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Simple Summary: Long-term preservation of semen is a pivotal step for artificial insemination
in most farm animal species, but it is associated with cellular insults at the cell membrane and
cytoskeleton level as well as the generation of reactive oxygen species (ROS). We highlight the
recent strategies to combat these negative effects through defending against the ROS via antioxidant
nanoparticles or through repairing/regenerating the damaged sperm through using liposomes and
most recently exosomes derived from the reproductive tract or stem cells.

Abstract: Cryopreservation is an essential tool to preserve sperm cells for zootechnical management
and artificial insemination purposes. Cryopreservation is associated with sperm damage via different
levels of plasma membrane injury and oxidative stress. Nanoparticles are often used to defend against
free radicals and oxidative stress generated through the entire process of cryopreservation. Recently,
artificial or natural nanovesicles including liposomes and exosomes, respectively, have shown
regenerative capabilities to repair damaged sperm during the freeze–thaw process. Exosomes possess
a potential pleiotropic effect because they contain antioxidants, lipids, and other bioactive molecules
regulating and repairing spermatozoa. In this review, we highlight the current strategies of using
nanoparticles and nanovesicles (liposomes and exosomes) to combat the cryoinjuries associated with
semen cryopreservation.
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1. Introduction

Semen cryopreservation contributes to genetic improvement through artificial insemination,
eliminates geographical barriers in artificial insemination (AI) application, and supports the preservation
of endangered breeds, thus the conservation of biodiversity. However, the sperm freezing process
induces ultrastructural, biochemical, and functional changes of spermatozoa. Especially, spermatozoa
membranes and chromatin can be damaged, sperm membrane permeability is increased, and hyper
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oxidation and formation of reactive oxygen species takes place, affecting fertilizing ability and
subsequent early embryonic development [1].

Cryopreservation of mammalian sperm is a complex process affected by several factors for
obtaining good quality semen for AI [2], such as type of cryoprotectants or extenders, rates of cooling
and thawing, and method of packaging [3,4]. Cryopreservation is associated with damage on the level
of the cell membrane, cytoskeleton, DNA, and mitochondria due to the generation of reactive oxygen
species (ROS), which affect the entire cellular functions and genome instability [5]. Post-thawing
trauma and cellular injury in gametes have been illustrated to affect the cell membrane, organelles,
and biochemical perturbation [6]. Sperm cooling and freezing causes membrane phospholipids to
accumulate due to van der Waals forces, and transition occurs from liquid crystal phase to gel phase.
During thawing, irregular voids occur in the cell membrane that lead to damage to the membrane
structure and irregular ion and water leakage both into and out of the cell [7].

In living organisms, generation of ROS, such as hydrogen peroxide (H2O2), superoxide anions
(O2

−), and hydroxyl radicals (OH−), may be produced as a result of radiation [8], bio-activation of
xenobiotics [9], inflammation [10], cell metabolism [11], decompartmentalization of transition metal
ions [12], activities of redox enzymes [13], and deficit in the antioxidant defense [14,15]. Physiologically,
free radicals level has a positive impact on sperm cells, including capacitation, hyper-activation,
and sperm-oocyte fusion [14]. Therefore, ROS with a physiological limit are required for spermatozoa
to attain the fertilizing ability [16], acrosome reaction/acrosomal exocytosis, and sperm motility [17].
However, during semen cryopreservation, the cold shock and the atmospheric oxygen [18,19] increase
ROS production and cause an imbalance between free radicals and the antioxidant defense in the
semen [20]. Increased ROS production can cause toxic effects in the sperm function [21], in terms of
inactivating glycolytic enzymes through acrosomal damage [22], lipid peroxidation (LPO), and reducing
sperm fertility [23–25]. Notably, LPO is a pathological outcome of several diseases and stress
conditions [26]. The LPO process caused by ROS (H2O2) is detrimental to sperm survivability.
As a result of high contents of polyunsaturated fatty acids in the plasma membrane and lack of
antioxidant enzymes, mammalian spermatozoa are susceptible to LPO induced damage and loss of
sperm functions [27,28]. Increasing ROS generation under oxidative stress (OS) leads to increased
sperm plasma membrane failure, damaged spermatozoa [29], reduced sperm cell cytoplasm [30],
and finally a marked reduction in viability, the integrity of the sperm membrane, and fertilizing ability
and increased damage to sperm DNA [31].

Moreover, the process of freezing has resulted in a significant reduction in GSH content in frozen
semen [32,33]. Baghshahi et al. [34] showed that cryopreservation of ram spermatozoa may cause
damage to the function and structure of sperm cells, in terms of reduced semen quality and sperm
characteristics. This is due to the reduction of the temperature that is associated with the OS, which has
been defined as an imbalance between oxidants and cellular antioxidant mechanisms and is induced
by the generation of ROS [35].

In the last few decades, most of the research work was focused on methods/approaches to
improve the freezing efficiency of semen, considered to be a significant issue among reproductive
biotechnologists. The approaches employed were mostly based on the protection of spermatozoa
against the damaging effects of the freezing procedure, including the use of different extenders,
cryoprotectant agents, antioxidants, and nutritional components. Moreover, some reports focused on
the repair of the damaged spermatozoa during freezing and thawing.

There are many potential applications of nanomaterials in farm animal reproduction such
as transgenesis and targeted delivery of substances to a sperm cell, antioxidants, antimicrobial
properties, and special surface binding ligand functionalization as well as their application in sperm
processing and cryopreservation. The antioxidant properties of some nanoparticles (NPs) are among
the most promising characteristics for their application in protecting sperm cell functions during
cryopreservation [36]. The use of NPs has markedly increased in various fields of animal reproduction
including herd fertility issues [36]. Moreover, recent approaches showed the beneficial effects of using
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liposomes and extracellular vesicles (EVs) including exosomes of different origins to ameliorate the
damaging effects of cryopreservation on spermatozoa. In this review, we highlight the recent strategies
to defend against or repair the damage that occurs during cryopreservation of semen such as the use
of nanoparticles as a defensive approach and nanovesicles including exosomes and liposomes as a
repair and defense mechanism for improving the outcomes of semen cryopreservation in different
animal species.

2. Seminal Plasma, Antioxidants, and Their Effect on Sperm Function

Antioxidants are compounds that scavenge or oppose the actions of ROS [37]. Antioxidants work
as chelators or binding proteins, and their three main functions are to suppress the generation of ROS
and eliminate ROS that are already present [38].

The antioxidant defense system includes an enzymatic mechanism in seminal plasma and sperm
cells such as superoxide dismutase, glutathione reductase, glutathione peroxidase, and catalase.
However, the nonenzymatic mechanism includes reduced glutathione (GSH), vitamins (A, C, and E),
taurine, and hypotaurine. The rate of LPO in sperm cells is determined by the balance between
antioxidative and pro-oxidative mechanisms in the semen [32].

Catalase and superoxide dismutase are antioxidant enzymes, which activate scavenging of ROS.
Exposure of spermatozoa, primarily to anaerobic conditions during natural mating, may reduce the
number of damaged spermatozoa by ROS. Female oviduct fluids contain substantial taurine levels,
as it is an important protective factor of spermatozoa from ROS accumulation [39]. For instance,
the catalase enzyme exists in ejaculate for the protection of the spermatozoa through the conversion of
H2O2 into oxygen and water [26]. This prevents the generation of hydroxyl radicals (OH−), which are
powerful oxidants, by the Fenton reaction [40]. However, bull spermatozoa contain little expression
of catalase, which makes them prone to OH− toxicity [41]. Moreover, the concentration of catalase is
reduced during semen processing [42]. The addition of antioxidants such as CAT in the buffalo [43],
ram [33], boar [44], and bull [45–47] semen protected spermatozoa from the damaging effects of ROS
and improved motility and membrane integrity during cooling storage. Elevation of the amount of
H2O2 can occur as a result of abnormal sperm with residual cytoplasm or abnormal mid-piece [48].
Equine semen is rich in prostate-derived catalase, and therefore dilution or removing the seminal
plasma decreases or adversely affects the scavenging capacity of the ROS [49].

Glutathione (GSH) is a tripeptide that comprises cysteine, glutamate, and glycine ubiquitously
expressed in the cells. The cysteine subunit plays a pivotal role in scavenging free radicals. GSH acts
as an intracellular defense against OS [50].

Exposure of semen to oxygen and visible light radiation during in vitro fertilization or AI resulted
in ROS generation and damaged spermatozoa, reduced motility, and reduced membrane integrity in
humans and bovines [51–53]. Under these conditions, exogenous addition of catalase, GSH, taurine,
superoxide dismutase, and other antioxidants can lead to the maintenance of bovine sperm motility [52].
Supplementation of the whole milk semen extender with hypotaurine or taurine did not improve the
motility of bovine spermatozoa in post-thawed semen [54]. In horses, the usage of catalase in extended
semen was reported for cooled semen storage [55].

As antioxidants reduce the production of free radicals following the freeze–thaw process [56],
the application of ROS scavengers is likely to improve sperm function and protect sperm from the
deleterious effects of cryopreservation [57,58]. The detrimental effects of cryopreservation could be
ameliorated by adding an exogenous source of antioxidants to the freezing medium to reverse OS [32].
This strategy together with other techniques for the removal of defective spermatozoa and cellular
debris from semen could be used for gains in the viability of spermatozoa and reducing the necessary
spermatozoa to a minimum number per AI dose [20].
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3. Nanoparticles (NPs)

Several factors affect semen quality and fertilizing ability, including genetic, health, nutrition,
season, stresses, and semen cryopreservation [59,60]. Multiple factors lead to poor quality semen [61].
The generation of ROS by nonviable sperm cells in the semen samples impairs sperm function [62].
To obtain good male reproduction, removing unviable or degenerated sperm cells and scavenger ROS
from semen samples is important. Recent nanotechnologies reflect new prospects for developing novel
and noninvasive techniques for sperm manipulation [63–65].

3.1. Definition and Characterization of NPs

NPs are molecules with <100 nm diameter and can be applied for different bioapplications
including reproductive biology because they have unique physical and chemical properties [60,66].

Compared to molecules or bulk solids, there are several differences in the structural properties
of the NPs [67]. The key factor of NP activity is the characteristics of their surface, such as size,
charge density, and hydrophobicity [68,69]. Manipulation into a nanoform can increase the absorption
and bioavailability of the functional ingredients [70]. Particle size can affect or change the properties of
the original material [71]. The rapid progress in nanotechnology shows great potential for application in
both medical and nutritional sciences because NPs possess unusual and advantageous properties that
are different from ordinary or microscale materials in terms of their size and high surface reactivity [72].
NPs have been included in pharmaceuticals to increase the bioavailability of drugs and to target
particular tissues/organs [73]. Moreover, NPs show increased cellular uptake, binding properties,
and reactivity. Furthermore, the antioxidant properties of NPs recently contributed to optimizing the
cryopreservation protocols [74].

Small sizes of nanoparticles have shown better integration possibilities in cellular processes and
physiological pathways without interfering with the normal biological system. Nanomaterials used
in drug delivery have great potential to carry large amounts and different types of biological cargo.
The nanosystem abates the drug from rapid degradation and clearance through the reticuloendothelial
system. The surface can be modified to react with environmental factors giving responsive drug
release [75–77]. Different types of NPs are new forms of materials with promising biological properties
and low toxicity and seem to have a high potential for passing through physiological barriers and
accessing specific target tissues [78].

3.2. Metal Nanoparticles and Sperm Cryopreservation

Apoptosis, reduced cellular metabolism, and defective acrosome reaction are commonly caused
by the increase of ROS levels [79]. Durfey et al. [80] used conjugated magnetic NPs for molecular-based
selection of boar spermatozoa, and results showed that the nanoselected spermatozoa had improved
motion characteristics with a higher proportion of progressive spermatozoa and straightness.
Other reports [81,82] used NPs from FeO conjugated with annexin V to determine the early apoptosis
of porcine and bovine sperm cells, respectively.

The use of antioxidants, such as nano-zinc oxide, can be important in reducing ROS generation and
increasing sperm survival [75–77,83,84]. Using zinc nanoparticles (50 µg/mL) or selenium nanoparticles
(1 µg/mL) in a SHOTOR extender enhanced morphological characteristics and ultrastructure of
camel epididymal spermatozoa after cryopreservation via the reduction of apoptosis and lipid
peroxidation [60].

In Holstein bulls, supplementing a semen extender with Se-NPs (1.0 µg/mL) improved post-thaw
sperm quality and conception rate through reducing apoptosis, LPO, and sperm damage [85]. Moreover,
in rams, Hozyen et al. [86] and Nateq et al. [87] used SeNPs (1 µg/mL) and showed improvement
in motility, viability index, and membrane integrity, while acrosome defects, DNA fragmentation,
and malondialdehyde (MDA) concentrations were reduced.



Animals 2020, 10, 2281 5 of 16

The addition of green synthesized gold nanoparticles (GSGNPs) (10 ppm) to a Tris-based
extender improved buck semen freezing by maintaining the sperm membrane and acrosome integrity
post-thawing. In addition, GSGNPs improved antioxidant capacity and consequently scavenged ROS
in a buck semen extender [88]. GSGNPs are nontoxic and possess several medical applications [89].
While gold and silver NPs can penetrate the plasma membrane and can be detected inside the human
sperm nucleus [90], no evidence regarding their spermatoxicity has been reported (Table 1).

Table 1. Summary of the current reports using nanoparticles (NPs) for semen cryopreservation.

Animal Species Nanoparticle (NPs) The Effects Reference

Goat bucks Nano-lecithin Improved motility, viability, and hypo-osmotic swelling
test and lower apoptosis. [91]

Bulls
Nano-lecithin-based
extender with
glutathione peroxidase

Enhanced plasma membrane integrity and reduced
malondialdehyde (MDA) concentration. [92]

Bulls
Selenium NPs Improved kinematic sperm quality, antioxidative

defense, and decreased apoptotic and necrotic cells. [85]

Zinc NPs Improved plasma membrane integrity and
mitochondrial functions. [93]

Camel Selenium NPs
Zinc NPs

Improved sperm functions (progressive motility, vitality,
sperm membrane integrity). Maintained ultrastructural
morphology and decreased apoptosis. Increased
antioxidative defense.

[60]

Goat

Mint, thyme, and
curcumin
nanoformulations
(NFs)

Improved progressive motility, vitality, and plasma
membrane integrity; antioxidative defense; chromatin
decondensation. Decreased apoptosis.

[94]

Goat
Green synthesized
gold nanoparticles
(GSGNPs)

Improved motility, survivability, membrane integrity,
acrosome integrity, and antioxidative defense. [88]

Rabbit Curcumin NPs Enhanced sperm motility and antioxidative defense.
Reduced apoptotic and necrotic spermatozoa. [95]

3.3. Herbal Extract Nanoparticles and Sperm Cryopreservation

Recently, several studies examined herbal extracts as natural antioxidants and suppressors of lipid
peroxidation in semen preservation of farm animals. For instance, Moringa oleifera leaf extract improved
the antioxidative defense for cryopreserved ram and buffalo spermatozoa [96,97]. Arctiumlappa root
extract improved spermatozoa survivability and abnormality with appropriate progressive motility
when used as a supplement with cryopreserved ram semen [98]. Curcumin extract exerted antioxidative
effects and improved spermatozoa post-thaw quality when used as a supplement with cryopreserved
bovine and rabbit semen [95,99,100]. Moreover, Alnusincana bark extract [101] and Albiziaharveyi leaf
extract [102] showed protective antioxidative effects when used as a supplement with cryopreserved
ram and bovine semen, respectively. Ginger and echinacea extracts improved the spermatozoa quality
and fertilization ability when used as a supplement with cryopreserved ram semen [103]. To this
end, Ismail et al. [94] reported that mint, thyme, and curcumin extract nanoformulations enhanced
sperm functions and redox status of post-thawed buck semen and decreased sperm apoptosis and
chromatin decondensation. Supplementing the extender with curcumin nanoparticles (1.5 µg/mL) also
improved the quality of post-thawed rabbit sperm by reducing apoptosis and enhancing antioxidative
defense [95] (Table 1).

3.4. Vitamins Nanoparticles and Sperm Cryopreservation

Vitamin E nanoemulsions (NEs) protected red deer epididymal sperm from oxidative damage,
maintained mitochondrial activity, protected the acrosome integrity, prevented cell death, and reduced
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ROS and LPO after OS induction (with 100 µM Fe2+/ 500 µM ascorbate) and hence improved sperm
velocity and progressive motility [104].

4. Artificial Exosome-Like Vesicles (Liposomes) for Semen Cryopreservation

A liposome is a spherical nanovesicle with a single lipid bilayer that is produced artificially
through disrupting plasma membranes via sonication [105]. Liposomes can be used as a vehicle
for delivering nutrients and drugs to target tissues [106,107]. Liposomes can be loaded with
antioxidants such as lycopene [108] and quercetin [109] and result in a significant increase in
sperm total and progressive motility as well as increased viability, plasma membrane integrity,
and mitochondria activity in rooster spermatozoa. Moreover, liposomes can be loaded with lipid-related
content (such as lecithin [110]) to improve the plasma membrane regeneration efficacy during the
freeze–thaw process of ram spermatozoa. Liposomes were used as a cryoprotectant additives in
several animal species including equine [111,112], buffalo [113], ovine [107,114,115], porcine [116],
and bovine [117] with reported improvement in fertility after AI [118]. It has been proposed that
liposomes with their contents of phospholipids (phosphatidylserine, dioleoylphosphatidylcholine,
phosphatidylcholine, dipalmitoylphosphatidylcholine, and dimyristoylphosphocholine) and saturated
and unsaturated fatty acids can fuse with the sperm plasma membrane and abate the damage to
spermatozoa caused by the freeze–thaw process [119,120] (Figure 1). For instance, in rams, liposomes
comprising egg-phosphatidylcholine and dipalmitoylphosphatidylcholine used as a supplement with
washed spermatozoa provided immediate protection against cold shock as indicated by motility
preservation [121]. Similarly, in stallions, liposomes comprising a mixture of egg phosphatidylcholine
and phosphatidylethanolamine (named E80-liposomes) were efficient in preserving post-thaw sperm
motility [112]. In contrast, in bovines, liposomes composed of dioleoyl-glycero-phosphocholine
and dioleoyl-glycero-phospho-glycerol resulted in higher post-thaw survival, progressive motility,
and acrosome reaction when compared to dioleoyl-glycero-phosphocholine alone [117]. The transition
of lipid to gel phase during cooling and freezing is highly dependent on the lipid composition of the
membranes, and therefore the liposome fusion facilitates lipid and cholesterol transfer, which leads to
rearrangement of cell membrane components and modifies the membrane physicochemical properties,
thereby improving the cryostability of the spermatozoa [117,118]. OptiXcell® is one such commercial
product that uses the liposome-based commercial extender and is currently used for several animal
species [122–125].

Figure 1. The proposed mechanism of spermatozoa protection through exosomes and liposomes.
Liposomes with their contents of fatty acid can replenish the damaged sperm plasma membrane caused
by freezing/thawing. Liposomes when artificially loaded with certain chemicals and exosomes with
their contents of miRNA, mRNA, proteins, and metabolites can fuse and transfer their cargo into the
subacrosomal space and inside the spermatozoa.
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5. Potential Uses of Exosomes in Semen Cryopreservation

Extracellular vesicles (EVs) including exosomes are membrane-bounded nanovesicles containing
proteins, lipids, and nucleic acids (microRNAs and mRNAs) involved in cellular communication [126,127].
A wide variety of cells release EVs in physiological and pathological circumstances [128]. EVs play
major roles in numerous biological communications, including reproduction, serving as potential
theranostic candidates for normal and abnormal conditions [129].

Unlike other EVs, exosomes are secreted from cells by the exocytosis pathway. Exosomes are
like a snapshot of the originating cells, and the variability of the secreting cell is reflected in the
exosomal compositions [126]. Once these exosomes are taken by target cells, they transfer their cargo,
which includes proteins [130,131], miRNA [132,133], and mRNA [134–136], to the target cells (Figure 1).
This cargo may participate in energy pathways, protein metabolism, and maintenance of recipient cells.

Thus, exosomes confer different epigenetic and phenotypic modifications on recipient cells that
affect the viability, tolerance to the external factors, and regenerative capabilities of their target cells [137].
Exosomes have also been found to play important bioactive functions such as sperm maturation,
capacitation, acrosome reaction, and fertilization [138]. Recent findings regarding the regenerative
potential of exosomes have guided the research towards the exploitation of exosomal potential for
improving the outcomes of sperm freezing [137].

Different growth factors associated with exosomes have been reported to play an active role in
the repair and accelerated healing of damaged tissue [139]. Additionally, the therapeutic potential of
exosomes has also been reported to be effective in arthritis, diabetes [140], immunotherapy, nervous
system-related issues [141], cellular aging, and tumors [142]. Similarly, the treatment of spermatozoa
with exosomes during the freezing procedure was found effective in improving the post-thaw quality
of canine [137], porcine [138], and rat semen [143].

5.1. Effect of Exosomes on Sperm Motility and Viability

Motility and viability of spermatozoa are very important quality-related parameters that have
a direct influence on fertility. A strong correlation was found between increasing the concentration
of seminal plasma exosomes and the sperm motility and viability of boar spermatozoa [138] when
preserved at liquid stage (17 ◦C for 10 days). Moreover, mesenchymal stem cell (MSC)-derived
microvesicles improved the frozen/thawed quality of rat spermatozoa [143]. It has been proposed
that MSC-derived microvesicles shuttle surface adhesion molecules, such as CD54 (ICAM-I), CD106
(VCAM-I), CD29 (β1-Integrin), and CD44, and consequently increase the adhesive properties of
sperm [143]. This improved motility was demonstrated in liquid storage (17 ◦C) [138] as well as frozen
dog [137] and rat spermatozoa [143]. The amplitude of lateral head displacement also improved in
exosome-treated dog spermatozoa [137]. Interestingly, stem-cell-derived conditioned medium and
exosomes improved motility, viability, mitochondrial activity, and membrane integrity post-thawing in
canine semen cryopreservation [144,145].

5.2. Effect of Exosomes on Sperm Capacitation and Structural Integrity

The structural integrity of spermatozoa is considered imperative for the proper functioning and
fertilization of oocytes. The structures including the plasma membrane (physiological barrier [138]),
acrosome (sperm penetration), and chromatin (embryo quality [146]) affect gamete interaction and
embryonic development. Damage to these structures can lead to fertilization failure. Exosomes could
transfer spermadhesins (AWN and porcine seminal protein, PSP-1) to the sperm membrane that could
help to maintain sperm function through inhibiting premature capacitation (decapacitation) during
long-term liquid storage [138]. Similarly, exosomes derived from mesenchymal stem cells increased
the fraction of sperm with an intact acrosome and increased the expression of transcripts related to the
repair of the plasma membrane (ANX 1, FN 1, and DYSF) and chromatin material (H3 and HMGB 1)
in frozen/thawed dog spermatozoa [137]. In bovines, oviduct-derived EVs significantly stimulated the
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acrosome reaction by increasing the levels of protein tyrosine phosphorylation (PY) and increasing
intracellular calcium levels in frozen/thawed spermatozoa [147]. In wildlife animals (red wolves and
cheetahs), oviduct-derived EVs showed improvement in sperm motility and acrosome integrity and
prevented the premature acrosome reaction post-thawing [148].

Capacitation is a physiological process that enables the spermatozoa to fertilize the oocytes.
Naturally, capacitation occurs during spermatozoa transit through the uterus and oviduct. In vitro
storage of spermatozoa requires inhibition of premature capacitation for maintaining sperm
survival [138]. The higher concentration of seminal plasma isolated exosomes significantly decreased the
percentage of capacitated spermatozoa upon artificially induced capacitation using 3 mg/mL BSA [138].

5.3. Effect of Exosomes on Antioxidant Capacity

Oxidative stress is one of the major causes of low fertility of post-thaw spermatozoa [149].
A. Mokarizadeh et al. [143] reported increased antioxidant activity in frozen/thawed rat spermatozoa
treated with exosomes during freezing, i.e., decreased expression of mitochondrial ROS modulator
(ROMO1) gene in exosome-treated spermatozoa [137]. Moreover, Du et al. [138] showed increased
total antioxidant capacity activity and decreased malondialdehyde content when diluents were
supplemented with seminal plasma exosomes. It was hypothesized that the enhanced antioxidant
capacity of spermatozoa was either due to the horizontally transferred antioxidant and other factors
including mRNA and proteins from exosomes or due to the modified hydrophobic character of the
membrane. Table 2 describes the available literature that used exosomes for semen preservation either
in cooling or in freezing.

Table 2. Main literature reporting the beneficial effects obtained following the supplementation of
exosomes for semen preservation.

Species Sources of
EVs/Exosomes

Condition of
Storage The Improved Parameters References

Pig Seminal plasma 17 ◦C for 10 days
Viability, motility, plasma membrane
integrity, antioxidant capacity, and
MDA reduction

[138]

Pig Oviduct-derived Freezing Survival and motility [150]

Rat Bone marrow-derived
mesenchymal stem cells Freezing

Viability, motility, total antioxidant
capacity, and increased surface
adhesion molecules

[143]

Dog

Amniotic-derived
mesenchymal stem cells
and conditioned
medium

Cooling and
freezing Viability, motility [144,145]

Dog Adipose-derived
mesenchymal stem cells Freezing Viability, motility [137]

Red wolves and
cheetahs Oviduct-derived Freezing Motility and acrosome integrity [148]

Bovine Oviduct-derived Freezing Viability [147]

6. Conclusions

Current trends include using nanoparticles and natural or artificial nanovesicles such as exosomes
and liposomes to improve the cryopreservation of semen. Nanoparticles mostly work as antioxidants
(Figure 2) with significant effects when compared with corresponding metals or herb extracts.
The functional molecules present inside the exosomes such as miRNA, mRNA, and proteins (Figure 2)
are involved in the proper execution of a wide variety of physiological interactions that can help resolve
issues related to the fertility of male gametes. Liposomes, with their contents of phospholipids and
lipid chains, can replace the damaged lipid skeletons of the frozen/thawed spermatozoa. The treatment
of spermatozoa with exosomes improved the efficiency of freezing procedures; however, further
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in vivo and fertility studies are essential to investigating the influence of exosome treatment on sperm
functions. Since liposomes are currently available as a commercial product for semen cryopreservation,
nanoparticles and nanoformulations as well as EVs and exosomes derived from the reproductive tract
or stem cells should adhere to the appropriate manufacturing practices, quality control measurements,
and safety and efficacy protocols for commercial purposes in AI.

Figure 2. The overall effects of nanoparticles, exosomes, and liposomes in improving semen
cryopreservation and reducing cryoinjury. Nanoparticles either from metals or from natural herbs
act mainly as antioxidants, while exosomes can deliver bioactive components such as antioxidant
enzymes, proteins, lipids, mRNA, and miRNA to protect sperm against cryoinjury such as that caused
by reactive oxygen species (ROS) and lipid peroxidation (LPO). Liposomes can fuse with the sperm
plasma membrane and replenish the damaged phospholipids caused by freezing/thawing.
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Büyükleblebici, S.; Aydos, S. Effects of antioxidants on post-thawed bovine sperm and oxidative stress
parameters: Antioxidants protect DNA integrity against cryodamage. Cryobiology 2010, 61, 248–253.
[CrossRef]

32. Gadea, J.; Sellés, E.; Marco, M.A.; Coy, P.; Matás, C.; Romar, R.; Ruiz, S. Decrease in glutathione content in
boar sperm after cryopreservation: Effect of the addition of reduced glutathione to the freezing and thawing
extenders. Theriogenology 2004, 62, 690–701. [CrossRef]

33. Maxwell, W.; Stojanov, T. Liquid storage of ram semen in the absence or presence of some antioxidants.
Reprod. Fertil. Dev. 1996, 8, 1013–1020. [CrossRef] [PubMed]

34. Baghshahi, H.; Riasi, A.; Mahdavi, A.; Shirazi, A. Antioxidant effects of clove bud (Syzygium aromaticum)
extract used with different extenders on ram spermatozoa during cryopreservation. Cryobiology 2014, 69,
482–487. [CrossRef]

35. Stradaioli, G.; Noro, T.; Sylla, L.; Monaci, M. Decrease in glutathione (GSH) content in bovine sperm after
cryopreservation: Comparison between two extenders. Theriogenology 2007, 67, 1249–1255. [CrossRef]

36. Hashem, N.M.; Gonzalez-Bulnes, A. State-of-the-Art and Prospective of Nanotechnologies for Smart
Reproductive Management of Farm Animals. Animals 2020, 10, 840. [CrossRef]

37. Bansal, A.K.; Bilaspuri, G. Impacts of oxidative stress and antioxidants on semen functions. Vet. Med. Int.
2011, 2011, 1–7. [CrossRef]

38. Agarwal, A.; Virk, G.; Ong, C.; du Plessis, S.S. Effect of oxidative stress on male reproduction. World J.
Men Health 2014, 32, 1–17. [CrossRef]

39. Alvarez, J.G.; Storey, B.T. Evidence for increased lipid peroxidative damage and loss of superoxide dismutase
activity as a mode of sublethal cryodamage to human sperm during cryopreservation. J. Androl. 1992, 13,
232–241. [PubMed]
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