long. Consequently, a higher temperature was used to
accelerate the desorption kinetics of the NO2 gas molecule [113,120]. Other researchers also created
nanocomposites of TMDCs with materials such as graphene aerogel [122] and reduced graphene oxide
(rGO) [123] to improve sensitivity and lower LOD. Pham et al. [115] used a red-light illumination to
provide photon energy, which matches the bandgap of the MoSe2 sensor. The technique resulted in
low LOD (25 ppb) in room temperature conditions with high sensitivity. Moreover, Liu et al. [114]
synthesized a flower-like porous SnS2 NSs with edge exposed MoS2 nanosphere, which resulted
in a very fast response time of 2 seconds. Group-10 noble TMDCs such as PtSe2 has also received
much research attention due to their widely tunable bandgap and excellent performance in gas
sensing [124]. From a first-principle study, Sajjad et al. [125] discovered that monolayer PtSe2 exhibited
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lower adsorption energy than MoS2 and graphene. For this, Yim et al. [126] used thin films of PtSe2

stacked on Si to achieve NO2 detection down to 9 ppb. Other TMDC materials such as WS2 [122] and
MoTe2 [127] also showed that they have excellent NO2 sensing properties, and more research work is
to be expected for different transition metals. A collection of NO2 sensing TMDC materials is tabulated
in Table 1.

Table 1. NO2 sensing TMDC materials and their performances.

Material Target Gas LOD Condition Remarks

MoS2/graphene hybrid
aerogel [120] NO2 50 ppb RT to 200 ◦C Response and recovery time < 1 min.

WS2 with AgNW
functionalization [128] NO2 25 ppm 100 ◦C 667% response compared to pristine

4L WS2 sensor.
MoS2 [121] NO2 20 ppb RT Sensitivity of 194%/ppm
MoS2 [129] NO2 120 ppb RT, 100 ◦C Peak to valley sensitivity > 50%.
MoS2 [115] NO2 25 ppb RT (with red light) Sensitivity of 3300%/ppm.
rGO/MoS2

nanocomposite [123] NO2 5.7 ppb 60 ◦C Over 55% sensing response for NO2
at 8 ppm

ZnO/MoS2 [130] NO2 200 ppb
RT (with

monochromatic
light)

Sensitivity at 29.3%/ppm, response
time of 4.3 min, recovery time of

1.2 min.

SnS2/MoS2 [114] NO2 25.9 ppm RT Response time of 2 s and recovery
time of 28.2 s.

MoSe2 [131] NO2 300 ppm RT Response time of 20 min and recovery
time of 30 min.

MoSe2 [116] NO2 10 ppm RT (with UV light) Response time <200 s.
WS2/WO3 composite

film [132] NO2 100 ppb 150 ◦C Response time of 70 s and recover
time of 120 s.

WS2/graphene aerogel
[122] NO2 10-15 ppb RT Response time of 70 s, recovery time

of 300 s. (2 ppm)

MoTe2 [127] NO2 20 ppb RT (with UV of 2.5
mW/cm2)

Response time of 120 s with response
of 18%.

PtSe2 [126] NO2 0.9 ppb RT Response time of 1 s and recovery
time of 4 s

Although NO and NO2 are sometimes measured as total NOx, many academic studies require
differentiation between NO from NO2 [133,134]. A distinct property between the two gases is that NO
is a colorless gas while NO2 is reddish-brown in color [135]. Due to its reduced electron valence in NO,
first-principle studies demonstrated that the adsorption energy of NO to be slightly higher than that of
NO2 [136]. Nevertheless, the binding of NO with MoS2 is still considered one of the strongest in many
gas molecules including CO, CO2, NH3, CH4, H2O, N2, O2, and SO2 [136]. This computational finding
was verified by a few experiments that successfully detected NO with MoS2 materials down to the
ppm level [137–139]. Although there is not much research work that focuses on NO detection, it is
demonstrated to give promising performances using TMDC material (see Table 2).

Table 2. NO sensing TMDC materials and their performances.

Material Target Gas LOD Condition Remarks

MoS2 deposited
onto Si/SiO2 [137] NO 0.8 ppm RT 80% decreased response at 2 ppm.

MoS2 [138] NO 100 ppm RT, 50 ◦C, 100 ◦C
(with UV light)

Response and recovery time below 600 s.
Response at 25.63%.

UV-ozone treated
MoS2 [139] NO 20 ppm 125 ◦C Stability issue over 120 ppm. Poor recovery.

WOx/WSe2
hybrid [140] NO 0.3 ppb RT Response time of 250 s, S/N ratio > 10,

sensitivity of 520%/ppm

3.2. Ammonia Detection

Ammonia is an indirect greenhouse gas, as it is quickly soluble by water vapor or rain in the
atmosphere and goes down to the land to be readily used as fertilizers by plants [141]. The lifespan
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of this alkaline and reactive gas in the atmosphere is short, around 1 day [142]. Nevertheless, direct
exposure to ammonia gas from its emission source can still cause health issues to humans [143]. Gases
such as NO2 are electron-accepting, while NH3 donates electrons to the TMDCs surface [113] to give a
change of resistivity in the material (see Figure 3a,b). Due to their different adsorption mechanism,
NO2 and NH3 are two flagship gases to study the generic effect of gas sensing [113,144,145].
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Many works have also indicated that TMDC materials have excellent properties to act as excellent
ammonia gas sensors [145]. For example, Cho et al. [146] used a 2D graphene/MoS2 heterogeneous
structure to improve the sensitivity of the sensor towards gas molecules. Burman et al. [139] studied
the effect of vacancy sites on MoS2 sensors and proposed a UV-treated sensor that can be synthesized
from powder. Other TMDC materials such as MoTe2 [147] and WS2 [148] also showed performances of
being able to detect ammonia gases down to ppm levels. Even artificial neural networks were used to
post-process signals from TMDC ammonia gas sensors to improve gas concentration predictions [144].
A few of the significant works of applying TMDC materials as ammonia gas sensors are found in
Table 3.

Table 3. Ammonia gas sensing TMDC materials and their performances.

Material Target Gas LOD Condition Remarks

MoSe2 [149] NH3 50 ppm RT Response time of 2.5 min,
recovery time of 9 min.

Graphene/MoS2
[146] NH3 5 ppm 150 ◦C Response time < 10 min, Recovery

time < 30 min.

WS2 [148] NH3 50 ppm RT Response time of 200 s, recovery
time of 232.3 s.

MoS2 [121] NH3 1 ppm RT Response time 5–9 min, recovery
time < 15 min.

UV-treated MoS2
[139] NH3 100 ppm RT Response time of 7 min,

Recovery time of 12 min.

MoTe2 [147] NH3 2 ppm RT
Over 95% recovery using gate

biases of 0 V and 20 V. Response
time 10 min, recovery time 20 min.

MoS2/Co3O4 [150] NH3 0.1 ppm RT Response time is 98 s, recovery
time is 100 s.

PMMA-MoS2 [151] NH3 1 ppm RT Sensitivity of 54%, response time
of 10 s, recovery time of 14 s.

MoS2/VS2 [152] NH3 5 ppm 40 ◦C Recovery and response time both
< 5 min.

3.3. Volatile Organic Compound (VOC) Detection

Volatile organic compounds (VOC), commonly known as aromatic hydrocarbons fractions, are
organic chemicals that have high vapor pressure in atmospheric conditions. VOC are studied to be
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emitted in landfills [153], newly renovated buildings [154], industrial refineries [155], and other leakage
sources. Long-term exposure to VOC can lead to dysfunction of central nervous systems, memory loss,
and cause congenital anomalies for reproduction [156]. VOC sensors are important for environmental
detection [154], industrial emission control [157], and even for cancer diagnosis [158].

The challenge of designing sensors for VOC is that VOC is not a single gas molecule but can consist
of multiple molecules (such as benzene, ethylene glycol, formaldehyde, etc.) with slightly different
properties. Barzegar et al. [159] represented the VOC molecule behavior by using xylene isomers
and methanol, showing high potential for adsorption between VOC molecules and a Ni-decorated
MoS2 sensor. A thiolated ligand conjugate MoS2 sensor was also shown to exhibit excellent sensitivity
down to a concentration of 1 ppm [160]. The work represented VOC by studying a combination of
toluene, hexane, ethanol, propanal, and acetone gas molecules while demonstrating the conjugation
of thiolated ligand improves the charge carrier density of the sensor (see Figure 4). A recent work
from Tomer et al. [161] demonstrated that a cubic Ag(0)-MoS2 loaded g-CN 3D porous hybrid had
multifunctional abilities towards sensing VOC by studying n-butanol, isopropanol, benzene, and
xylene gas molecules. Short response time and recovery time of 7–15 s and 6–9.5 s respectively were
obtained for all VOC molecules at 175 ◦C. Zhao et al. [162] presented an optical VOC microsensor
using a photonic crystal cavity integrated with MoS2. VOC molecules of acetone, methanol, ester,
dichloromethane, and methylbenzene were studied and the optical microsensor resulted in a LOD of
2.7 ppm, response time of 0.3 s, and recovery time of 100 s.
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Figure 4. (a) Gas sensing mechanism for volatile organic compounds (VOC); toluene, hexane, ethanol,
propanal, and acetone) gas molecule on primitive MoS2 surface and (b) improved VOC sensing
performance by Mercaptoundecanoic acid (MUA)-conjugated MoS2 due to increased charge carrier
density (Reproduced with permission from [160]. Copyright 2014 American Chemical Society).

3.4. Detection of Sulphur Gases and Other Gases

The unique properties of TMDC materials also showed many preliminary potentials for the
detection of sulphur gases and other emissions. Chen et al. [163] demonstrated from density functional
theory (DFT) that MoS2 monolayers exhibit great adsorption energy towards SF6 decomposition (which
includes SO2, SOF2, SO2F2, H2S, and HF). The adsorption of SF6 decomposition by monolayer PtSe2

was also studied by DFT methods and found to give excellent adsorption energies [164]. Park et al. [165]
experimentally demonstrated that a Pt nanoparticle decorated MoS2 gas sensor can achieve high
sensitivity detection of H2S down to 30 ppm. Recent work from Yang et al. [166] demonstrated that Ni-
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and Cu-embedded MoS2 monolayers can improve the adsorption energy of SOx and O3 molecules
compared to that of the pristine MoS2.

TMDCs also demonstrate adsorption and sensing ability for CO gas. The work of Ma et al. [167]
studied the potential of sensing CO and NO gas molecules by doping metal particles on MoS2

monolayer. The doping of Au, Pt, Pd, and Ni has shown to alter the transport property of MoS2, giving
better adsorption energy for CO and NO gas detection. Recently, Yang et al. [91] presented a strategy
of using Ti doping and the application of an electric field to improve adsorption energies in MoSe2

and MoS2 materials. The work concluded that Ti doping strategy improved the sensitivity of both
materials towards CO and NO gas detection. Another recent work from Shen et al. [168] provided a
study of using a borophene/MoS2 heterostructure to detect small gas molecules (CO, NO, NO2, and
NH3), which exhibited different resistive properties towards these molecules when changing voltage
direction (see Figure 5). Modulation of MoS2 by antisite doping and strain also showed improved
gas detection sensitivity [169]. Ma et al. [170] studied the effects of defects on WSe2 monolayer sensor
and found that Se vacancies can improve sensing ability of H2O and N2 molecules. Further interest
gas detection also extends towards Cl2, PH3, AsH3, BBr3, and SF4 gas molecules on MoS2 [171]. More
materials will be expected to be discovered for gas detection applications in the future.
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Figure 5. (a) Direction-sensitive borophene/MoS2 heterostructure for multiple climate gas detection.
Sensitivity and directional bias voltage of (b) CO, (c) NO, (d) NO2, and (e) NH3 in the horizontal and
vertical direction (Reproduced with permission from [168]. Copyright 2020 Elsevier B.V.).

4. TMDC Materials for Wastewater Treatment

The United Nations has highlighted that 80% of wastewater is released back to the environment
without sufficient treatment [172]. The effect of industrial development and human activities has
released many pollutants into the water. The major water pollution sources come from various source
such as industry waste [173], sewage and wastewater [174], oil leakage [175], chemical fertilizer and
pesticides [176], and mining activities [177]. These pollutants require high oxygen for oxidation
decomposition, which reduces the dissolved oxygen level in the water that will damage the aquatic
ecosystem [178]. Wang et al. [179] reviewed that many technologies including adsorption, ion
exchange, membrane filtration, chemical precipitation, and electrochemistry have been widely used
in water treatment. Despite the application of various technologies, quality water supply remains
unsustainable [180]. Many researchers have reported promising outcomes with the application of
nanomaterial such as TMDC-based material in water treatment technology [181].
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4.1. Adsorption for Wastewater Treatment

Among wastewater treatment technologies, the adsorption is considered the most inexpensive,
fast and simple operation method [182]. Recently, researchers are focusing on the application of
TMDC-based material in adsorption technology. That MoS2 nanosheet is used in the adsorption process
mainly due to its large surface area, excellent chemical and thermal stability and environmentally
friendly [183]. Many application of TMDC-based material has been successfully demonstrated with
an effective outcome including the removal of methyl orange [184], Rhodamine B (RhB) [185], and
Congo Red [186]. Li et al. [187] stated that the application of MoS2 adsorbent can increase the
adsorption capacity in removing organic dye. An alternative facile oxidation strategy was proposed
by Li et al. [182] to synthesize tungsten disulphide/tungsten trioxide (WS2/WO3) heterostructures
to remove RhB molecules from wastewater (see Figure 6a). This strategy has contributed to higher
adsorption capacity through manipulating the surface property. Massey et al. [188] further added
that the hierarchical microsphere of MoS2 nanosheets has demonstrated high adsorption capacity
with 297, 216, and 183 mg/g of methylene blue, rhodamine 6G, and fuchsin acid dye respectively
as compare to conventional absorbent such as activated carbon. Most importantly, the hierarchical
microsphere of MoS2 nanosheets can be regenerated effectively without affecting the performance of
adsorption capacity.

Nanomaterials 2020, 10, x FOR PEER REVIEW 11 of 34 

 

pesticides [176], and mining activities [177]. These pollutants require high oxygen for oxidation 

decomposition, which reduces the dissolved oxygen level in the water that will damage the aquatic 

ecosystem [178]. Wang et al. [179] reviewed that many technologies including adsorption, ion 

exchange, membrane filtration, chemical precipitation, and electrochemistry have been widely used 

in water treatment. Despite the application of various technologies, quality water supply remains 

unsustainable [180]. Many researchers have reported promising outcomes with the application of 

nanomaterial such as TMDC-based material in water treatment technology [181]. 

4.1. Adsorption for Wastewater Treatment 

Among wastewater treatment technologies, the adsorption is considered the most inexpensive, 

fast and simple operation method [182]. Recently, researchers are focusing on the application of 

TMDC-based material in adsorption technology. That MoS2 nanosheet is used in the adsorption 

process mainly due to its large surface area, excellent chemical and thermal stability and 

environmentally friendly [183]. Many application of TMDC-based material has been successfully 

demonstrated with an effective outcome including the removal of methyl orange [184], Rhodamine 

B (RhB) [185], and Congo Red [186]. Li et al. [187] stated that the application of MoS2 adsorbent can 

increase the adsorption capacity in removing organic dye. An alternative facile oxidation strategy 

was proposed by Li et al. [182] to synthesize tungsten disulphide/tungsten trioxide (WS2/WO3) 

heterostructures to remove RhB molecules from wastewater (see Figure 6a). This strategy has 

contributed to higher adsorption capacity through manipulating the surface property. Massey et al. 

[188] further added that the hierarchical microsphere of MoS2 nanosheets has demonstrated high 

adsorption capacity with 297, 216, and 183 mg/g of methylene blue, rhodamine 6G, and fuchsin acid 

dye respectively as compare to conventional absorbent such as activated carbon. Most importantly, 

the hierarchical microsphere of MoS2 nanosheets can be regenerated effectively without affecting the 

performance of adsorption capacity. 

  

Figure 6. (a) Facile oxidation strategy to prepare a flower-like WS2/WO3 heterostructure for adsorbing 

RhB from wastewater (Reproduced with permission from [182]. Copyright 2020 MDPI AG CC-BY 

Figure 6. (a) Facile oxidation strategy to prepare a flower-like WS2/WO3 heterostructure for adsorbing
RhB from wastewater (Reproduced with permission from [182]. Copyright 2020 MDPI AG CC-BY
4.0). (b) Bifunctional cetyltrimethylammonium bromide (CTABr)-coated MoS2-decorated Fe3O4

nanoparticles using pH to alter adsorption properties between Cr(VII) and Cr(III) in wastewater
(Reproduced with permission from [189]. Copyright 2017 American Chemical Society CC-BY-NC-ND
Under ACS AuthorChoice). (c) A superhydrophobic/superhydrophilic MF@MoS2 sponge for water/oil
separation (Reproduced with permission from [190]. Copyright 2017 Elsevier B.V).
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Kumar et al. [189] concluded that the synthesis of MoS2 with magnetic nanoparticles can be
effective adsorption material especially in removing heavy metal such as chromium. The efficiency of
chromium removal is highly dependent on the pH of the solution and the adsorption of Cr(VII) and
Cr(III) can be selected by changing the pH (see Figure 6b). Besides that, the regeneration of absorbent
does not reduce the efficiency of chromium uptake significantly.

On top of that, the CeO2-MoS2 hybrid magnetic biochar (CMMB) also exhibits a strong magnetic
ability to remove lead(II) (Pb(II)) and humate from water treatment [191]. The CMMB can remove >99%
of Pb(II) and humate within 6 h. The application of MoS2/thiol-functionalized multiwalled carbon
nanotube (SH-MWCNT) has also displayed high adsorption capacity for heavy metal removal [177].
However, the spent adsorbent can be further used for photocatalytic and electrochemical applications.

Furthermore, the synthesized MoS2-coated melamine-formaldehyde (MF@MoS2) sponges that
exhibit a superhydrophobic and superhydrophilic characteristic (see Figure 6c) demonstrated a highly
selective adsorption capacity [190]. The MF@MoS2 sponges have high absorption performance for
oil and organic solvent and water-soluble dye. It also exhibits high discoloration efficiency of 98%
methyl orange within 10 min. Wan et al. [192] added that the MF@MoS2 can be modified from room
temperature vulcanized silicon rubber.

4.2. Membrane Technology in Wastewater Treatment

In water treatment systems, the typical microporous membrane pore size is about 0.1–5 µm, which
limits membrane technology on water purification [179]. The development of nanoporous membranes
exhibited high filtering performance in dealing with most of the pollutants inducing microbes, organic
molecules, heavy metal, and salts.

Heiranian et al. [193] highlighted that the single-layer MoS2 membrane with a full Mo pore
(see Figure 7a) exhibited 88% of ion rejection. The work also demonstrated that the water flux was two
to five orders of magnitude greater than other known nanoporous membranes. This technology is
crucial to replacing the reverse osmosis (RO) membrane, especially in water desalination processes.
Later, Kou et al. [194] discussed that a 0.74 nm nanopores in monolayer MoS2 membranes should be
compatible with Debye screening length for the electrostatic interaction and lesser than the mean free
path of molecules in water. Recent work from Kozubek et al. [195] proposed using irradiation with
highly charged ions (HCIs) to create pores in MoS2. They found that pore creation efficiency has a
linear relationship with potential energies for pore radius of 0.55–2.65 nm. Kozubek et al. [195] added
that the HCI method has parallel writing capabilities, giving a high potential for mass production.
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nanosheets intercalated membrane for removal of dyes and salts (Reproduced with permission
from [196]. Copyright 2020 Elsevier B.V.).
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In the application of water desalination, Ma et al. [196] stated that the synthesis of MoS2/GO
membrane resulted in an enhanced water flux (from 8.83 to 48.27 L·m−2

·h−1) with improved salts
removal capacity (from 54.32% to 96.85%). The MoS2/GO membrane also exhibited different mechanism
for dyes and ions (see Figure 7b) where dyes are physically sieved while ions have a Donnan effect due
to existing trapped ions within interlayer spacing [196]. Gao et al. [197] demonstrated the performance
of MoS2 membrane’s performance in rejecting 100% of methylene blue dye. The work highlighted that
the increase in nanosheets to the membrane will reduce permeability and increase dye rejection rate.

4.3. Photocatalyst Technology in Wastewater Treatment

As the majority of water treatment facilities are located outdoors, the availability of solar
energy can be useful for photocatalytic technology in water treatment. Chu et al. [198] reported
that the development of hexagonal 2H-MoSe2 photocatalyst exhibits outstanding photo-absorption
and photocatalytic reaction in reducing hexavalent chromium (Cr(VI)) under ultraviolet (UV) light.
The 2H-MoSe2 yields 99% Cr(VI) reduction rate with the presence of UV light. Mittal and Khanuja [199]
revealed that MoSe2 is a good photocatalyst not only for Cr(VI) but also for methylene blue (MB)
and RhB. The MoSe2/strontium titanate (SrTiO3) heterostructure also showed great potential as a
wastewater treatment photocatalyst with a degradation rate of methyl orange at 99.46% under the
optimum loading weight of 0.1 wt.% under UV light [200]. It is also found that there is no significant
loss in the performance of MoSe2/SrTiO3 after reuse for 6 times. The working principle of MoSe2/SrTiO3

photocatalyst is demonstrated in Figure 8.
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wastewater. UV irradiation causes electron transfer from the valence band (VB) to the conduction band
(CB), which activates the separation process (Reproduced with permission from [200]. Copyright 2018
World Scientific Publishing Co Pte Ltd CC BY Under Open Access).

5. Fuel Cleaning

Fuels are means of transfer for energy in our ecosystems. Most fuels have many imperfections
related to conversion inefficiencies [201] and fuel impurity (including sulphur, nitrogen, aromatic,
etc.) [202]. Direct usage of crude fuels with such impurity content will lead to an increase in gas
emissions [203,204]. Most refineries for oil-based fuel carry out fuel cleaning processes such as
desulphurization, dearomatization, denitrogenation, and deoxygenation [202,205,206] to remove such
impurities before the fuel is being converted. The use of impurity removal technology generally
depends on the techno-economics and fuel costs during application [207]). Fuels with a high impurity
such as sulphur content can potentially cause an elevated particulate emission [208] while causing
catalyst poisoning in subsequent systems [209].

5.1. Fuel Hydrodesulfurization

Hydrodesulfurization is the process of reduction of sulphur content from fuel such as diesel [202] by
catalytically reacting them with hydrogen. Paul et al. [210] studied the mechanism of vacancy formation
on the MoS2 catalyst in the hydrodesulfurization process, demonstrating the activation energy of 0.5 eV.
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TMDC materials such as Co/Ni promoted MoS2 were popular for the use of hydrodesulfurization due to
its high activity, good selectivity, resistance to deactivation, and regeneration ability [211]. Commonly,
TMDC-based catalysts are used for hydrodesulfurization in the oil and gas industry for high-efficiency
sulphur removal from naphtha [212]. For the hydrodesulfurization of naphtha, a recent work from
Mahmoudabadi et al. [213] achieved 100% conversion efficiency using MoS2 quantum dots nanocatalyst
under the pressure of 15 bars, temperature of 280 ◦C and liquid hourly space velocity (LHSV) of
4 h−1. The direct use of unsupported Ni/MoS2 catalyst was reported [214] to remove furfurylamine
(FA) and dibenzothiophene (DBT). Liu et al. [215] demonstrated that for a MoS2/NiMo catalyst, the
higher the number of MoS2 slabs being stacked, the better the hydrodesulfurization selectivity for DBT.
Additionally, Rangarajan et al. [216] studied the preferred active sites of a metal-promoted MoS2 and
found that organosulfur and organonitrogen compounds bind weaker on sites with exposed metal on
the corner and the sulphur edge of MoS2. Hydrodesulfurization of DBT by various morphologies of
MoS2 catalyst was also studied by Tye and Smith [217]. This work showed that exfoliated MoS2 has
the highest conversion, compared to the commercially crystalline MoS2 powder and MoS2 derived
from soluble Mo precursors. While selectivity was correlated to the edge sites of MoS2. A 3D
NiS-MoS2/Graphene nanohybrid was also shown to give a high DBT conversion rate of 82.6%, showing
potential for 3D composites. Recent work from Abbasi et al. [218] demonstrated that a cobalt-promoted
MoS2 achieved more than 80% conversion for the application of diesel, showing potential for the
transfer of high-performance TMDC catalysts from oil and gas to diesel/biodiesel industries.

Besides hydrodesulfurization to remove DBT, the removal of thiophene was also demonstrated
to be feasible with MoS2 catalysis by DFT methods [219]. Kaluza et al. [220] synthesized a MoS2

catalyst supported on mesoporous alumina that gave a thiophene conversion of more than 60% at
around 400 ◦C. For the removal of carbonyl sulphide (COS), Liu et al. [221] used a microwave activated
MoS2/graphene catalyst that achieved over 90% conversion for temperatures over 280 ◦C. Later, the
use of a monolayer MoS2 anchored on reduced graphene oxides [222] has shown to give over 90%
conversion and a reduced temperature at about 180 ◦C.

5.2. Fuel Hydrodeoxygenation

Hydrodeoxygenation is the removal of oxygenated components from the fuel by reacting it with
hydrogen to form water [206]. Liu et al. [223] found that a MoS2 monolayer doped with an isolated
Co atom can effectively reduce hydrodeoxygenation of 4-methylphenol to toluene from 300 ◦C to
180 ◦C while maintaining high conversion and selectivity of 97.6% and 98.4% respectively. From a DFT
perspective, Li et al. [224] demonstrate a generic structure of Co atom vacancy in MoS2, claiming that
the catalyst can activate hydrodeoxygenation reactions at lowered temperatures. Recent work from
Wu et al. [225] adsorbed Co oxide at the edge of MoS2 with sulphur defects and formed a Co-MoS2−x
catalyst that converts lignin-derived phenols (4-methylphenol) to arenes with 97.4% conversion and
99.6% toluene selectivity at a mild temperature of 120 ◦C (see Figure 9a). For direct industrial application,
palm kernel oil was converted with a yield over 90% to jet fuel-like hydrocarbon (see Figure 9b)
via a Ni-MoS2/γ-Al2O3 hydrodeoxygenation catalyst [206]. The work showed high potential for
converting biomass-based fuel to high-value fuels using TMDC-based catalysts. Moreover, Co- and Ni-
promoted MoS2 catalyst was also used to co-process diesel and vegetable oil via hydrodeoxygenation
reaction [226]. Alvarez-Galvan et al. [227] demonstrated that transition metals phosphides were useful
as a hydrodeoxygenation catalyst for waste cooking oil to green biodiesel. More research work is
required to explore the possibility of TMDC materials in this field.
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Figure 9. (a) Hydrodeoxygenation (HDO) of lignin-derived phenols into arenes using Co-MoS2−x

(Reproduced with permission from [225]. Copyright 2020 American Chemical Society) and
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permission [206]. Copyright 2017 Elsevier B.V.).

For catalytic deoxygenation of alkali lignin into bio-oil, Li et al. [228] proposed the use of a
flower-like hierarchical MoS2-based composite catalyst that achieved a lignin conversion of 91.26%
and bio-oil yield of 86.24%. Later, work from Zhou et al. [229] synthesized a series of MoSe2 catalysts
for the conversion of alkali lignin into bio-oil. The work resulted in 96.46% conversion of lignin and
93.68% yield of bio-oil. A recent review by Porsin et al. [230] revealed that sulphide catalysts such as
MoS2 can also convert fatty acid triglycerides to motor oil by hydrodeoxygenation. As for wider fuel
cleaning applications, TMDC materials have also been reported to purify gas fuels such as hydrogen
and methane [231] showing high potential in diverse fuel applications in the future.

6. CO2 Valorization and Conversion

Valorization of carbon dioxide (CO2) to raw chemical materials and clean fuels is an opportunity for
the artificial carbon cycle, which contributes to the mitigation of global warming and alleviates the usage
of fossil [232]. Over the decades, enormous efforts in searching of alternative technologies to mitigate
the CO2 emissions through CO2 capture from concentrated industrial exhausts [233,234], sequestration
of CO2 in the underground [235,236] and conversion of CO2 to energy-rich fuels powered by renewable
energy resources [237] have been discovered. Throughout all these methods, CO2 molecules are not
solely can be removed from the atmosphere but also can be converted into value-added chemicals
such as methanol, formic acid, methane, and syngas [238–240]. Recently, electrochemical conversion
of CO2 to value-added chemicals through the principal of CO2 electrochemical reduction reaction
(CO2ERR) as shown in Figure 10a [241], has emerged as a comparative alternative to its counterparts
such as biochemical and thermochemical technologies [242–244]. Alternatively, semiconductor-based
photocatalysis of CO2 reduction has been another frontier in CO2 conversion [245]. When a light
source with appropriate photoenergy is illuminated on this photocatalyst, electron-hole pairs are
formed [246,247]. With the migration of the electron-hole pair to the surface, the release of energy
from within can reduce surface adsorbed CO2 [246]. Another interesting type of photocatalyst is the
Z-scheme photocatalyst, which performs charge transfer between a reduction semiconductor catalyst
and an oxidation semiconductor catalyst, potentially giving higher performances, efficiency, and
synthesis possibilities [248]. The general working principle of photocatalyst for CO2 conversion is
illustrated in Figure 10b.
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Figure 10. (a) Scheme of the electrochemical conversion of CO2 into value-added chemicals (Reproduced
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Elsevier 2019).

6.1. Conversion of CO2 to Syngas and Other Gases

To achieve this attractive blueprint, the key issue is to develop electrocatalysts with high activity,
superior selectivity, highly durable, environmentally friendly as well as low cost [250–252]. In 2014,
the first pioneering work of elucidating the TMDCs materials as advanced electrocatalysts for CO2

reduction was by Asadi and coauthors [253]. They have claimed that MoS2 material serves as a highly
efficient electrocatalyst for the conversion of CO2 to syngas. The combination of the edge states of
MoS2 in contact with ionic liquid solvent electrolytes has served as a new paradigm for CO2 reduction,
providing the advantage of favorable electronic properties of MoS2 and an electrolyte that transfer the
CO2 molecules to the active sites for reaction. This study is a breakthrough in this field, in which the
performance of the catalytic activity for CO2 reduction reaction is far exceeding than other conventional
catalysts such as carbon nanotubes, graphene, noble metal carbides, and transition metals.

Recent research work of TMDCs in converting CO2 to interesting gas products using photo- and
electro-catalysis methods are shown in Table 4. Up to date, most reports of TMDCs in this field are
focusing on the conversion of CO2 to CO, suggesting that there is still a huge potential of different
electrochemical reaction pathways using TDMCs that can be explored in the near future such as the
conversion of CO2 to CO and H2 to CH4. Wang et al. [254] synthesized a marigold-like SiC@MoS2

nanoflower for the conversion of CO2 and H2O to CH4 and O2 using no sacrificial agents while
operating within the visible light spectrum (see Figure 11a). The work reported production rates of 323
and 621 µL·g–1

·h–1 for CH4 and O2 while maintaining stable characteristics for 40 h. Asadi et al. [255]
also have synthesized a series of TMDCs (e.g. WSe2, WS2, MoSe2, and MoS2) using the chemical vapor
transport (CVT) growth technique followed by liquid exfoliation for electrochemical CO2 conversion
using ionic liquid electrolyte (EMIM-BF4). By benchmarking with the bulk Ag and Ag NPs, the
current density of TMDCs are more than tenfold (130–330 mA cm−2) of the current density of Ag
(3.3 mA cm−2) and Ag NPs (10 mA cm−2) with 90% CO. Overall, WSe2 NFs gave the best performance
and exhibited a current density of 18.95 mA cm−2 with a high turn-over frequency of CO of 0.28 s−1

at an overpotential of 54 mV. This can be related to the intrinsic properties of WSe2 (very low work
function and high-volume surface area).
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Table 4. Application of TMDCs in CO2 conversion to syngas and other gases.

Mechanism Catalyst/Material Details Condition Product

Electro-catalyst 2D nanoflake WSe2 [255] 50 vol% EMIM-BF4 in water −0.764 V CO

Electro-catalyst Hierarchical MoSxSe(2 − x) hybrid
nanostructures [256] 0.1 M H2SO4 solution −0.70V H2

Electro-catalyst 1 Monolayer MoS2 [257] - - CO

Electro-catalyst 5% niobium (Nb)-doped
vertically aligned MoS2 [258] 50 vol% EMIM-BF4 in water −0.8 V CO

Electro-catalyst molybdenum disulfide nanoflakes
(MoS2 NFs) [259] 2.0 M C5H14ClNO −2.0 V CO

Electro-catalyst Ultrathin MoTe2 [260] 0.1 M KHCO3 –1.0 V CH4

Photo-catalyst MoS2 nanoplatelet supported on few
layer graphene [261]

Up to 60% conversion, 90%
CH4 selectivity

React with H2,
250–500 ◦C CH4, CO

Photo-catalyst Marigold-like Si@MoS2[254] Produced 323 µL·g−1
·h−1

CH4, 23 µL·g−1
·h−1 O2

React with H2O CH4, O2

Photo-catalyst Mesoporous TiO2 on 3D Graphene
with Few-layered MoS2[262]

CO selectivity of 97% and
yield of 93.22 µmol/g h - CO

Photo-catalyst Z-scheme MoS2/g-C3N4
heterojunction [263]

Produced 58.59 µmol·g−1 in
7 h.

25 ◦C, 100 kPa CO

Photo-catalyst MoS2/TiO2 heterojunction [264] Produced 268.97 µmol·g−1

CO and 49.93 µmol·g−1 CH4
25 ◦C, 100 kPa CO, CH4

1 Computational simulation using density functional theory (DFT).
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Figure 11. (a) Photochemical reaction pathway for the conversion of CO2 and H2O to CH4 and O2

under visible light using SiC@MoS2 nanoflower (Reproduced with permission from [254]. Copyright
2018 American Chemical Society) and (b) schematic of the WSe2-based artificial leaf cell design for the
conversion of CO2 and H2O to CO and H2 (Reproduced with permission from [255]. Copyright 2016
The American Association for the Advancement of Science).

In addition, a lab-scale synthetic custom-builds wireless setup for photochemical studies of
WSe2/IL is also being developed by this group [255]. The build-up of the artificial leaf that performed
the photosynthesis process is investigated to further confirm the CO2 conversion rate efficiency
(see Figure 11b). The system comprises of three main components: (i) harvest light using two
amorphous silicon triple-junction photovoltaic cells in series, (ii) CO2 reduction using WSe2/IL on the
cathode and lastly, and (iii) evolution of oxygen using cobalt (CoII) oxide/hydroxide in potassium
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phosphate electrolyte [265,266]. Surprisingly, the cell managed to function continuously for more than
4 h before corrosion happens at the transparent indium tin oxide layer on the anode, proving that
this theoretical experiment is workable and insightful, which could be extended to the technology
development scale in near future. Further studies on the defect engineering for CO2 reduction catalysts
were also discussed by Wang et al. [267] to improve functionality by defect engineering (such as
holes, doping, vacancies, phase change, edge, grain boundary, lattices distortion, and other methods).
For this, MoS2 with substitutional defects on the edge was studied [253] and showed to give better
current density than Au, Ag, Cu nanopowder, and the polycrystalline catalyst. Ji et al. [268] suggested
that group 10 TMDCs have a high potential for CO2 reduction as they do not suffer from OH poisoning.
The work proposed that the reaction energies for CO2 reduction could be tuned by vacancy densities.

6.2. Direct Conversion of CO2 to High-Value Chemicals

Direct conversion of CO2 to high-value chemicals (such as intermediate chemicals, fuels, and
alcohols) has a high potential for commercial value [269,270]. TMDCs have demonstrated properties for
catalyzing CO2 into important alcohol, especially methanol [85,271]. Bolivar et al. [272] studied the use
of a Pt/MoOx/MoSe2 electrocatalyst and proposed that oxygen-containing surface species lowers the
electric potential for methanol production. Moreover, Tu et al. [273] have demonstrated the methanol
production of TiO2 and 0.5 wt.% MoS2 nanocomposites was higher than Pt/TiO2, Au/TiO2, and Ag/TiO2

for the photocatalytic reduction of CO2. For this TiO2/MoS2 composites, Xu et al. [274] showed that
electrons are transferred from MoS2 to TiO2 upon contact, therefore promoting the separation of
charge carriers upon photoexcitation. In 2018, Francis et al. [275] have reported on the activity of
single crystals and thin films of MoS2 for the reduction of CO2 dissolved in an aqueous electrolyte to
yield 1-propanol, ethylene glycol, and t-butanol and hydrogen. At an applied potential of −0.59 V,
the Faradaic efficiencies for the reduction of CO2 to 1-propanol are ca. 3.5% for MoS2 single crystals
and 1% for thin films with low edge-site densities. WS2 quantum dots doped Bi2S3 nanotubes also
demonstrated high (38.2 µmol·g−1

·h−1) production of methanol while co-producing ethanol [85]. Many
researchers have also performed the conversion of CO2 to high-value products such as methanol,
acetaldehyde [249] and ethanol [276] by using TMDC catalysts (see Table 5).

Table 5. Application of TMDCs in converting CO2 to high-value chemicals.

Mechanism Catalyst/Material Details Condition Product

Photo-catalyst Undecorated 2D-MoS2
[249]

Produced 27.4 µmol·g−1
·h−1

methanol and 2.2 µmol·g−1
·h−1

acetaldehyde
0.5 M NaHCO3

Methanol,
acetaldehyde

Photo-catalyst MoS2/Bi2WO6
nanocomposites [277]

Produced 36.7 µmol·g−1 methanol
and 36.6 µmol·g−1 ethanol (in 4 h)

Deionized water Methanol,
ethanol

Photoelectro-catalyst Co-doped MoS2 NPs
[278]

Produced 35 mmol·L−1 methanol
(in 350 min)

−0.64 V Methanol

Photo-catalyst Nano Ag decorated
MoS2 nanosheets [271] Produced 365.08 µmol·g−1

·h−1 20 mL isopropanol, Methanol

Electro-catalysis MoS2 electrodes [275] 0.1 M potassium phosphate buffer −0.59 V 1-propanol

Photo-Catalyst WSe2/Graphene/TiO2
nanocomposite [279]

Produced 6.326 µmol·g−1
·h−1

methanol

Distilled water
with Na2SO3

reagent
Methanol

Photo-catalyst MoS2/TiO2[273] Produced 10.6 µmol·g−1
·h−1

methanol
Distilled Water and

methanol Methanol

Photo-catalyst
WS2 quantum dots

doped Bi2S3 nanotubes
[276]

Produced 38.2 µmol·g−1
·h−1

methanol and 27.8 µmol·g−1
·h−1

ethanol
Ultrapure water Methanol,

ethanol

7. Challenges and Future Prospects

The application of TMDCs in pollution reduction is a breakthrough as has high availability [30–32],
high economic potential [280–282], and excellent efficiency [254,276] for the application of pollution
reduction. For TMDCs availability and efficiency, we have already discussed them in Sections 1 and 2,
Sections 3–6 (depending on application) respectively. In terms of commercial techno-economic analysis,
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a few works have also pointed out the advantage of using TMDC catalysts. Valle et al. [280] studied
the economics of converting biomass-derived syngas to ethanol using an indirect circulating fluidized
bed gasification (iCFBG) system via the KCoMoS2 catalyst. The work highlighted that the iCFBG
system could reach a minimum ethanol selling price (MESP) of 0.74 $/L (USD) while technologies
such as entrained-flow gasification have that at 0.98$/L. This MoS2-based catalyst was also found to
be more commercially viable than the Rh-Mn/SiO2 catalyst due to their cheaper economical costs,
although the latter has better energy efficiency [281]. Phillips [282] also concluded that the use of
Co/MoS2 has potential to lower down ethanol MESP down to 0.267 $/L (USD) highlighting that Ru
or Rh-based catalysts are economically expensive even at low concentrations. Nevertheless, authors
acknowledge that the techno-economic analysis of cutting-edge TMDCs technologies is still generally
unknown. Thus, more TMDCs research studies should include consideration of economic analysis.
Furthermore, despite the unique physiochemical properties offered by the TMDCs (e.g., the large
surface area, which acts as a two-edged sword [283], tunable absorption heterostructure [200,284],
flexible, diversiform, and functional properties [146]), more exploration on the operating conditions,
kinetic, and thermodynamic parameters should be carried out to further confirm its ability [285]. This
is because most of the reviewed works are conducted under a controlled environment with a specially
designed flow. Under this context, whether obtained simulation and experimental results reflect
the actual situation remains uncertain. The main limitations of commercializing of TMDCs-based
technology are:

(i) Most research works are focusing on the development of the materials as an effective pollutant
degradation catalyst during oxidation, neglecting that in reality, the number of organic pollutants
is in a mixture that may affect the performance of the engineered material [286,287].

(ii) The rate of product formation for TMDC-based technology, such as syngas and methanol from
the conversion of CO2 is still far from the industrial scale, which is not sufficient to accommodate
the global demand [286,287]. More research effort is required to improve efficiencies.

(iii) High preparation/fabrication cost and poor uniformity of the materials in large-scale
production [288]. More effort is required in sustainable synthesis and fabrication of
TMDC-based technologies.

(iv) The larger surface area offered by the TMDCs can enhance the adsorption capability, but also
cause higher effects of environmental disturbance [283]. Precise defect engineering to improve
material performances can also be carried out [225,267]. Optimization and data analytics on the
design dilemma and defect engineering should be highlighted and properly studied.

As a future prospect, commercial validation on the performance on a larger scale needs to be carried
out. The results obtained from the experiment can be validated by conducting techno-economic analysis,
such as Monte Carlo analysis for economic and risk feasibility [289,290]. Furthermore, advanced
machine learning methods can also be used to accelerate experimental designs [291,292], obtain optimal
performances [293,294], and for the discovery of new TMDCs composite structures [295,296].

8. Conclusions

The unique and exclusive features of TMDCs (e.g., layered structure, tunable bandgap, unique
optical, thermal and electrical properties, etc.) have been the main driving force that drives the
researchers’ attention on exploring the potential of the 2D materials in pollution reduction applications.
This work summarized the state-of-the-art applications of various TMDCs under the context of pollution
mitigation (including (i) gas adsorption and removal, (ii) gas sensing, (iii) wastewater treatment,
(iv) flue cleaning, and (v) CO2 valorization and conversion). In addition to the up-to-date progress of
TMDCs research, this article also discussed some of the key challenges for the future commercialization
of TMDC materials. Apparently, many of the reviewed research works have authenticated their
substantial potential to substitute the existing pollution mitigation media. Nevertheless, the current
applications are still restricted to a lab basis, where the deviation of the actual performance of TMDCs
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under larger-scale production remains as the research gap. To usher TMDCs into the next level of
utilization (i.e., from the lab scale to the industrial scale), the following three research directions should
be followed up, (i) techno-economic analysis (TEA) study, (ii) experimentation under more rigorous
and realistic conditions, and (iii) experimental optimization for application purpose. The authors
sincerely hope this review can serve as an insightful guideline that inspires more researchers to venture
into this new and exciting cutting-edge field.
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