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a b s t r a c t 

We provide functional connectivity matrices generated dur- 

ing functional magnetic resonance imaging ( f MRI) during 

different tasks of cognitive control in healthy aging adults. 

These data can be used to replicate the primary results from 

the related manuscript: Reconfiguration and dedifferentiation 

of functional networks during cognitive control across the adult 

lifespan (Rieck et al., 2021). One-hundred-forty-four partic- 

ipants (ages 20–86) were scanned on a Siemens 3T MRI 

scanner while they were completing tasks to measure func- 

tional activity during inhibition, initiation, shifting, and work- 

ing memory. Estimates of functional connectivity (quantified 

with timeseries correlations) between different brain regions 

were computed using three different brain atlases: Schae- 

fer 100 parcel 17 network atlas (Schaefer et al., 2018; Yeo 

et al., 2011), Power 229 node 10 network atlas (Power et al., 

2011), and Schaefer 200 parcel 17 network atlas (Schaefer 

et al., 2018; Yeo et al., 2011). The resulting functional con- 

nectivity correlation matrices are provided as text files with 

this article. Cov-STATIS (Abdi et al., 2012; a multi-table mul- 

tivariate statistical technique; https://github.com/HerveAbdi/ 

DistatisR ) was used to examine similarity between functional 
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connectivity during the different domains of cognitive con- 

trol. The effect of aging on these functional connectivity pat- 

terns was also examined by computing measures of “task 

differentiation” and “network segregation.” This dataset also 

provides supplemental analyses from the related manuscript 

(Rieck et al., 2021) to replicate the primary age findings with 

additional brain atlases. Cognitive neuroscience researchers 

can benefit from these data by further investigating the 

age effects on functional connectivity during tasks of cogni- 

tive control, in addition to examining the impact of differ- 

ent brain atlases on functional connectivity estimates. These 

data can also be used for the development of other multi- 

table and network-based statistical methods in functional 

neuroimaging. 

© 2021 The Author(s). Published by Elsevier Inc. 

This is an open access article under the CC BY license 

( http://creativecommons.org/licenses/by/4.0/ ) 

Specifications Table 
Subject Neuroscience: Cognitive 

Specific subject area Functional neuroimaging, task-based functional connectivity, aging, cognitive 

control 

Type of data Tables 

Figures 

Functional connectivity correlation matrices 

Code 

How data were acquired Task-based functional magnetic resonance imaging (3T Siemens scanner) 

Data format Analyzed 

Parameters for data collection Blood-oxygen-level-dependent (BOLD) f MRI data were collected using an 

echo-planar imaging sequence with 40 axial slices acquired parallel to the 

anterior-posterior commissure with the following parameters: TR = 20 0 0 ms, 

TE = 27 ms, Flip Angle = 70 °; FOV = 192 mm, 64 × 64 × 40 acquisition 

matrix; 3 mm 

3 isotropic voxels (with .5 mm gap). Timeseries correlations were 

used to quantify functional connectivity for three different brain atlases. 

Description of data collection 144 healthy adults (ages 20–86) underwent f MRI while completing three tasks 

to measure different domains of cognitive control. A go/no-go paradigm was 

used to examine inhibition and initiation. A local task switching paradigm was 

used to examine shifting. An n-back paradigm with three different loads 

(0-back, 1-back, and 2-back) was used to examine working memory. 

Data source location Institution: Rotman Research Institute, Baycrest Center 

City/Town/Region: Toronto, Ontario 

Country: Canada 

Data accessibility Repository name: Dataset of functional connectivity during cognitive control 

for an adult lifespan sample 

Data identification number: 10.17605/OSF.IO/M5CRS 

Direct URL to data: https://doi.org/10.17605/OSF.IO/M5CRS 

Related research article J.R. Rieck, G. Baracchini, D. Nichol. H. Abdi, C.L. Grady, Reconfiguration and 

dedifferentiation of functional networks during cognitive control across the 

adult lifespan. Neurobiology of Aging . 2021. 

https://doi.org/10.1016/j.neurobiolaging.2021.03.019 

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.17605/OSF.IO/M5CRS
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Value of the Data 

• These data can be used to replicate the primary analyses of Rieck and colleagues [1] across

three different functional connectivity brain atlases [2–4] . 

• Researchers can benefit from these data by investigating age effects on functional connectiv-

ity during tasks of cognitive control. 

• These data can be analyzed to further understand the impact of different brain atlases on

functional connectivity estimates. 

• These data can also be used for the development of multi-table and network-based statistical

methods in functional neuroimaging. 

1. Data Description 

The data provided with this manuscript are text files of functional connectivity correlation

matrices generated from functional magnetic resonance imaging ( f MRI) during tasks of cogni-

tive control ( https://doi.org/10.17605/OSF.IO/M5CRS ). There are six correlation matrices per par-

ticipant, a design corresponding to six different task conditions: inhibition ( ∗gng_inhibition.txt ),

initiation ( ∗gng_initiation.txt ), shifting ( ∗tsw_shifting.txt ), and working memory at three loads,

0-back ( ∗nbk_0back.txt ), 1-back ( ∗nbk_1back.txt ), and 2-back ( ∗nbk_2back.txt ). 

Functional connectivity correlation matrices are provided for three different parcellation at-

lases: (1) Schaefer 100 parcel, 17 network atlas [2 , 3] ( Schaefer100_17 ∗) used for the primary

analyses in the related research article [1] ; (2) Schaefer 200 parcel, 17 network atlas [2 , 3]

( Schaefer200_17 ∗); and (3) an iteration of 229 nodes provided by Power and colleagues for 10

networks [4] ( Power229_10 ∗). The Schaefer200_17 and Power229_10 atlases were used to repeat

the primary analyses in the related research article [1] in order to see if the effects replicated

(results reported here). 

In addition to functional connectivity matrices, we provide a .csv file of participant ids

and corresponding ages ( participant_ages.csv ) and .csv files that include centroid coordinates

( Power_229node_10network_coordinates.csv ) and anatomical labels for the parcellation atlases

( Schaefer_100parcel_17network_labels.csv, Schaefer_200parcel_17network_labels.csv ). We also in- 

clude e-prime scripts to replicate the fMRI experiments and an R script ( run_covstatis.R ) and

functions ( fc_data_in.R, compute_task_diff.R, compute_segregation.R ) to reproduce the primary sta-

tistical analyses, compute task differentiation and segregation composite measures, and recreate

plots presented in the related research article [1] and current manuscript. 

Finally, provided in this manuscript are several tables and figures of the secondary analyses

of this dataset, including: 

• Table 1 . Summary of original findings and additional atlas analyses . 

• Table 2 . Overlap between Schaefer 100 and Power 229 atlases. 

• Fig. 1 . Schaefer and Power Atlas Comparison. 

• Fig. 2 . Power Atlas Multivariate Connectivity Space. 

• Fig. 3 . Power Atlas Task Differentiation and Age. 

• Fig. 4 . Power Atlas Network Segregation with Age. 

• Fig. 5 . Schaefer 100 and 200 Parcel Atlas Comparison. 

• Fig. 6 . Schaefer 200 Atlas Multivariate Connectivity Space. 

• Fig. 7 . Schaefer 200 Atlas Task Differentiation and Age. 

• Fig. 8 . Schaefer 200 Atlas Network Segregation with Age. 

1.1. Supplemental analyses with alternate atlases 

In order to investigate whether the primary findings [1] were driven by the original atlas

choice (Schaefer atlas with 100 parcels in 17 networks), we re-ran the primary analyses using

https://doi.org/10.17605/OSF.IO/M5CRS
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Table 1 

Summary of original findings and additional atlas analyses. 

Schaefer 100 Power 229 Schaefer 200 

Original Finding Finding Replicated? Finding Replicated? 

A. Age-related decreases in task differentiation 

Control Yes Yes 

Default Mode No Yes 

Salience/Ventral Attention A Yes (for CingOp) Yes 

Temporo-Parietal Yes (for VAN) No 

Somato-Motor No Yes 

B. Age-related decreases in network segregation 

Control Yes Yes 

Default Mode Yes Yes 

Somato-Motor B Trend (for AUD) Yes 

Salience/Ventral Attention A Yes No 

Dorsal Attention Yes Yes 

C. Age-related increases in network segregation 

Somato-Motor A Yes Yes 

Salience/Ventral Attention B No (for SAL) No 

The first column outlines the significant age findings by network using the Schaefer100_17 atlas. Columns two and three 

indicate which effects were replicated ( p < .05) or reduced to trend effects ( p < .1). For the Power229_10 atlas, the 

closest equivalent network is indicated in parentheses. Note . CingOp = Cingulo-opercular; VAN = Ventral Attention; 

AUD = Auditory; SAL = Salience. 

Fig. 1. Schaefer and Power Atlas Comparison. Comparison of Schaefer 100 parcel, 17 network (left) and Power 229 node, 

10 network (right) atlases. Modified from [1] (Fig. S2). 
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wo additional atlases: Power atlas (229 nodes in 10 networks) and Schaefer (200 parcels in

7 networks). The Power atlas allowed us to examine broad networks that were defined differ-

ntly from the original analyses. The Schaefer 200 parcel atlas allowed us to examine the same

riginal 17 networks, but using a finer-grained approach with smaller parcels. In general, our

riginal findings of age effects on task differentiation and network segregation were replicated

cross both atlases, with the exception of some findings associated with the salience/ventral at-

ention network. Table 1 summarizes the original findings [1] and if they were replicated in the

urrent work using different atlases. 

As in the primary manuscript [1] , we utilized a multivariate multi-table method of Pro-

rustean analysis [5] called cov-STATIS, a (French) acronym which loosely translates to “struc-

uring three-way statistical (in our case, correlation) tables” [6 , 7–9] to examine the similarity

f the functional network connectivity across task conditions. The DistatisR R package [10] was

sed to run this analysis separately for the three different atlas parcellations. The related re-

earch article [1] includes a detailed description on how this method was applied to functional

onnectivity data, and code to replicate the analyses is available ( https://osf.io/atkb4/ ). The re-

ults from cov-STATIS were used to compute “task differentiation” scores which quantified how

imilar a participant’s connectivity for a particular network was across all the six task-conditions

nd “segregation scores” which quantified relative strength of connectivity within a network ver-

https://osf.io/atkb4/
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Table 2 

Overlap between Schaefer 100 (rows) and Power 229 atlases (columns). 

Power Atlas (229 5 mm spherical nodes, 10 networks) 

VIS SomM AUD DAN CingOp SAL VAN FPC DMN SUB 

Schaefer Atlas 100 

parcel, 17 network 

Visual A 27.7 < 5 

Visual B 28.4 < 5 

SomMot A 47.0 < 5 < 5 

SomMot B 10.5 57.7 < 5 12.5 < 5 

TempPar < 5 40.3 < 5 

DAN A 15.3 51.1 9.5 < 5 

DAN B 13.9 8.2 39.2 11.2 < 5 < 5 < 5 

Sal/VAN A < 5 15.9 48.2 14.9 6.9 < 5 < 5 < 5 

Sal/VAN B 7.6 38.2 8.0 < 5 

Control A < 5 < 5 < 5 < 5 < 5 39.5 

Control B < 5 21.5 5.9 

Control C < 5 < 5 < 5 

Default A < 5 5.6 < 5 < 5 21.0 

Default B < 5 10.4 21.5 9.3 32.1 

Default C < 5 < 5 

Limbic A < 5 < 5 

Limbic B 

Values represent the percentage of overlap of voxels from each of the ten Power atlas networks and the corresponding Schaefer networks. For example, 27.7% of voxels in the Power 

Visual network overlap with Schaefer Visual A and 28.4% of voxels in the Power Visual network overlap with Schaefer Visual B. Note : VIS = Visual; SomM = Somato-Motor; AUD = Au- 

ditiory; DAN = Dorsal Attention; CingOp = Cingulo-opercular; SAL = Salience; VAN = Ventral Attention; FPC = Fronto-parietal Control; DMN = Default Mode; SUB = Subcortical. 
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Fig. 2. Power Atlas Multivariate Connectivity Space. Individual nodes (dots) from the Power229_10 atlas are projected in 

the compromise space (and colored by network). 
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us between networks [11] . Both task differentiation and segregation scores were correlated with

ge to see if the primary findings from the related article [1] replicated when using different at-

as parcellations. 

.1.1. Power 229 atlas analyses and results 

Using CONN, functional time courses for each task condition were extracted from 229 nodes

hat comprised 10 networks: somato-motor (SomMot), auditory (Aud), cingulo-opercular (Cin-

Op), default mode (DMN), visual, frontoparietal control (FPC), salience (Sal), subcortical, ventral

ttention (VAN) and dorsal attention (DAN). Unlike the Schaefer atlas, which defines regions of

nterest/parcels that cover larger regions of cortex, for the Power atlas nodes were defined by

reating 5mm spheres around the coordinates provided by Power et al. [4] . The coordinates for

he nodes used for the current dataset are provided in Power_229node_10network_coordinates.csv.

The Power atlas also differs from the Schaefer 17 network atlas in how networks are defined

 Fig. 1 )—most notably Power provides broad network definitions, whereas the Schaefer 17 net-

ork atlas divides larger networks (e.g., default) to multiple subnetworks (e.g., default A, B, and

). The Power atlas also includes the salience and cingulo-opercular networks as two separate

etworks, whereas the Schaefer atlas combines the salience and ventral attention networks. The

chaefer salience/ventral attention A subnetwork corresponds to the Power cingulo-opercular

etwork. Finally, the Power atlas defines a subcortical network, whereas no similar network ex-

sts within the Schaefer atlas. Table 2 shows the proportion of voxels from each Power network

hat overlap with the Schaefer100_17 atlas. 

The resulting 229 × 229 connectivity matrices were submitted to cov-STATIS, and the pri-

ary results regarding network connectivity and age effects on dedifferentiation and segrega-

ion scores are reported below. First, we examined the multivariate connectivity space of the

odes included in the Power atlas ( Fig. 2 ). Similar to the original analyses, the multivariate

pace is characterized by differences between default vs. somato-motor/visual and dorsal atten-

ion/frontoparietal control vs. visual networks. 



J.R. Rieck, G. Baracchini and D. Nichol et al. / Data in Brief 39 (2021) 107573 7 

Fig. 3. Power Atlas Task Differentiation and Age. Task differentiation scores for the Power fronto-parietal control, salience, 

ventral attention, and cingulo-opercular networks decreased in older ages. No age effect was replicated for the default 

or somato-motor network. 

 

 

 

 

 

 

 

 

 

 

 

Next task differentiation scores were computed which describe the similarity of connectiv-

ity patterns for each Power network across cognitive domains. As in the original analysis, task

differentiation for fronto-parietal control, ventral attention (which overlaps with Schaefer’s tem-

poroparietal network), salience and cingulo-opercular networks (which overlaps with Schaefer’s

salience/ventral attention A) decreased in older ages ( Fig. 3 ). Although not significant, the neg-

ative effect of age on default differentiation ( r = –.13, p = .132) and the non-linear age effect

on the somato-motor network (r 2 = .07 ; p = .115) trended in the same direction as the orig-

inal findings. The Power somato-motor network is primarily motor and somato-motor cortex

whereas the Schaefer somato-motor A and B networks include both motor/somato-motor and

auditory cortices, which could explain the failure to replicate this specific finding. 

Next, we examined network segregation for the Power atlas which described how much a

network was connected to itself versus other networks. Age-related decreases in network seg-
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Fig. 4. Power Atlas Network Segregation with Age . (A) Age-related decreases in network segregation were replicated for 

Power fronto-parietal control, default mode, auditory, cingulo-opercular, and dorsal attention networks. (B) Age-related 

increases in network segregation were replicated for the Power somato-motor network, but not the Power salience net- 

work. 



J.R. Rieck, G. Baracchini and D. Nichol et al. / Data in Brief 39 (2021) 107573 9 

Fig. 5. Schaefer 100 and 200 Parcel Atlas Comparison. Comparison of Schaefer 100 parcel (left) and 200 parcel (right) 

atlases. Modified from [1] (Fig. S2). 

Fig. 6. Schaefer 200 Atlas Multivariate Connectivity Space. Individual nodes (dots) from the 200 parcel atlas are projected 

in the compromise space (and colored by network). 

 

 

 

 

 

 

 

 

 

 

 

regation were replicated for fronto-parietal control, default mode, auditory (similar to Schae-

fer’s somato-motor B subnetwork), cingulo-opercular (similar to Schaefer’s salience/ventral at- 

tention A subnetwork), and dorsal attention networks ( Fig. 4 A). Age-related increases in network

segregation were replicated for the somato-motor network (similar to Schaefer’s somato-motor

A subnetwork; Fig. 4 B). We had also originally reported an age-related increase in Schaefer’s

salience/ventral attention B subnetwork, but this finding was not replicated in the most simi-

lar Power network (salience). However, the Power salience network includes nodes that over-

lap with other Schaefer networks (e.g., Default B, salience/ventral attention A; Table 2 ) that

showed age-related increases which may account for this difference in findings between the two

analyses. 

1.1.2. Schaefer 200 atlas analyses and results 

In general, the Schaefer 200 parcel version of the 17-network atlas defines networks in a way

similar to the 100 parcel atlas, but with smaller, more fine-grained parcels; however there are

minor differences. For example, the 200 node 17 network atlas includes left and right inferior
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Fig. 7. Schaefer 200 Atlas Task Differentiation and Age. Task differentiation scores for the Power fronto-parietal control, de- 

fault, salience/ventral attention networks decreased in older ages, but no age effect on temporo-parietal was replicated. 

Age was also associated with non-linear effects on differentiation of the somato-motor network. 
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arietal in default A (yellow parcel) but the 100 node 17 network only includes right inferior

arietal lobule ( Fig. 5 ). 

Using CONN, functional time courses for each task condition were extracted from the 200

arcels nodes that comprised 17 networks. The resulting 200 × 200 connectivity matrices were

ubmitted to cov-STATIS, and the results regarding network connectivity and age effects on ded-

fferentiation and segregation scores are reported here. First, we examined the multivariate con-

ectivity space ( Fig. 6 ). Similar to the original analyses, the multivariate space is characterized by

ifferences between limbic and default vs. somato-motor and dorsal attention/control vs. visual

etworks. 

Next, task differentiation scores were computed which describe the similarity of connectiv-

ty patterns for each network. As in the original analyses, increased age was associated with
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Fig. 8. Schaefer 200 Atlas Network Segregation with Age . (A) Age-related decreases in network segregation were replicated 

for control, default mode, somato-motor B, and dorsal attention networks, but not salience/ventral attention A network. 

(B) Age-related increases in network segregation were replicated for the somato-motor A, but not the salience/ventral 

attention B network. 
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ecreased task differentiation for control, default, and salience/ventral attention ( Fig. 7 ). The

on-linear effect of age on somato-motor differentiation also replicated. However, the negative

ffect of age on the temporo-parietal network was not replicated ( r = –.14, p = .105), although

he finding was in the same direction. Compared to the 100 parcel version of this atlas, the 200

arcel atlas also includes regions of the temporo-parietal junction which may account for this

ifference in findings. 

Next, we examined network segregation for the results using the Schaefer 200 atlas. As in

he original analyses, older age was associated with decreased segregation for control, default,

omato-motor B, and dorsal attention networks and increased segregation of somato-motor A

etwork ( Fig. 8 A). The original finding of a negative effect of age on salience/ventral attention A

 r = –.13, p = .127) and a positive effect of age on salience/ventral attention B ( r = –.01, p = .869)

egregation did not replicate with the more fine-grained 200 parcel atlas (although it trended in

he same direction for the A subnetwork). The weakened network segregation findings for the

alience/ventral attention sub-networks suggest that the age effects may not be homogenous

cross the individual regions of these networks. 

. Experimental Design, Materials and Methods 

.1. Experimental design 

This dataset includes 144 participants, ages 20–86, recruited from the greater Toronto area

or a study on functional activity during cognitive control (for more details on the larger study

ee [1 , 12] ). Participants underwent f MRI while they completed three different tasks of cognitive

ontrol that were programed with E-prime 1.0 (scripts to replicate the experiment can be found

ere: https://osf.io/ceua6/ ). During scanning, participants lied supine on the scanner bed with a

irror in front of their face that reflected a computer screen that presented the experimental

timuli. Participants had earplugs in and headphones on to block out scanner noise, and a mi-

rophone allowed for communication with the experimenter between scans. Participants held a

esponse box in their right hand and responded to stimuli on the screen with their index and

iddle fingers (specific finger responses were counterbalanced across participants). For all tasks,

etters were presented in courier new font in the center of the computer screen on a dark gray

ackground (see [12] Fig. 1 for a schematic of each task). 

Inhibition and initiation were measured with a go/no-go paradigm in which participants were

resented with a series of uppercase letters and told to respond (i.e., “go”) when they saw the

etter “X” and not respond (i.e., “no-go”) for all other letters. No-go stimuli (i.e., non-Xs) were

andomly drawn from a pool of 20 other letters: A, B, C, D, E, F, G, H, I, J, L, M, N, O, P, Q, R, S, T,

nd U. The task was separated into an “inhibition” block in which there were more go trials than

o-go trials (120 go, 40 no-go) and a shorter “initiation” block in which there were more no-go

rials than go trials (20 go, 60 no-go). The order of these two blocks was randomized across

articipants. Letter stimuli were presented for 400 ms with an average interstimulus interval

fixation cross) of 1200 ms that was randomly jittered between 900 and 1500 ms. The total

ime for the go/no-go task was 6 minutes 24 seconds. 

Shifting was measured with a local-switching paradigm in which participants saw an upper-

r lowercase vowel or consonant letter in the center of the screen and one of two cues above

he letter to categorize the letter as either uppercase/lowercase or consonant/vowel. Letters were

seudo-randomly selected from the following set: A, a, E, e, I, i, U, u, F, f, M, m, R, r, T, and t. The

ues and letters were presented in two different colors (blue and green) based on the judgement

ype. The cues were positioned above the central letter to the right and left, and the position

f the cues and corresponding color were counterbalanced across judgment types. There was a

otal of 60 trials of which 30 were uppercase/lowercase judgments and 30 were consonant/vowel

udgments. Trials were also ordered in such a way that half of the trials repeated the same

udgment (e.g., vowel/consonant followed by vowel/consonant) and half of the trials switched

https://osf.io/ceua6/
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judgment type (i.e., vowel/consonant followed by uppercase/lowercase). Letters were presented

for 20 0 0 ms with a mean interstimulus interval (fixation cross) of 4500 ms that was randomly

jittered between 150 0 and 740 0 ms. The total time for the switching paradigm was 7 minutes

26 seconds. 

Working memory was measured using a standard n-back paradigm with 0-, 1-, and 2-back

loads in which participants saw a series of uppercase letters and had to respond if the letter was

a “target” or “non-target”. For 0-back, the targets were “X” and all other letters were non-targets

(pseudo-randomly selected from all other non-X letters). For 1-back, targets were letters that

matched the previously presented letter within the sequence (pseudo-randomly selected from all

non-X letters). For 2-back, targets were letters that matched the letter presented two positions

back in the sequence (pseudo-randomly selected from all non-X letters). The task was organized

into three blocks (one for each condition), and the order of the blocks was randomized. Within

each block there were 30 target and 60 non-target trials. Letters were presented for 500 ms with

an average interstimulus interval (fixation cross) of 1200 ms that was randomly jittered between

900 and 1500 ms. The total time for the working memory paradigm was 8 minutes 52 seconds.

All participants were scanned on the same Siemens Trio 3T magnet at Baycrest Health

Sciences while they completed the three f MRI tasks of cognitive control. Blood-oxygen-level-

dependent (BOLD) f MRI data were collected with a 12-channel head coil using an echo-planar

imaging sequence with 40 axial slices acquired parallel to the anterior-posterior commissure

with the following parameters: TR = 2,0 0 0 ms, TE = 27 ms, Flip Angle = 70 °; FOV = 192 mm,

6 4 × 6 4 × 40 acquisition matrix; 3 mm 

3 isotropic voxels (with .5 mm gap). A total of 216

volumes were collected for the go/no-go task; 223 volumes collected for task switching; and

266 volumes collected for the n-back task. High resolution anatomical scans used for warping

the BOLD images to MNI space were acquired with a T1-weighted MP-RAGE sequence in which

160 axial slices were collected with the following parameters: TR = 20 0 0ms, TE = 2.63 ms,

FOV = 256 mm; 192 × 256 × 160 acquisition matrix; 1 mm 

3 isotropic voxel. 

2.2. fMRI preprocessing 

Functional data for each task were preprocessed with a mix of AFNI functions as well as

Octave and MATLAB scripts using the Optimizing of Preprocessing Pipelines for NeuroImaging

software package (OPPNI; an overview and more details of the preprocessing pipeline can be

found in [13] ). The latest version of OPPNI software is available upon request ( https://github.

com/strotherlab/oppni ). For the current dataset, a fixed pipeline for all participants was con-

ducted with the following steps: (1) 3dvolreg in AFNI for rigid-body alignment of the timeseries

to correct for movement; (2) removal and interpolation of outlier volumes using Octave scripts;

(3) 3dretroicor in AFNI for correction for physiological (i.e., cardiac and respiratory) noise; (4)

3dTshift in AFNI for slice timing correction; (5) 3dmerge in AFNI spatial smoothing with a 6 mm

smoothing kernel; (6) temporal detrending with in-house MatLab scripts; (7) regression of six

motion parameter estimates (X, Y, and Z translation and rotation) on the timeseries with in-

house MATLAB scripts; (8) regression of signal in tissue of no interest (white matter, vessels and

cerebrospinal fluid) on the timeseries with in-house MATLAB scripts; and finally (9) warping to

MNI space and resampling to 4 mm 

3 isotropic voxel. 

2.3. Functional connectivity methods 

Functional connectivity was computed for each of the three f MRI tasks using the CONN tool-

box [14] in MATLAB. The primary results from the Schaefer100_17 atlas parcellation can be found

in the related manuscript [1] and are also summarized here ( Table 1 ). Two additional atlases

were also used to replicate the primary findings: (1) an iteration of the network coordinates

provided by Power and colleagues [4] that included 229 5 mm spherical nodes associated with

https://github.com/strotherlab/oppni
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0 functional networks (Power229_10) and (2) the Schaefer [2] 200 parcel, 17 network atlas

Schaefer200_17) which is roughly equivalent to the 100 parcel atlas, but with smaller and more

ne-grained parcels. See Figs. 1 and 5 for side-by-side comparisons of the different atlases. 

Using CONN, task design (i.e., trial onsets) was first regressed out of the timeseries. Next,

he BOLD signal in each voxel was converted to a percent signal change value by scaling the

hole timeseries to the average timeseries value of that voxel. Percent signal change values

ere averaged across voxels within each of the nodes or parcels for the corresponding atlas.

inally, the timeseries for each node or parcel were correlated (using Pearson’s correlation) to

reate a correlation matrix associated with each task condition. For the go/no-go task, timeseries

orrelations were computed separately for the “inhibition” (i.e., more “go”) and “initiation” (i.e.,

ore “no-go”) blocks. For task switch, the entire timeseries was used to compute the correlation.

or n-back, the timeseries correlations were computed separately for each working memory load

lock (0-, 1-, and 2-back). This resulted in the current dataset which includes six correlation

atrices per participant representing the functional connectivity during different conditions of

ognitive control (inhibition, initiation, switching, 0-, 1-, and 2-back working memory) for each

f the three brain atlases. All functional connectivity matrices are square, symmetric, positive

emidefinite matrices (of size 100 × 100, 229 × 229, or 200 × 200 depending on the atlas

sed) with a diagonal of 1 and values ranging between -1 and 1. 
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