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Abstract

COVID-19 pandemic has fueled the interest in artificial intelligence tools for quick diagno-
sis to limit virus spreading. Over 60% of people who are infected complain of a dry cough.
Cough and other respiratory sounds were used to build diagnosis models in much recent
research. We propose in this work, an augmentation pipeline which is applied on the pre-
filtered data and uses i) pitch-shifting technique to augment the raw signal and, ii) spectral
data augmentation technique SpecAugment to augment the computed mel-spectrograms. A
deep learning based architecture that hybridizes convolution neural networks and long-short
term memory with an attention mechanism is proposed for building the classification model.
The feasibility of the proposed is demonstrated through a set of testing scenarios using
the large-scale COUGHVID cough dataset and through a comparison with three baselines
models. We have shown that our classification model achieved 91.13% of testing accuracy,
90.93% of sensitivity and an area under the curve of receiver operating characteristic of
91.13%.
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1 Introduction

COVID-19 is now acknowledged as a new disease from the Severe Acute Respiratory Syn-
drome CoronaVirus 2 (SARS-CoV2), which is still witnessing a rapid spread in all countries
of the world in all its mutated forms. The number of infections until December 15, 2021
reached 270,791,973 confirmed cases with 5,318,216 deaths (Who coronavirus disease
(covid-19) dashboard, 2021). The difficulty in controlling the spread of the virus is due
to the long incubation period without the appearance of symptoms and the lack of disease
diagnosing options. RT-PCR is the golden standard for detecting COVID-19 (Tahamtan &
Ardebili, 2020), but the test result can be delayed for several hours, which can question
the effectiveness of the patient isolation strategy and subsequent treatment. This is espe-
cially stressed in countries with limited RT-PCR test facility resources. On the other hand,
it is acknowledged that RT-PCR is not effective for controlling the rapid spread of the
virus due to RT-PCR test turnaround time, which may exceed 48 hours in some countries.
Likewise, the lack of sufficient quantities of testing kits, possibly for economic reasons,
also led to saturation of hospitals and a huge pressure on health management authorities.
For these reasons, several studies have been performed on early detection of COVID-19
using alternative cheap solutions, especially using artificial intelligence techniques. For
instance, some symptoms of pneumonia diseases such as bacterial pneumonia, pneumo-
nia viral, which bear the same characteristics as COVID-19 pneumonia, can be diagnosed
using chest X-ray scans. Many recent works have been published in this respect, deep learn-
ing techniques especially CNNs and transfer-learning are widely used (Wang et al., 2020;
COVID-19 detection from chest X-Ray images using Deep Learning and Convolutional
Neural Networks, 2020; Asif et al., 2020; Berrimi et al., 2021). Similarly, deep learning
and machine learning techniques are performed on CT scan images for COVID-19 diagno-
sis (Berrimi et al., 2021; Singh et al., 2020; Li et al., 2020; Ardakani et al., 2020). Authors
in (Ai et al., 2020) showed that CT chest scans achieve a high sensitivity rate of 97% with
confidence intervals of 95%, 98% where the ground truth was obtained using RT-PCR tests.
Recently, other researchers have explored the analysis of respiratory and coughs sounds for
a quick diagnosis of COVID-19 disease. This arises from the observation that a dry cough
caused by COVID-19 appears in many COVID-19 patients according to WHO (Who coron-
avirus disease health topics, 2021), although different from other respiratory coughs. Some
researchers have compiled audio databases that include short records of coughs and breath-
ing for COVID-19 positive and negative cases. This motivates the current work in this paper
where a novel deep-learning architecture based on a combination of Convolutional Neu-
ral Networks (CNNss) and Attention-mechanism based Long-Short Term Memory (LSTM),
trained on a large-scale cough dataset called COUGHVID. Our contributions in this paper
are the following:

® We provide a concise and a critical summary of related works about COVID-19
diagnosis using cough and respiratory sounds using deep learning techniques.

®  We analyze COUGHVID dataset and propose a raw signal and spectral data augmen-
tation, class balancing to create more variability in a way to enhance the efficiency of
machine learning and deep learning based solutions.

® We propose a novel framework based on hybrid deep learning attention-based CNN-
LSTM architecture that can recognize and distinguish the Likely-COVID-19 from Non-
Likely-COVID-19 cases using solely cough sound as input.

@ Springer



Journal of Intelligent Information Systems (2022) 59:367-389 369

This paper is organized as follows: Section 2 details background and related works on
COVID-19 early detection from cough. Section 3 highlights the employed dataset and the
proposed methodology. Section 4 presents our experimental setup. Sections 5 and 6 present
the experimental results and discussions, respectively, where the last section concludes our
work.

2 Background

Methods like X-Ray and CT scans medical analysis can provide good results in terms of
COVID-19 detection accuracy, sometimes even exceeding that of RT-PCR. However, these
methods require the physical presence of the patient, which increases the possibility of
further spread of infection. This raises the importance of contactless-like analysis. Interests
to properties of cough-sound, collected via mobile phone or web portal, and whether this
can be utilized to identify COVID-19 have been investigated by some researchers. Coughing
is one of the symptoms associated with a large number of chest and respiratory diseases.
At the same time, it is also one of the common symptoms of COVID-19 disease, although
extra analysis is required to distinguish COVID-19 related coughs from other respiratory
diseases.

2.1 Cough and respiratory diseases analysis

There are several studies that have shown that cough has both acoustic and spectral prop-
erties. Experiments were conducted to analyze cough before and after the challenge of
Methacholine (Thorpe et al., 2001), which is a substance that is inhaled to detect asthma
and narrows the airways. The results showed that coughing can provide information that
would be useful in diagnosis. In another research study (Chatrzarrin et al., 2011), a com-
parison between dry and wet coughs has been performed where two spectral features
were used. The first one is the number of peaks of the energy envelope, while the sec-
ond one consists of the power ratio of two frequency bands of second-phase cough signal.
The results showed a clear separation between wet and dry coughs. The aforementioned
works confirmed that cough has potential to discriminate COVID-19 related coughs from
other diseases. However, it is also recognized that the existence of a large number of res-
piratory and non-respiratory medical conditions that cause coughing (Imran et al., 2020)
creates challenges that require special care. Indeed, cough can be rooted back to: hay
fever (allergic rhinitis), Inhalation of irritants, Lower respiratory tract infections (bron-
chitis, pneumonia), Pulmonary embolism, Pneumothorax, Heart failure, Post-nasal drip,
Upper respiratory tract infections, Gastro-esophageal reflux, among others (Irwin et al.,
2006). Using a cough-sound as the main input, Amrulloh et al. (Amrulloh et al., 2015)
built a machine learning model that distinguishes between Pneumonia and Asthma in the
pediatric population. The authors used Mel-frequency cepstral coefficients (MFCCs), non-
Gaussianity score and Shannon entropy as features trained on a neural network model. The
approach achieved 89%, 100%, 89% performance in terms of sensitivity, specificity and
Kappa measure, respectively. Pramono et al. (Pramono et al., 2016) proposed a multi-step
framework for automatic diagnosis of Pertussis disease. The first step corresponds to the
sound event detection where the silent parts were removed to ensure that the audio process-
ing is performed on audio signals. Next, 15 types of features were extracted, which include
MEFCCs, Zero-crossing Rate, Crest Factor, Energy Level, Spectral Roll-Off, Spectral Kurto-
sis Coefficient, Spectral Centroid. Finally, a logistic regression was trained on the best nine
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features, extracted using a sequential feature selection model. Similarly, 12 features were
used for whooping sound detection followed by a binary logistic regression classifier to dis-
tinguish pertussis and non-pertussis cases. Their approach achieved 92% overall accuracy
and 97% positive prediction accuracy in distinguishing Pertussis cases.

2.2 Related works

Several studies investigated the use of deep learning and machine learning methods to
quickly diagnose COVID-19 from cough and other respiratory sounds. Lella and Pja (Lella
& Pja, 2022) proposed to train a multi-channeled deep convolutional neural network with
three levels of features: deep features by removing background noise with Data De-noising
Auto Encoder (DAE), Gamma-tone Frequency Cepstral Coefficients (GFCC) filter bank
and Improved MFCCs (IMFCCs). The model was trained on the university of Cambridge
dataset to recognize five classes: Healthy, COVID-19, Asthma, Pertussis and Bronchitis.
For COVID-19 vs. Non-COVID-19, they obtained an accuracy of 95.45% and an F1-score
of 96.96% using cough, breath and voice samples modalities. Imran et al. (Imran et al.,
2020) developed a mobile application through which an audio recording of a cough is sent
to a model represented by a deep CNN architecture that checks the recording if it presents
a real / poor / noisy cough signal. If the recording is verified as a cough, it is sent to three
other parallel classifiers: Deep Transfer Learning-based Multi Class classifier (DTL-MC),
Classical Machine Learning-based Multi Class classifier (CML-MC) and Deep Transfer
Learning-based Binary Class classifier (DTL-BC). The system uses Mel-spectrogram as
input and a machine learning approach to distinguish four classes: pertussis, bronchitis,
COVID-19 and normal. The developed system is shown to achieve an overall accuracy of
92.64% with a sensitivity of 89.14% for the COVID-19 class. In the INTERSPEECH 2021
Computational Paralinguistics Challenge, Schuller et al. (Schuller et al., 2021) used two
subsets of University of Cambridge dataset for COVID-19 Cough Sub-challenge to create
a challenging baselines of different audio feature extraction techniques and toolkits: Com-
ParE functionals features, BOAW features, deep unsupervised representation learning using
the AUDEEP toolkit, and deep feature extraction from pre-trained CNNs using the DEEP
SPECTRUM toolkit. CNN, LSTM and Support Vector Machine (SVM) have been used for
feature learning and classification. By employing a majority voting of best models, they
achieved 73.9% average recall score. Similarly, Brown et al. (Brown et al., 2020) from Uni-
versity of Cambridge proposed a large-scale crowdsourced dataset of respiratory sounds
collected using either web or mobile apps. Their results from 6613 users, among which
235 were positive cases of COVID-19, indicated that a fair distinction between COVID-19
and non-COVID-19 users can be achieved using a simple binary machine learning classi-
fier. The employed audio features were initially related to signal duration, onset, tempo,
period, RMS Energy, spectral centroid, Roll-off frequency, zero-crossing, 13 first compo-
nents of MFCCs, A-MFCC, A2:-MFCC. Next, using VGGish, a set of 256 features have
been extracted and combined to the result of the first step. Lastly, dimensionality reduc-
tion was performed using Principal Component Analysis (PCA). The testing resulted in
80% and 72% for precision and recall, respectively and §2% ROC-AUC. In another work,
Mohamed et al. (Mohammed et al., 2021) proposed to ensemble a CNN model trained
from scratch, VGG16 and Tuned-VGG16 to classify cough sounds as COVID-19 positive
or negative cases. The authors collected 20min and 4s for positive class and 4 hours, 30
min and 15 seconds for negative class. To tackle the class imbalance, especially for posi-
tive class, and to prevent losing cough features when splitting each audio files, each cough
recording has been segmented into non-overlapping coughs. Seven features were employed:
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mel-spectrum, chroma, tonal spectrogram, power spectrum, MFCC, raw data segment. They
achieved 77%, 80% and 71%, for AUC-ROC, precision and recall, respectively. Pahar et
al. (Pahar et al., 2021) compared between different machine learning and deep learning
techniques: ResNet50 (transfer learning), CNN, LSTM, SVM, logistic regression and multi-
layer perceptron (MLP) in the classification of COVID-19 positive and negative cases where
the models have been built using Coswara (Krishnan et al., 2020) and Sacros datasets.
Synthetic Minority Oversampling TEchnique (SMOTE) has been used for data augmenta-
tion and class balancing. MFCCs, MFCCs with appended velocity, MFCCs with appended
acceleration, log energies, zero-crossing rate (ZCR) and kurtosis have been used as input
features. Transfer learning with ResNet50 achieved 98% AUC and 95% sensitivity. After
applying Sequential Forward Selection (SFS) for best feature selection, LSTM achieved the
best performance when trained on Coswara and tested on Sarcos: 93.8% AUC and 91%
sensitivity. Tena et al. (Tena et al., 2022) proposed a new time-frequency methodology
where YAMNet ! was used to identify cough boundaries among other sound signals. Next,
for each cough sample, the signal is turned into a time-frequency representation by using
Wigner distribution (WD). Then, a convolution of WD (CWD) was obtained to minimize
the interference terms. Recursive Feature Elimination (RFE) was applied to select the most
discriminant features among time-frequency features. Their approach achieved an accuracy
score of 89.79% using RFE and Random Forest classifier, while the sensitivity score and
AUC reached 93.81% and 96.04%, respectively using the same configuration. Harvill et al.
(Harvill et al., 2021) proposed to use COUGHVID dataset (Orlandic et al., 2021) in pre-
training as an unsupervised learning using Auto regressive Predictive Coding (APC) and
DiCOVA challenging dataset (Muguli et al., 2021) for fine-tuning the model. In order to
perform Autoregressive Predictive Coding, four LSTM layers were used for unsupervised
learning with the aim of minimizing the Mean Squared Error (MSE) to copy the first two
layers into the fine-tuning network. The meaning of copying the first two layers is to use
the output of the second layer as extracted features in the fine-tuned network. Fine-tuning
network is composed of the output of the second layer of APC model followed by 2 Bi-
directional LSTM layers. Using the recent spectral augmentation technique SpecAugment
(Park et al., 2019) enabled the model to reach 76.81% and 85.35% AUC on validation data
and blind (DiCOVA challenging) data (places third out of 29 participants), respectively.
Xue et al. (Xue & Salim, 2021) combined Coswara and University of Cambridge datasets
and proposed a contrastive pre-training for representation learning from unlabelled data
for self-supervised representation. A random masking allowed the Transformer structure
(feature encoder) to learn the representations. Then, a downstream phase to fine-tune the
feature encoder with labeled data was used. The authors used VGGish, Gated Recurrent Unit
(GRU), GRU-CP (CP: Contrastive Pre-training enabled), Transformer, Transformer-CP and
ensembling the above different proposed methods. Two mentioned similarity functions
have been tested during the downstream phase: Cosine and Bilinear with different masking
rates 0%, 25%, 50%, 75%, and 100%. The best results were achieved by ensembling two
Transformer-CPs with different masking rates, yielding 84.43% Accuracy, 73.24% Sensi-
tivity and 90.03% AUC. Similarly, using a deep learning CNN based method, Coppock et
al. (Coppock et al., 2021) suggested COVID-19 Identification ResNet (CIdeR) based on
ResNet architecture. However, the authors used the concatenation of cough and breathing
data. Spectrogram of wav audio files and log spectrograms have been extracted as input
features. CIdeR achieved 84.6% AUC. Table 1 summarizes the main published work in this

Thttps://github.com/tensorflow/models/tree/master/research/audioset/yamnet
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field and exhibits the main constraints and results of each of the aforementioned studies.
This partly motivates the current work, which relies on the largest publicly available cough
sound dataset -COUGHVID- and attempts to revisit the preprocessing, data augmentation
and class balancing pipeline in order to develop an accurate COVID-19 sound based early
detection system. A hybrid deep learning Attention-based CNN-LSTM architecture is put
forward for this purpose.

3 Materials and Methods

Figure 1 presents the overall system architecture of our model for COVID-19 diagnosis from
cough sound data. The architecture is composed of several components. First, COUGHVID
audio dataset recordings were passed to a pre-processing module. Next, two levels of data
augmentation have been applied to both audio signal and spectral data (Mel-spectogram
augmentation) to enlarge the training set and deal with the class imbalance problem. The
obtained Mel-spectogram features are fed to a new attention-based hybrid CNN-LTSM
model to yield binary classification outcomes. The model is validated using a 10-Fold cross-
validation where at each epoch, we computed Accuracy, Precision, Recall, Fl-score and
AUC evaluation metrics to assess the classification performance.

3.1 Dataset

We used COUGHVID crowdsourcing dataset (Orlandic et al., 2021) from Ecole Poly-
technique Fédérale de Lausanne (EPFL), Switzerland, which is a large-scale publicly
available dataset with 27550 recordings including 1155 positive cases. Recordings were
collected through a web application from April 1%/, 2020 to December 1%, 2020 where
users were asked to click on “Record” button to start the recording. After the record pro-
cess is completed, users were asked to fill in a meta-data questionnaire about age, gender,
geolocation information, previous existing respiratory conditions and COVID-19 status.
The latter includes three status: Healthy, COVID-19 and Symptomatic. Table 2 shows the
distribution of COVID-19 status label. The codec of all audio recordings is Opus, with
48kHz sampling rate. For validation purpose, four physician experts assisted in more than
1000 recording annotations. The items that have been annotated were quality of cough,
type of cough, Audible dyspnea, Audible wheezing, Audible stridor, Audible choking, Audi-
ble nasal congestion, Nothing specific is audible, impression about the patient’s infection
and an impression about the severity. Interestingly, the meta-data includes an entry called
cough_detected P, which is a float number between 0 and 1 that indicates the extent to
which the recording corresponds to a cough or not (probability that the recording is a
cough). This value is the output of a machine learning cough classifier and will be dis-
cussed in the next section. Other meta-data parameters provided in the dataset description
are: reported_gender, fever_or_muscle_pain, age and respiratory_condition.

3.2 Pre-processing and data cleaning
3.2.1 Overall data statistics
We shall notice that COUGHVID dataset includes datums with both known and unknown

status. Because we aim to perform a supervised-learning task in this study, we thereby
ignored all samples without COVID-19 status (no status provided), which correspond to
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Fig. 1 The overall system design of the proposed COVID-19 diagnosis system

about 11326 samples. On the other hand, an audio recording may contain silent part. For
this purpose, we used the Python library Unsilence 2 to remove silent parts from all audio
recordings in the beginning, the end and the middle (between coughs segments) to keep only
the most important vocal patterns. The silence removal step reduced the total number of
samples to 16082 as there are some empty recordings which were automatically discarded
as well. Table 3 shows the new COVID-19 status label distribution after eliminating samples
without COVID-19 status and silence removal step.

3.2.2 Cough detection refinement

As pointed out in Section 3.1, under the cough_detected entry in the metadata of each record
entry is the probability that the corresponding sound is a cough. According to the study
carried out in (Orlandic et al., 2021), the authors recommended to use a threshold value of
0.8 as it was found to exhibit the highest precision (95.4%) with eXtreme Gradient Boosting
(XGBoost) trained on 68 Prosodic, Spectral and Cepstral features. We want to question this
finding by adopting a more prudent attitude, especially with respect to the pre-processing
step. We therefore tested the performance of our deep architecture with several potential
choice of threshold probability ranging from 0.6 till 0.9. We found the choice of P, = 0.7
yields the best results. Table 4 shows the new distribution after eliminating all samples
which have a cough_detected probability threshold under 0.7.

We therefore employed eXtreme Gradient Boosting (XGBoost) classifier as in (Orlandic
et al., 2021) but trained on a randomly selected subset of the original dataset. Besides,
we assume that whenever a recording contains both non-cough and cough audio events, it
is replaced with a new randomly selected one from the database. We therefore tested the
performance of eXtreme classifier, with 68 audio features that include Prosodic, Spectraland
Cepstral, on several potential choice of threshold probability ranging from 0.6 till 0.9. We

https://github.com/lagmoellertim/unsilence
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Table2 COVID-19 status label distribution over the three statues

Healthy Symptomatic COVID-19 No Status Total

Samples 12479 2590 1155 11326 27550

found the choice of P. = 0.7 yields the best accuracy with a mean AUC of 96.4% and a
standard deviation of only 3.3%.

3.2.3 Multi-class to binary classification problem

Due to the lack of positive COVID-19 cases (731 compared to 8958), in this study, as
reported in our recent work (Hamdi et al., 2021), we combined under COVID-19, both
the positive COVID-19 and Likely-COVID-19 cases, and left the Non-Likely-COVID-19
(Healthy) unchanged. This turns the multi-class classification scheme into a binary clas-
sification scheme. Table 5 shows the new class distribution after merging COVID-19 and
Symptomatic classes.

3.3 Mel-spectrogram

Spectrograms and Mel-spectrograms (Imran et al., 2020) make use of Fast Fourier Trans-
form (FFT) which performs the Discrete Fourier Transform (DFT) to transform time domain
signals x (¢) into frequency domain signals X ( ). Specifically, a particular time domain sig-
nal is represented as a sequence of N complex integers xg, ..., xy—1. The FFT of x(¢) is
defined by (1)

N .
X(f) =Y x(@e ¥ 000D (1)

t=1

where, x(¢) represents the sample at time index ¢, i is the imaginary number ~/—1.X (f),
and k = 0, ..., N — 1. The result of this transformation, called Spectrum, is exemplified in
Fig. 2(a). The Mel-scale, introduced by Stevens, Volkmann, and Newmann in 1937, is pitch
unit that makes identical pitch distances sound similarly far to the listener. It is applied to
the frequencies to convert them to the mel-scale (See (2)). Therefore, the Mel-spectrogram
is the conversion of spectrogram frequencies to the mel-scale as exemplified in Fig. 2(c).

| — 2055 x | 1+ hertz @)
= X —_—
me 0810 =00

Table 3 Samples count after elimination of no_status label with total duration of each class in hours

Healthy Symptomatic COVID-19 Total
Samples 12377 (76.97%) 2567 (15.96%) 1138 (7.07%) 16082 (100%)
Duration [hours] 14.26 3.01 1.44 18.71
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Table 4 Samples count and total duration in hours after silence removal and applying cough_detected = 0.7
threshold

Healthy Symptomatic COVID-19 Total
Samples 8958 (77.06%) 1935 (16.65%) 731 (6.29%) 11624 (100%)
Duration [hours] 9.92 3.10 0.9082 13.92

3.4 Data augmentation pipeline

We proposed two levels of data augmentation. The first one performs data augmentation on
the original audio signal, while the second one focuses on the computed mel-spectrograms.
As most of deep learning techniques require a fixed input size, all recordings have been
resized to a standard length of 156027 (7.07 seconds) such that samples of more than 7.07
seconds are dropped out while those less than 7.07 seconds are equally padded with zeros
at the beginning and at the end. In the next subsections, we explore our two levels of data
augmentation.

3.4.1 Audio data augmentation with Pitch-Shifting

Because of its simplicity and popularity, we used Pitch Shifting (Lella & Pja, 2022), a sound
recording method that raises or lowers the original pitch of a sound. For implementation
purpose, we adopted the existing Python library of audio processing and analysis Librosa3.
This data augmentation is applied only on the Likely-COVID-19 class in order to increase
minority class samples. In overall, audio samples are shifted down by four steps (n_step
= -4) where a step is defined by a semitone, to generate new samples. The number of
steps was chosen after a manual scrutinizing where two independent listeners examined
most of the augmented recordings to ensure that vocal features were not affected by pitch
shifting. Figure 3 shows the original raw wave, spectrum and mel-spectrogram before and
after applying Pitch-shifting method.

3.4.2 Spectral data augmentation

For the purpose of spectral data augmentation and fine-tuning phase, we used SpecAugment
technique (Park et al., 2019). This is motivated by the finding of DiCOVA challenge where
the application of SpecAugment led to a substantial improvement of accuracy (see related
work Section 2.2). Specifically, SpecAugment uses mel-spectrograms and three-step aug-
mentation method. First, using Time warping, within the time steps, a random point along
the horizontal axis passing through the center of the mel-spectrogram image is warped to
the left or right by a distance selected from a uniform distribution ranging from O to the time
warp parameter along that line. Second, Frequency masking is employed as a mechanism
of masking f consecutive mel frequency channels [ fo, fo + f), where f is selected from
a uniform distribution ranging from 0 to the frequency mask parameter F, and where fj is
selected in [0, ¢ — f] (¢ stands for the number of mel frequency channels). The third step
consists of Time masking, where T successive time steps [#o, fp +¢) are masked, such that ¢
is taken from a uniform distribution from 0 to the time mask parameter 7', and 7y is chosen
from [0, T — ¢] where t is the number of timesteps of the mel-spectrogram. In our work,

3https://github.com/librosa/librosa
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Table 5 Samples count after combining COVID-19 and Symptomatic classes

Non-Likely-COVID-19 Likely-COVID-19 Total
Samples 8958 (77.06%) 2666 (22.94%) 11624 (100%)
Duration [hours] 9.92 4.0 13.92

we used a combination of Frequency masking and Time masking with masking parameters
F =30and T = 30, respectively, to randomly generate two new mel-spectrograms for the
Likely-COVID-19 class in order to solve the class imbalance issue, and one for the Non-
Likely-COVID-19 class. Figure 4 shows the process of spectral data augmentation using
SpecAugment.

3.5 Attention-based hybrid CNN-LSTM

Our attention-based hybrid CNN-LSTM architecture for COVID-19 diagnosis is shown in
Fig. 5. The architecture can be divided into three blocks. The first block uses a CNN archi-
tecture, which receives augmented mel-spectrograms as input of shape (39x88x3). Then,
the most relevant and informative features are extracted by the convolution layers. In the
second block, Attention-LSTM feature maps are passed to LSTM block, where the deep
features that have high temporal correlation are selected to be passed to the attention block
in order to capture more useful patterns. In the third block, a simple fully connected layer
is used for feature learning and classification. Table 6 describes the details of the proposed
network architecture in terms of layer type, parameters and output size.

3.5.1 Convolutional Neural Network (CNN)

We used four convolution layers, with 16, 32, 64 and 128 filters respectively, and a kernel
size of (2x2) for each. Each convolution layer is followed by an Average Pooling layer,
which is designed to reduce the complexity of the network by linking feature maps to a
window with a pre-fixed dimensions, and a stride to define the step unit of the window. In
our architecture, we used a pooling window of size (2x2) and a stride of size (1x1). In this
block, we used Rectified Linear Unit (ReLU) f(x) = max(0, x) as an activation function
to increase non-linearity of the feature maps. We used Batch Normalization (BN) to boost
the model training by normalizing the activations. In addition, we used Dropout to prevent
overfitting and increase model generalization capabilities.

Spectrum

Spectrogram Mel Spectrogram
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Fig. 2 (a) presents a spectrum, (b) shows the spectrogram (STFT and conversion of y-axis to log scale and
color dimension to dB) and (c) presents a mel-spectrogram for Likely-COVID-19 case
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Fig.3 Example of the applied Pitch-shifting for a sample with Non-Likely-COVID-19 class
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Fig. 4 TIllustration of SpecAugment, where a new mel-spectrogram is generated by combining Frequency-
masking and Time-masking, for each mel-spectrogram in the dataset
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Table 6 Details of the proposed network architecture in terms of layer, output shape

# Layer Additional information Output shape
1 Input Mel-spectrogram of shape (39 x 88x3) -

2 Conv2D_1 16 filters of size (2x2), stride (1x 1) (38, 87, 16)
3 AveragePool2D_1 Size (2x2), stride (1x 1) (37, 86, 16)
4 BN_I + ReLU_1 - (37, 86, 16)
5 Dropout_1 0.2 (37, 86, 16)
6 Conv2D_2 32 filters of size (2x2), stride (1x1) (36, 85, 32)
7 AveragePool2D_2 Size (2x2), stride (1x1) (35, 84, 32)
8 BN_2 + ReLU.2 - (35, 84, 32)
9 Dropout_2 0.2 (35, 84, 32)
10 Conv2D_3 64 filters of size (2x2), stride (1x1) (34, 83, 64)
11 AveragePool2D_3 Size (2x2), stride (1x 1) (33, 82, 64)
12 BN_3 + ReLU_3 - (33, 82, 64)
13 Dropout_3 0.2 (33, 82, 64)
14 Conv2D_4 128 filters of size (2x2), stride (1x1) (32, 81, 128)
15 AveragePool2D_4 Size (2x2), stride (1x 1) (31, 80, 128)
16 BN._4 + ReLU 4 - (31, 80, 128)
17 Dropout_4 0.2 (31, 80, 128)
18 Reshape_1 Reshape into recurrent layer input (31, 10240)
19 LSTM-1 256 units (31, 256)

20 TanH_5 - (31, 256)

21 BatchNorm_5 - (31, 256)

22 Dropout_5 0.2 (31, 256)

23 Attention_1 - 256

24 Flatten_1 - 256

25 Dense_1 100 units 100

26 ReLU_6 - 100

27 Dropout_5 0.5 100

28 Dense_2 1 unit 1

29 Sigmoid_7 - 1

We separated blocks (CNN, LSTM, Attention and Dense) with horizontal lines. TanH: Hyperbolic Tangent,
ReLU and Sigmoid refer to the applied activation functions

3.5.2 Long-Short Term Memory (LSTM)

LSTM is composed of three gates, input gate, forget gate and output gate. LSTM input gate
is given by (3), (4) and (5) where x; denotes the current input, 4, the current output and
h;_1 the previous output. C; and C,_ refer to the current and previous cell states.

ir =0 (Wi [hi—1, x: ]+ b;)
C: = tanh(We- [hi—1, x;]1 + b¢)
Cr = fi xCiy +ir % C

3
“
(&)
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Equations 3 and 4 are used to decide which new information is being stored in the cell
state by passing /;_1 and x; through a sigmoid layer, and through tanh layer respectively.
W; and b; refer to weight matrix and input gate bias, respectively. The new cell state is
created by combining the output of sigmoid (3) and zanh (4) using (5).

ft=U(Wf'[hz—l,xt]+bf) (6)

Forget gate is denoted by (6), where W presents weight matrix and b is the offset.
Sigmoid and dot product are applied to get a certain probability about forgetting some
information from the previous cell.

o =0 Wy [hi—1, X1+ by) N

hy = o x tanh(Cy) ®)

In (7), W, and b, refer to the LSTM’s output gate weight and bias, where /,_; and x; are

used to compute the final output, which, in turn, is multiplied by the tanh of the state of the

new information C; using (8). In the implementation of this block, the input tensor shape is

(31,10240). We used one LSTM layer with 256 units, followed by a Batch Normalization

and dropout layers to prevent over-fitting of the network, which is then followed by an
attention layer (see next section).

3.5.3 Attention mechanism

Attention mechanism focuses the decoder’s attention on the most relevant features of the
input sequence using a weighted sum of all previous hidden states. For each time step, given
the hidden state of LSTM layer H; = [k, ..., h;], H; is the input of the attention mechanism
layer. The attention layer performs three phases: Scores alignment, Weights and Context
vector. In this work, we used the attention mechanism reported in (Xie et al., 2021). We
denote the scores alignment by the following equation:

Sy = tanh(H; - Wayr + bayr) ©

where W,;; and b, are the trainable weights and bias of our attention layer, respectively.
The scores §; are then passed through Softmax function to compute attention weights o
using the following formula:

o = softmax(Sy) (10)
After computing attention weights, we then compute the context vector, denoted attention
vector using (11), which corresponds to a weighted sum of 7 hidden states:

T
ar = Z(X;ht (11)
i=1

The output of the attention layer is forwarded to a fully connected neural network for fea-
ture learning, composed of one layer with 100 units activated by ReLU activation function,
followed by a regularization term (Dropout with rate of 0.5).

4 Experimental setup
In all experiments, we used Adamax algorithm (Kingma & Ba, 2014) as optimizer, which is
one of extensions of Adam’s gradient descent algorithm that generalizes the approach to the

infinite norm (max) and may result in more effective optimization on particular situations.
The output layer of our model architecture has one unit activated by Sigmoid function in

@ Springer



Journal of Intelligent Information Systems (2022) 59:367-389 381

order to produce probability p of belonging to Non-Likely-COVID-19 (class 0) or Likely-
COVID-19 (class 1) (12).

12)

0 ifp<0.S5
1 ifp>05

As loss function, we used Binary Cross Entropy (BCE) which is applied to the scores given
by Sigmoid activation function. BCE is formulated by the (13).

L ——ii - 1og () + (1 — y;) - log(1 — %) (13)
0ss = N yi - Ltog(yi ( Yi) - tog Yi

i=1

where N is the total number of predicted data points, y; is the real output and y; is the
predicted output.

4.1 Hyper-parameters tuning

We performed a hyper-parameters tuning stage using the GridSearch for mel-spectrograms
computation, data augmentation process, and our classification method in order to find the
best hyper-parameters for our deep-learning architecture. We used a sampling rate of 22kHz.
We tested different values for hop_length (number of samples between consecutive frames),
n_mels (number of mel frequency bands or the height of spectrogram), n_ftt (the size of the
FFT computed on the window, before converting to mel bands). For our data augmentation
pipeline, we used different values of n_steps for Pitch-shifting method and three different
values of masking parameter (T and F) while applying SpecAugment. For the classification
model architecture, different values of batch_size, learning rate have been tested. Table 7
presents the result of this hyper-parameters tuning and selection process.

4.2 Training phase

All models including baselines and our proposed model have been trained on Kaggle Note-
book # which offers 43 hours of GPU usage and 20 hours of TPU per week, 19.6 GB of
disk space and 16GB memory, available for 9 hours per session. We used K-Fold cross val-
idation method, which consists of training the classifier on K-1 folds of data and using the
rest for validation. This operation is repeated K times for each fold and the final result cor-
responds to the average of the K experiments. We set K = 10. In the first stage, we split the
whole data into two subsets, 80% for training and 20% for testing. At each fold, 10% of data
is used for validation and the rest for training. As baseline, we trained LSTM, CNN, and
hybrid CNN-LSTM without attention mechanism. Each model was trained for 500 epochs.

4.3 Evaluation

We computed six metrics to evaluate the performance of our model and comparison with
our baseline models. Components of confusion matrix: True Positive (tp), True Negative
(tn), False Positive (fp) and False Negative (fn) have been used to compute the evaluation
metrics. Accuracy measures the ratio of correct predictions over the total number of evalu-

“https://kaggle.com/docs/notebooks
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Table 7 Mel-spectrogram computation, data augmentation and classification model architecture hyper-
parameters tuning (best value in bold)

Tested values Best value

hop_length {128, 256, 512, 1024} 512
n_mels {64, 128, 256} 128

n_ftt {512, 1024, 2048, 4096} 512
n_steps (-1,-2,-3,4,-5) 4

F (Frequency masking parameter) {30, 50} 30

T (Time masking parameter) {30, 50} 30
batch_size {64, 128, 256, 512, 1024} 256
learning_rate {le-05,1e-04,1e-03,1e-02} 1e-03

ated instances. The Precision measures the ratio of correct predictions over the number of
positive samples. Recall or sensitivity measures the ratio of true positive predictions over the
total number of positive samples. Specificity measures the ratio of correctly classified nega-
tive cases over the total number of negative samples. F'/-Score combines recall and precision
through harmonic mean. Finally, AUC measures the quality of Receiver Operating Charac-
teristic curve (ROC curve which visualizes the tradeoff between true positive rate (TPR) and
false positive rate(FPR)). The higher the TPR and the lower FPR, the higher AUC Score.
We reported the AUC score for the predicted classes, and probabilities regarding AUC ROC
curves.

5 Experimental Results

We computed the aforementioned metrics averaged over training performance after obtain-
ing 10-fold cross-validation results. We note that we used the same set of test in all models,
baselines and our proposed model to make a sense for comparison. Results are denoted by
average (avg) and standard deviation (std) of cross-validation avg + std. For LSTM baseline
model, we stacked two LSTM layers with 128 and 256 units, respectively. Each layer was
followed by a Batch-Normalization layer and dropout (0.2 of rate) followed by a full con-
nection layer with 256 units. Cross-validation took two hours and a half hour. LSTM model
achieved an average accuracy of 76.41%, a sensitivity of 73.19% and a ROC AUC score of
76.26%. In the second baseline model (CNN), we used two convolution layers with 16 and
32 filters with the same aforementioned configuration 3.5.1 and a fully connected layer with
64 units. CNN model achieved 83.37% average accuracy, 76.97% sensitivity and 83.00%
ROC AUC after 3 hours of training. The last baseline model, hybrid CNN-LSTM, has the
same proposed architecture Fig. 5 but without attention mechanism layer. We started with
CNN block then passed the feature maps to the LSTM block. It achieved 89.35% average
accuracy, 87.74% average sensitivity and 89.28% average ROC AUC. Besides, the train-
ing of the third baseline model took 8 hours. Table 8 presents the cross-validation results
of the three baselines, Fig. 6 shows the accuracy and loss curves of the best baseline model
(Hybrid CNN-LSTM).

To validate the obtained results, the performances of the baselines on the test set are
shown in Fig. 7 in terms of the ROC curve for output probabilities.
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Table 8 10-fold cross-validation results of the proposed baselines (LSTM only, CNN only and hybrid CNN-
LSTM) in term of the studied evaluation metrics (hybrid CNN-LSTM architecture results are written in
bold)

Accuracy Sensitivity Precision Specificity F1 AUC-score
LSTM 76.41£0.88  73.19+2.02  75.89+1.41  79.34+098  74.48+0.85  76.26+0.87
CNN 83.37£2.07 76.97+4.78  86.31+2.16  89.04+£2.47  81.27+£2.79  83.00£2.17

CNN-LSTM  89.35+£0.76 ~ 87.74%+1.81  89.46+1.72  90.81+1.42  88.56+0.97  89.284+0.79

Hybrid CNN-LSTM train and validation accuracy curves Hybrid CHI-LSTM train and validation loss curves

10 i

(a) (b)

Fig.6 Average accuracy and loss of 10-fold cross-validation for the best baseline model Hybrid CNN-LSTM.
(a) for accuracy curves and (b) for loss curves

(a) LSTM only (b) CNN only (c) Hybrid CNN-LSTM

Fig.7 ROC curves of the output probabilities for the three baselines

Table9 10-fold cross-validation results of the novel approach (Attention-based Hybrid CNN-LSTM) in term
of the computed evaluation metrics

Accuracy Sensitivity Precision Specificity Fl AUC-score

avgtstd 91.354+0.57 90.30+0.97 91.20+1.19 92.27+1.26 90.731+0.53 91.2840.54
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Attention-based hybrid CNN-LSTM train and validation a Attention-based hybrid CNN-LSTM train and validation loss curves.

10| —

Fig. 8 Average accuracy and loss of 10-fold cross-validation for the novel proposed approach Attention-
based hybrid CNN-LSTM. (a) for accuracy curves, and (b) for loss curves

We present in Table 9 the details of cross-validation of our approach as well as the overall
validation performance after 8 hours of training. In Fig. 8, the accuracy and loss curves are
shown to illustrate the training process development of our model.

Comparing the proposed approach to baselines reveals in overall an improvement in all
evaluation metrics, especially with respect to AUC and sensitivity scores. A full compari-
son of the baselines with our developed approach is shown in Table 10. We also exhibited
the corresponding comparative ROC curves where the superiority of our model is clearly
demonstrated (Fig. 9).

6 Discussion

This work investigated the development of a fast and effective method for diagnosing
COVID-19 from solely cough sound recording in order to help limit virus spread. The
performance of our framework is demonstrated in the result section of this paper. After
pre-processing, filtering original data, we applied the proposed data augmentation pipeline,
where we had 8958 negative samples vs. 2666 positive samples, which showed an imbal-
ance class problem. We used the main components of our deep learning based architecture,
namely, LSTM, CNN, and LSTM-CNN as baseline models. The results showed that LSTM
alone did not work well, with only 77.75% accuracy and 72.88% sensitivity, which led us to
conclude that LSTM alone is unable to extract meaningful patterns from mel-spectrogram
images. CNN performed better than LSTM in term of correctly classifying Non-Likely-
COVID-19 samples (negative), where it achieved 89.73% correct predictions among all

Table 10 Testing results of the best obtained model on the unseen data for the novel proposed approach
compared to the baselines in term of the aforementioned evaluation metrics (best result for each metric is
highlighted in bold)

Accuracy Sensitivity Precision Specificity F1 AUC-score
LSTM 717.75 72.88 78.76 82.17 75.71 77.52
CNN 85.83 81.53 87.81 89.73 84.55 85.63
CNN-LSTM 88.44 84.41 90.64 92.09 87.41 88.25
A-CNN-LSTM 91.13 90.93 90.47 91.31 90.71 91.13

A-CNN-LSTM refers to Attention-based Hybrid CNN-LSTM
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Comparison of the ROC curves of the proposed approach with baselines

o &b)

Fig. 9 We plot the ROC curve of the baselines compared to our novel approach (a) and we illustrate the
differences by zooming the ROC curve on the top left corner (b)

negative samples in the test set. We also noted a significant improvement in the sensitivity
compared to LSTM, where it was improved from 72.88% to 81.53%. CNN has more ability
to extract spatial and spectral features from mel-spectrogram images. Confusion matrices of
both models are shown in Fig. 10 where 866 out 3221 positive cases are misclassified and
635 out 3562 negative cases by LSTM classifier (a). Similarly, from the same test set, CNN
model (b) misclassified 595 positives samples and 366 negatives cases.

We thought about hybridizing the aforementioned baselines CNN and LSTM to, first,
extract the most important spatial and spectral feature maps using CNN block, and then
passing the outcome to LSTM block where temporal correlations between features are
extracted. The employed strategy improved and boosted the classification accuracy from
85.83% (achieved by CNN) to 88.44% and a true positive rate of 84.41%. From the con-
fusion matrix in Fig. 11(a), we note the best error rate of 7.92% for negative case where
only 282 samples were misclassified, while in case of positive cases, a total of 502 sam-
ples were misclassified. We implemented the hybrid model so we can later show the impact
of the attention mechanism in the improvement and generalization of our classifier. As we
were dealing with a medical case, the need to build a diagnosis system with high perfor-
mance in terms of sensitivity to reduce possible critical errors (false negatives) is crucial. In
the last experiment, we passed the deep extracted temporal features to an attention mech-
anism module to capture more informative patterns. This proposed approach exhibits the
best sensitivity rate of 90.93% compared to the best baseline (hybrid CNN-LSTM with

LSTM model confusion matrix CNN model confusion matrix
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Fig. 10 Confusion matrices of the test set. (a) for LSTM model and (b) for CNN model
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Hybrid CNN-LSTM model confusion matrix Attention-based hybrid CNN-LSTM model confusion matrix
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Fig. 11 Confusion matrices of the test set. (a) for hybrid CNN-LSTM model and (b) for attention-based
hybrid CNN-LSTM model

84.41%) and a classification accuracy of 91.13% and Fl-score of 90.71%. In terms of
precision and specificity, the best testing results (90.64% and 92.09%, respectively) were
achieved by the hybrid CNN-LSTM without attention mechanism. The confusion matrix in
Fig. 11 (b) shows that only 292 positive cases were misclassified from 3221 positive testing
samples. Our best performing classifier, attention based hybrid CNN-LSTM, was able to
distinguish between positive COVID-19 coughs and healthy coughs with an AUC score of
91.13% (95.5% when computing with output probabilities). This comparison is illustrated
in Fig. 9(b).

7 Conclusion and perspective work

In this study, we developed a COVID-19 diagnosis system from cough sound, we imple-
mented a deep learning based architecture as a classification model. Our model uses
COUGHVIG dataset, which is the largest publicly available cough dataset for COVID-19.
We have pre-processed the data, then, we applied pitch-shifting on likely positive class
samples as the first data augmentation approach. After computing mel-spectrograms, we
explored the spectral data augmentation technique SpecAugment for more variety and vari-
ability as well as solving the class imbalance issue for positive class (2666 vs. 8958)
by combining a randomly applied frequency and time masking on the mel-spectrogram.
Two new samples were generated for positive class and one for negative class. We used
hybrid CNN-LSTM followed by attention mechanism module while single CNN, LSTM
and hybrid CNN-LSTM have been used as baselines to demonstrate the efficiency of our
proposal. Our best-performing model is attention-based hybrid CNN-LSTM which achieved
90.93% sensitivity, outperforming the three baselines and an overall classification accu-
racy of 91.13%. Our model is shown to appropriately discriminate and distinguish between
Likely-COVID-19 and Non-Likely-COVID-19 coughs with an AUC score of 0.9113 on the
unseen data. We presented a diagnosis system with promising results, fast, easy to deploy
and implement. However, our model is also prone to inherent limitations, which can be
summarized below:

®  Cough symptom: One of the most important symptoms of COVID-19 is dry cough.
The approach pursued in this paper assumes the cough training data is sufficiently
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robust to discriminate between COVID-19 and Non-COVID-19 cases. However this
assumption can be questioned, since some characteristics of covid-19 cough samples
can be found in patients with other diseases as well, e.g., (Tena et al., 2022). How-
ever, only healthy versus COVID-19 patients have been considered during the data
preparation phase, which ultimately other potential gaps unexplored.

® (Class imbalance: Although the employed COUGHVID is large-scale dataset with
more than 27,000 recordings, the number of positive cases is quite small compared to
negative cases (1155 vs 12479), which certainly affects the performance of the proposed
system, despite the employed data augmentation strategy.

¢ Binary class transformation: In this study, Positive COVID-19 and Symptomatic
classes have been combined to one single class. This process is inevitably accompa-
nied by inherent degradation of the capacity of distinguishing between COVID-19 and
common symptoms, which is the reason for our class labeling, Likely-COVID-19 and
Non-Likely-COVID-19. However, this may have positive effect of reducing false neg-
ative rate. For instance, someone who suffers from dry cough will have more chance to
be classified as Likely-COVID-19 and then, more chance to isolate the patient.

® Model performance and sensitivity: Our model was able to correctly classify more
than 91% of unseen data, and also correctly identified more than 90% of Likely-
COVID-19 cases, outperforming some previous studies which worked on different
datasets (Brown et al., 2020; Mohammed et al., 2021; Park et al., 2019). However, the
error rate for classifying positive cases as negative is 9.07%. This type of error is critical
(Type II error) and requires more attention to reduce it further as misclassified patients
will not be isolated, which may lead further virus spread.

Furthermore, we believe there is a room for testing and validating the developed approach
on alternative cough datasets to demonstrate generalization capability. This will form the
basis of our future work.
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