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Inspired by L1-norm minimization methods, such as basis pursuit, compressed sensing,
and Lasso feature selection, in recent years, sparse representation shows up as a novel
and potent data processing method and displays powerful superiority. Researchers have
not only extended the sparse representation of a signal to image presentation, but also
applied the sparsity of vectors to that of matrices. Moreover, sparse representation has
been applied to pattern recognition with good results. Because of its multiple advantages,
such as insensitivity to noise, strong robustness, less sensitivity to selected features, and
no “overfitting” phenomenon, the application of sparse representation in bioinformatics
should be studied further. This article reviews the development of sparse representation,
and explains its applications in bioinformatics, namely the use of low-rank representation
matrices to identify and study cancer molecules, low-rank sparse representations to
analyze and process gene expression profiles, and an introduction to related cancers and
gene expression profile database.
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INTRODUCTION

In recent years, inspired by L1-norm minimization methods, such as basis pursuit (Donoho and
Huo, 2001), compressed sensing (Candes et al., 2004; Candes and Tao, 2005; Lustig et al., 2007), and
Lasso feature selection (Tibshirani, 1996), sparse representation shows up as a novel and potent data
processing method. Sparse representation has been applied to pattern recognition, for example, digit
recognition, speech recognition, and face recognition, and achieved good results. Hang and Wu
(2009) first introduced sparse representation to the analysis of tumor gene expression data. They
applied sparse representation to classify two multi-class tumor data, compared them with the
classification performance of a support vector machine (SVM), and concluded that sparse
representation was superior to SVM. Sparse representation was subsequently adopted for feature
selection and the classification of tumor gene expression data. Hang applied it to gene selection and
obtained sound classification results (Hang, 2009). Zheng et al. (Gan et al., 2013) proposed a sparse
representation classification method based on meta-samples. The method uses singular value
decomposition to extract the meta-samples of various training samples, and then uses the meta-
samples to linearly represent test samples and categorizes them based on representation coefficients.
The test samples compare the classification performance of this method with other classic methods
on multiple two-class and multi-class datasets. The experimental results demonstrated that this
method is superior to a classic SVM and other methods. These results testify the application potential
of sparse representation methods in tumor gene expression data analysis.
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The low-rank sparse representation model based on sparse
representation has also become a topic of great interest in fields
such as machine vision, machine learning, and image processing,
and has been applied successfully in video image processing,
target recognition, task learning, and recommendation systems
(Huang et al., 2017; Yu and Gao, 2019; Liu et al., 2020a; Yu et al.,
2020). In low-rank sparse representation theory, a noisy or
missing data matrix is decomposed into an accurate data
matrix and a singular/sparse data matrix, where the accurate
data matrix has low-rank characteristics, and the singular/sparse
data matrix contains data noise and singular data (Tang et al.,
2020). Wright et al. proposed a classification algorithm based on
sparse representation (Wright et al., 2009a) that successfully
applies sparse representation theory to face recognition.
Meanwhile, researchers have applied the sparsity of vectors to
that of matrices, and proposed low-rank matrix recovery theory
(Wright et al., 2009b; Emmanuel et al., 2009) andmatrix low-rank
representation (Liu et al., 2010). Low-rank representation has also
received extensive attention from researchers and has become
another important data representation method. It has
demonstrated great potential. Sparse representation has many
advantages, such as insensitivity to noise, strong robustness,
insensitivity to selected features, and no “overfitting”
phenomenon. Therefore, the application of sparse
representation in bioinformatics should be studied further.

In recent years, inspired by discriminant analysis, researchers
have combined discriminative ideas with sparse representation or
low-rank representation theory to extract discriminative
information from samples further to improve recognition
performance. Discriminant analysis is a multivariate statistical
analysis method that analyzes various characteristic values of
sample data, and then discriminates the category of the observed
sample. For example, Fisher Linear Discrimination (FLD). The
essence of the FLD is to project sample points into a low-
dimensional space so that, in the projected space, the distance
between sample points of the same category is small and the
distance between sample points of varying categories is large.

And because gene expression profile data research plays a vital
role in genetic engineering, protein design, new drug
development, etc., the use of machine learning methods
including deep learning to explore gene expression profile data
modeling methods has led to the biological fieldWide attention of
researchers. At the same time, the innovation of this article are; 1)
The low-rank representation (LRR) is modified, and a new type of
low-rank representation model is constructed by introducing
manifold regularization and class label restriction mechanism,
which is used for low-rank scoring of gene features and selecting
the optimal gene subset; 2) Introduce the idea of deep learning to
the low-rank sparse model, and propose a deep feature
representation method for gene expression profile data, and
realize the classification and clustering of gene data on this
basis; 3) Propose a feature selection mechanism for gene
expression profile data based on low-rank graphs; 4) Establish
a genetic feature correlation measurement criterion based on low-
rank representation coefficients, use this criterion to obtain a new
genetic feature selection method, and use Robust Principal
Component Analysis (RPCA) and Maximum Interval

Criterion (MMC) to build a two-step genetic feature selection
method.

DATABASE FOR THE APPLIED RESEARCH
OF SPARSE REPRESENTATION

As sparse representation and low-rank representation have been
widely applied to the analysis and research of cancer and gene
expression profiles in recent years, the databases of cancer and
gene expression profiles can be adopted, respectively, for the
research and application of sparse representation methods.
Tables 1, 2 show the specific database description.

APPLICATION OF SPARSE
REPRESENTATION IN BIOINFORMATICS

The development of bioinformatics is mainly divided into three
stages: gene stage, genomic stage, and post-genomic stage. The
first two stages mainly focus on the research of gene sequences
(Yu et al., 2019; Cai et al., 2020a; Fu et al., 2020; Wang et al., 2020;
Dao et al., 2021a; Dao et al., 2021b; Huang et al., 2021). In the
post-genome stage, bioinformatics has entered a new
development period, and its research focus has shifted from
the study of gene sequences to the study of gene functions
(Wang et al., 2013; Dong et al., 2020; Wang et al., 2021a; Lv
et al., 2021; Yu et al., 2021). It incorporates all aspects of the
process of acquiring, storing, processing, distributing, and
explaining biological information, and combines various tools
of applied mathematics, computer science, and biology to clarify
and understand biological significance in biological data.

Cancer Molecular Study Based on
Low-Rank Representation Learning
As a common malignant tumor, cancer is a common fatal disease
worldwide because of its complex pathogenic factors, high
treatment difficulty, and high risk of recurrence and
metastasis. In China, deaths from cancer are always high, and
it is a severe threat to the lives and health of Chinese people
(Silverberg and Lubera, 1998; Chen et al., 2020). How to prevent
and treat cancer effectively has become a topic of widespread
concern the world over. With the development of high-
throughput sequencing technology, scientists can observe the
gene expression of cancer cells at the single-cell level. Feature
mining methods for cancer molecules are divided into supervised
and unsupervised learning, as shown in Figure 1. The supervised
method generally includes two steps: 1) First obtain the cancer
classification information of the research sample through known
prior information or other models. For example, using marker
genes, clustering methods, or SNF algorithms. 2) Based on the
sample typing information obtained in the previous step, the
candidate molecular characteristics are screened out in the
training data set, and then these candidate molecular
characteristics are classified or survival analysis in the
validation data set to determine the final effective molecular

Frontiers in Genetics | www.frontiersin.org December 2021 | Volume 12 | Article 8108752

Han et al. Sparse Representation

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


characteristics. The methods often used in this step mainly
include difference hypothesis testing, support vector machine
algorithm, random forest and linear discriminant analysis.
Another type of unsupervised method does not require the
typing information of a given sample set. It is mainly based
on model assumptions and related data theories. At the same
time, the molecular features and samples in the data are grouped
to obtain a molecular set or module, and for the “liveness” value
of the sample in the new feature space, commonly used methods
include bi-clustering algorithm, matrix decomposition and
manifold learning. However, existing unsupervised methods
(Chen et al., 2020; Zou et al., 2020) fail to distinguish different
feature subspaces. Hence, they may produce errors, or even
invalid results, when applied to cancer molecular feature
mining. Thus, a low-rank representation learning algorithm

(Chen and Yanga, 2014) is presented based on the
presumption that the sample subspace exists, and samples in
the same subspace can represent each other, while those in
different subspaces cannot. The algorithm can accurately
identify a “clustered” structure or grouping information of
inherent samples in the heterogeneous data. The effectiveness
of this method has been widely recognized in image processing,
and it also provides new ideas and directions for establishing
accurate models for mining cancer molecular characteristics.
Therefore, a mathematical model based on low-rank
representation can be established by combining multiple
scales, including molecules, modules, functional networks, and
multi-omics molecular features. This model can be studied from
the three aspects described below, and a series of mathematical
models that are more in line with the heterogeneous structure of

TABLE 1 | Common cancer databases.

Database name Database introduction

GEO Edgar et al. (2008) The GEO database stores the records (series, samples, and platforms) provided by the original submitter and the sorted
data set, but not all the records provided by the original submitter have been assembled into a selected data set. And the
selected data sets form the basis of GEO’s advanced data display and analysis functions

TCGA Tomczak et al. (2015) The Cancer Genome Atlas (TCGA) is a publicly funded project aimed at cataloging and discovering major oncogenic
genome changes in order to create a comprehensive “atlas” of cancer genome maps. So far, TCGA researchers have
passed large-scale genome sequencing and synthesis Multidimensional analysis analyzed a large cohort of more than 30
human tumors

KEGG Rédei. (2012) The Kyoto Encyclopedia of Genes and Genomes (KEGG) is a knowledge base for analyzing gene function based on genetic
and molecular network systems. KEGG maintains the GENES database and the LIGAND database

COSMIC Forbes et al. (2011) COSMIC provides comprehensive information about somatic mutations in human cancers. Version v48 (July 2010)
describes more than 136,000 coding mutations in nearly 542,000 tumor samples; it aims to collect, manage, organize and
present cancer somatic mutations in the world. The information is provided free of charge in a variety of useful ways and can
be accessed at http://www.sanger.ac.uk/cosmic

UCSC Cancer Genomics Browser UCSC Cancer Genomics Browser is a set of web-based tools designed to integrate, visualize and analyze genomic and
clinical data. It consists of three main components: hgHeatmap, hgFeatureSorter and hgPathSorter, which can be browsed
at https://cancer.cse.ucsc.edu/. And because UCSC Cancer Genomics Browser is an extension of UCSC Genome
Browser; therefore, it inherits and integrates the rich human biology and genetics data set of Genome Browser to enhance
the interpretability of cancer genomics data

ArrayMapCancer ArrayMap provides preprocessed tumor genome chip data and CNAmaps. In the ArrayMap database, users can search for
samples they are interested in, and on this basis, analyze the CNA on the gene or genome fragment of interest

TABLE 2 | Commonly used gene expression profile database.

Name
database

The data source Database introduction

RNA-Seq Atlas Network-based RNA-Seq gene expression profile and
query tool library

This is the first open-access database that provides data mining tools and large-scale RNA-
Seq expression profiling. Its application will be multifaceted, because it will help to identify
tissue-specific genes and expression profiles, compare gene expression profiles between
different tissues, and systems biology methods that link tissue function to changes in gene
expression

GEO The National Center for Biotechnology Information (NCBI)
was established

The initial goal was to serve as a public repository for high-throughput gene expression data
mainly generated by microarray technology. In addition, the database also includes
comparative genome analysis, chromatin immunoprecipitation analysis describing genomic
protein interactions, non-coding RNA analysis, SNP genotyping, and genome methylation
status analysis

ArrayExpress Alvis Brazma from EBI et al It is a functional genomics database under the European Bioinformatics Association (EMBL-
EBI), which collects and organizes data from genomics experiments based on microarrays
and sequencing to support reproducible research. It is also one of the main knowledge bases
for functional genomics experiments based on microarray and high-throughput sequencing.
All data is provided in MAGE-TAB format
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data and the biological characteristics of the disease are proposed,
and a fair evaluation of the validity and practicability of the model
is provided using simulated cases and the application of real data,
and theoretical modeling and tools for analyzing multi-scale
molecular characteristics of cancer are provided. Figure 2
shows the method of applying a low-rank representation
matrix to mine the molecular characteristics of cancer.

1) A dimensionality reduction method is adopted to obtain the
characteristics of the molecular module specific to the cancer
subtype (Cheng et al., 2018; Tang et al., 2018; Yu et al., 2018;
Zhang et al., 2018; Jiang et al., 2019; Su et al., 2019; Liu et al.,
2020b; Su et al., 2020). It can address nonlinear sample
structure issues that the traditional dimensionality
reduction method cannot identify. This is because the
dimensionality reduction model fused with low-rank
representation learning can process highly heterogeneous

data, adaptively capture sample cluster structure and
subtype-specific module features, and improve the ability to
classify tumor subtypes and obtain reliable molecular
modules.

2) The fusion model with molecular function information was
used to analyze the characteristics of functional subnets.
Makes full use of the advantages of known functional
information in biological interpretability (Liu et al., 2019;
Cai et al., 2020b), deeply probes into functionally abnormal
biological pathways or molecular behaviors, obtains subtype-
specific functional subnets, and clarifies the molecular
mechanism of cancer from a functional level.

3) A fusion model with molecular function information analyzes
the features of functional subnets, makes full use of the
biological characteristics of the sample representation
relationship consistency of multi-omics data, further
explores synergistic or complementary molecular

FIGURE 1 | Method for mining cancer molecular features.

FIGURE 2 | Method for mining cancer molecular features using a low-rank representation matrix.
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characteristic information at the system level, and provides
new clue to enable the understanding of the cross-omics
pathogenic factors of cancers.

At the same time, medical imaging is also playing an
increasingly major role in helping doctors to conduct a precise
diagnosis of cancer. Even medical imaging cloud and remote
image center can be used for cloud reading, remote consultation,
health management, disease diagnosis, image archiving and
communication, etc. (Mehto and Mehra, 2016; Ma et al., 2020;
Meziane, 2020; Zhang et al., 2021). Therefore, how to protect
patients’ personal information in medical images, such as CT,
MRI, and other medical images, so that this personal information
and patients’ electronic medical records cannot be leaked has
constituted a key issue for the medical industry that needs to be
resolved urgently against the background of machine learning
cloud computing and big data. Using medical image digital
watermarking technology is an effective method to work out
this problem (Hong et al, 2016; Vairaprakash and Shenbagavalli,
2017; Shen et al., 2018; Yang et al., 2018; Zhou et al., 2020).
Compared with general digital watermarking technology, digital
watermarking technology used in medical images, theoretically,
should satisfy three characteristics: reliability, availability, and
confidentiality.

Common medical image digital watermarking algorithms are
divided into three categories: 1) a medical image watermarking
algorithm based on non-interest area RONI (Thanki et al., 2017),
which diminishes the watermark embedding capacity (Liu et al.,
2016b; Gangadhar et al., 2018) and demonstrates poor
robustness; 2) reversible digital watermarking; 3) classic
conventional digital watermarking algorithms used to process
medical images. However, these conventional watermarking
algorithms demonstrate poor resistance to geometric attacks;
hence, other models that can resist conventional attacks and

geometric attacks effectively are necessary. Thus, the design and
construction of a new medical image algorithm model based on
perceptual hashing technology and neural network technology
should be attempted to resolve the contradiction between the
robustness and invisibility of medical image digital watermarking.
Perceptual hashing mainly resolves the issue of conventional
attacks and the neural network mainly resolves geometric
attacks. The framework diagram is shown in Figure 3. The
model process roughly uses the output vector of the hash
algorithm as the input vector of the neural network, and
finally obtains the output result. Perceptual hashing is a type
of hashing algorithm, and its workflow has 7 main steps: 1)
Reduce the size, reduce the picture to 8 × 8 size, a total of 64
pixels; 2) Simplify the color, that is, convert the reduced image to
64-level grayscale; 3) Calculate DCT. DCT is to decompose the
frequency of the picture and gather it into a trapezoid shape.
Here, a 32 × 32 DCT transform is used; 4) Reduce the DCT and
keep the 8*8 matrix in the upper left corner, showing the lowest
frequency in the picture; 5) Calculate the average of all 64 values;
6) To further reduce the DCT, set a 64-bit hash value of 0 or 1
according to the 8 × 8 DCT matrix, set the value greater than or
equal to the average value of DCT to “1”, and set the value less
than the average value of DCT to “0”; 7) Calculate the hash value.
The neural network is a mathematical model or calculation model
that imitates the structure and function of a biological neural
network. It is calculated by connecting a large number of artificial
neurons, mainly including an input layer, a hidden layer and an
output layer.

The robustness and invisibility of digital watermark images
can be studied from the following perspectives:

1) Regarding anti-conventional attacks, research is based on the
extraction of perceptual hashing medical image features in the
transform domain. It is used to study the human visual

FIGURE 3 | Schematic diagram of the robustness feature acquisition of medical images based on perceptual hashing and a neural network.
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system, and by combining with perceptual hashing
technology, establishes a transform domain perception hash
algorithm model, and locates a vector that conforms to the
human visual characteristic and is robust against conventional
attacks.

2) Regarding anti-geometric attacks, the extraction of medical
image features based on perceptual hashing and a neural
network is studied. The Osirix DICOM image library and
existing medical images are adopted to construct a medical
image database that is attacked using nonlinear geometry.
Then, the neural network model is designed to train the 2D
and 3D medical images after nonlinear geometric attacks, and
find the robust feature vectors against nonlinear geometric
attacks, which are used as the features of designing robust
watermarking algorithms for medical images against
geometric attacks.

3) Research on methods for extracting robust perceptual hashing
sequences from medical images based on perceptual hashing
and neural networks.

4) Regarding research on how to embed large-capacity digital
watermarks in medical images, perpetual hashing sequence
feature vectors that counter conventional attacks and
geometric attacks are used to generate a secret key by
combining with the encrypted watermark to complete the
embedding and extraction of a large-capacity watermark.

Research on Gene Expression Profile Data
Based on Low-Rank Sparse Representation
The emergence of gene expression profile data helps the
understanding of the pathological process of cancer cells at the
molecular level. Tens of thousands of varying genes in tissue
samples can be detected by gene chips, and then the gene chip
expression profile data can be analyzed and processed. Thus,
tumors are classified so that patients can be treated effectively.
However, gene expression profiles are characterized by high
dimensionality, large noise, a small number of gene samples,
missing data, data redundancy, and an unbalanced distribution of
class samples. Thus, advanced data modeling methods must be
used to extract the classification characteristics of samples
effectively from tens of thousands of gene expression profiles.
With the rapid development of artificial intelligence and machine
learning in speech and machine vision in recent years, the use of
machine learning methods, including deep learning, to explore
gene expression profile data modeling methods is destined to be a
development trend in the future.

Presently, research on gene expression profiles mainly covers
the following: 1) the preprocessing of gene expression profile
data, 2) extraction of gene expression profile data features, 3)
selection of gene expression profile data features, and 4)
clustering and classification research of gene expression profile
data. Common gene feature selection methods are categorized
into three types: the filter method, wrapper method, and
embedded method (Bolón-Canedo et al., 2014). They can also
be based on low-rank scoring, low-rank representation
coefficient-based gene feature correlation measurement, and a
two-step method based on robust principal component analysis

(RPCA) (Partridge and Jabri, 2002) and the maximum margin
criterion (MMC) for feature selection. RPCA, low-rank
representation (Shu et al., 2017), and matrix completion (Cao
et al., 2011; Zeng et al., 2017; Liu et al., 2020c; Ran et al., 2020;
Zhao et al., 2020) are three main research areas for low-rank
sparse theory. As the name implies, sparse representation refers to
a linear combination of fewer basic signals to express most or all
of the original signal. Among them, these basic signals are called
atoms, which are selected from the over-complete dictionary; and
the over-complete dictionary is gathered from atoms whose
number exceeds the signal dimension. Therefore, it can be
seen that any signal has different sparse representations under
different atom groups. For example, a M ×N matrix is used to
represent the data set X, each row represents a sample, and each
column represents an attribute of the sample. Generally speaking,
the matrix is dense, that is, most elements are not 0. The meaning
of sparse representation is to find a coefficient matrix A(K ×N)
and a dictionary matrix B(M × K), so that B × A restores X as
much as possible, and A is as sparse as possible. A is the sparse
representation of X.

Low-rank sparse representation models have been applied in
many fields (Cheng et al., 2016; Chen et al., 2017; Zhang et al.,
2017; Brbic and Kopriva, 2018; Chen et al., 2018; Xie et al., 2018;
Yuanyuan et al., 2018; Zeng et al., 2018; Ding et al., 2019; Shen
et al., 2019; Zhang et al., 2019; Li et al., 2020; Wu and Yu, 2021),
which demonstrate high superiority, particularly in terms of
dimensionality reduction and subspace segmentation.
Considering existing analysis methods, introduce a low-rank
sparse representation model for gene expression profile data
analysis, several new methods for feature selection and feature
extraction of gene expression profile data based on low-rank
sparse representation models are explored, and they are applied
to gene expression profile clustering and classification. As shown
in Figure 4, this section mainly uses the following process to
study gene expression profile data based on low-rank sparse
representation analysis. In typical cases, the following three
specific research areas are mainly involved when studying gene
expression profile data.

1) Estimation of missing points in gene expression profile data.

In recent years, missing point estimation methods have
included the following: 1) list deletion method; 2) duplicate
value filling; 3) average value substitution method; and 4) the
use of statistical methods for estimation, such as K-nearest
neighbor (KNN) (Olga et al., 2001), singular value
decomposition, and local least squares.

2) Feature selection for gene expression profile data.

Feature selection is a major prerequisite for the classification
and clustering of gene expression profile data (Lu and Zhao, 2019;
Zou et al., 2020; Qi et al., 2021a; Zulfiqar et al., 2021). Three
common gene feature selection methods exist: the filter method,
wrapper method, and embedded method. And Low-rank scoring,
gene feature correlation measurement based on a low-rank
representation coefficient, and a two-step method based on
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RPCA and MMC can also be used to select features. To overcome
the shortcomings of traditional low-rank representation models,
feature selection introduces manifold regularization constraints
and class-label information constraints, sets up a manifold
regularized low-rank representation model and a class-label
constrained low-rank representation model, and solve the low-
rank representation coefficient matrix in the two models. On this
basis, two different low-rank graphs are set up, the low-rank
graphs are used to score each gene feature, and a set of optimal
gene feature subsets is selected according to the score.

3) Gene expression profile data feature extraction.

Common feature extraction methods can be divided into
linear and nonlinear transformations. Typical linear feature
extraction algorithms include sparse principal component
analysis (PCA) (Min et al., 2018; Islam et al., 2020),
independent component analysis (Moysés et al., 2017), and
LDA. Nonlinear transformation methods primarily include
neural networks, kernel methods (Qi et al., 2021b), manifold
learning (Shen et al., 2017), sparse representation (Min et al.,
2017), and matrix factorization methods (Wang et al., 2017; Yang
et al., 2017; Yang and Hu, 2017; McCall et al., 2019). With the
continuous development of machine learning and data mining,
new feature extraction methods continue to arise. For example,
PCA, FA, and ICA are three characteristic methods commonly
used in gene expression profile data mining.

Gene expression profile data analysis has attracted widespread
attention from scholars, and a series of gene expression profile
analysis methods have been proposed. Classic methods such as
PCA, LDA, KNN, decision-making tree method, ensemble
learning, SVM, extreme learning machine, neural network,
sparse representation, and gene bi-clustering method based on
qualitative/quantitative measurement have been widely applied to
the classification and clustering of gene expression profile data.
Meanwhile, these technologies can provide techniques and

comparisons for low-rank sparse representation methods. The
core of the low-rank sparse representation method is low-rank
sparse modeling theory. As an effective tool for large-scale data
analysis, this theory has made great progress in recent years.
Additionally, it has been widely used in subspace segmentation,
image processing and recognition, machine vision, system
modeling and control, and other large-scale data analysis.

CONCLUSION

Therefore, it has become an inevitable trend to apply low-rank
sparse representation models to study them. Low-rank sparse
representation models have been applied in multiple fields,
particularly in dimensionality reduction and subspace
segmentation. For example, in feature extraction, traditional
graph-based learning algorithm feature extraction methods are
constrained using a graph construction method, and the
effectiveness of the extracted feature vectors is reduced. By
contrast, low-rank graphs have better local and global data
description capabilities. A dimensionality reduction method
based on low-rank graphs is a more effective feature extraction
method. Moreover, with the advancement of biological
sequencing technology, scientists have been able to observe the
gene expression of cancer cells at the single-cell level, and
discovered that the heterogeneity of cancer tissue far exceeds
previous estimates. However, so far, low-rank sparse
representation models are rarely used for gene data analysis.
Therefore, this article introduces low-rank sparse representation
models for gene expression profile data analysis based on existing
analysis methods. Discuss new methods for feature selection and
feature extraction of gene expression profile data based on low-
rank sparse representation model, and use it for gene expression
profile clustering and classification.

At the same time, with the advancement of biological
sequencing technology, scientists have been able to observe the

FIGURE 4 | Research procedure for gene database analysis based on low-rank sparse representation.
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gene expression of cancer cells at the single-cell level, and found
that the heterogeneity of cancer tissues far exceeds previous
estimates. The observation samples of potential strongly
heterogeneous data are likely to be in multiple feature
subspaces. Each subspace is composed of the same set of
molecular features that represent the same cancer class
(subtype), and samples from different subspaces belong to
different cancer class (subtype). However, many unsupervised
methods proposed before cannot distinguish different feature
subspaces, so errors or even invalid results may occur when these
methods are used for cancer molecular feature mining. After
research, it is found that the low-rank representation learning
algorithm can accurately identify the inherent sample “cluster”
structure or grouping information in heterogeneous data. The
algorithm assumes that the sample subspace exists, and samples
in the same subspace can characterize each other. Samples in
different subspaces cannot characterize each other. Moreover, the
effectiveness of this algorithm has been widely recognized in the
field of image processing, and it also provides us with new ideas
and new directions for establishing accurate models for mining
cancer molecular characteristics.

PENDING ISSUES AND PROSPECTS

Gene expression profile data analysis has attracted widespread
attention from scholars at home and abroad. Not only have they
proposed a series of gene expression profile analysis methods, but
they also developed a variety of gene software based on gene
public databases, such as EASE network platform, pathway
analysis software Gen-MAPP2 and the development of the
domestically developed pathway analysis platform KOBAS, the
development of these software provides a basis for the subsequent
further research on gene expression profiles.

This article mainly uses low-rank sparse modeling theory to
analyze experimental data. As one of the effective tools for large-
scale data analysis, this theory has been widely used in different
aspects in recent years. For example, sparse representation has
been applied to the field of pattern recognition and has yielded
fruitful results. The low-rank sparse representation model based
on sparse representation has also become a research focus in
machine vision, machine learning, and image processing, and has
been applied successfully in video image processing, target
recognition, task learning, bioinformatics (Ding et al., 2020;
Hong et al., 2020; Hu et al., 2020; Lu et al., 2020; Hu et al.,
2021a; Hu et al., 2021b;Wang et al., 2021b), and recommendation
systems (Wei et al., 2014; Wei et al., 2017a; Wei et al., 2017b).
However, further attention should be paid to low-rank
representation learning. In specific applications, LRR generally
uses original data as a dictionary, which requires a sufficient
number of observed data samples, and only part of the data in the
dictionary can be damaged. In real-world scenarios, the
aforementioned assumptions may not be tenable; hence,
LatLRR can be considered, and a dictionary can be
constructed using observed and unobserved data.

At the same time, sparse representation also has important
clinical significance. For example, data released by the National

Cancer Center reveal that there are approximately 4.29 million
new cancer patients in China every year, which accounts for 20%
of new cases globally, and deaths have reached 2.81 million.
Approximately 10,000 patients are diagnosed with cancer in
China every day, that is, one patient every 7 min. Therefore,
the prevention and treatment of cancers are not optimistic. It is
expected that the incidence of cancers will continue to rise in the
next one or two decades. The high incidence of cancer cases has
resulted in severe challenges to domestic economic development
and residents’ healthy life. How to prevent and treat cancer
effectively has become a topic of great interest worldwide.
With the advancement of high-throughput technology,
biomedicine is rapidly stepping into the era of big data. Omics
data represented by gene expression profiles have demonstrated
particular leaps. The emergence of gene expression profile data
helps people to understand the pathological process of cancer
cells at the molecular level. Thousands of genes in tissue samples
can be detected by gene chips, and then the tumor can be
classified by analyzing and processing the gene chip expression
profile data so that patients can be treated effectively. However,
because of the characteristics of gene expression profile data,
there are still many problems in the research field. With the rapid
development of artificial intelligence and machine learning in the
field of speech and machine vision, in the next few years, artificial
intelligence and machine learning will play an increasingly
important role in genetic biology, genomic medicine and
precision medicine, especially deep learning. The rapid
development has attracted widespread attention from
researchers in the biomedical field, so it has become an
inevitable trend to use low-rank sparse representation models
to study them. An extensive application of sparse representation
in bioinformatics helps to address the problem that some
unsupervised algorithms cannot distinguish different feature
subspaces of cancer molecules. Moreover, it is expected that,
in the near future, it can provide technological references for the
prevention and treatment of critical illness, and the research and
development of new drugs.

However, sparse representation in bioinformatics still has
varying degrees of limitations. For example: 1) Constructing a
more flexible sparse representation model. In the existing sparse
representation model, there is an objective function and a
constraint function, the objective function is generally to
minimize the energy of the noise under the assumption that
the observation signal has a linear model form and contains
Gaussian white noise, constraint function generally refers to
sparse constraint term. On the one hand, this objective
function treats the sparse components equally; on the other
hand, it ignores the existence of other goals in different
applications, because if you look at it from the standpoint of
representation alone, it does not necessarily require the sparsest
solution to be unique or the sparsest solution is not themost ideal.
Therefore, it is necessary to construct a sparse representation
model with multiple targets and variable regular parameters to
meet the characteristics and needs of more application problems.
2) When determining the regular parameter λ and the parameter
k representing the degree of sparseness for the model, a manual
pre-determined method is generally used to assign values to the
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two hyperparameters. After determining its value, perform the
solution, and then compare the solution result with the target
demand. If it does not meet the requirements, then adjust the
parameters. This inevitably results in non-adaptability or non-
automation of the solution process, and also limits the application
of sparse representation methods in some fields that require a
high degree of automation. Therefore, it is necessary to study the
adaptive solution of sparse representation model, and construct
the functional relationship between hyperparameters and
observation signals and sparse vectors. 3) At present, the
application scope of sparse representation is mainly limited to
the field of natural signals. The application prospects in the field
of unnatural data signals are still unclear. According to the
characteristics of sparse representation in various fields, the
application types of sparse representation can be divided into
reconstruction based Applications and classification-based
applications. Reconstruction-based applications mainly include
image denoising, image signal reconstruction, audio signal
recovery, compressed sensing, SAR imaging, etc. The common
point of this category of applications is that the characteristics of
the target signal need to be obtained first, and the sparse vector is
constructed using the characteristics. The mathematical model in
the sparse representation theory is then used to solve the problem
to achieve the effect of reconstructing the original signal within
the allowable error range. Classification-based applications
mainly include face recognition, target tracking, text detection,
blind source separation, etc. Classification-based applications all
construct sparse feature vectors by extracting feature information
from objects. These feature vectors are strongly distinguishable
and can differentiate different types of signals, and then according
to the optimization method of sparse representation, determine
the distance between the target signal and these feature vectors,
and when a certain threshold is met, it is determined to belong to
the category to achieve the effect of pattern recognition and
classification. Therefore, sparse representation has some
limitations in the application of bioinformatics, which requires
further research and discussion by scholars.

At the same time, sparse representation provides a powerful
means in blind source separation technology, because blind
source separation technology is to solve the unknown input
and unknown transmission channel and output the known
signal processing technology. The sparse representation
technology reduces the complexity of the algorithm by
separating the estimation process of the mixing matrix and the
estimation process of the source signal, and improves the
accuracy of the source signal separation. Therefore, sparse
representation has become a popular method in the current
blind source separation problem.
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