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The pathogenesis of otitis media (OM), an inflammatory disease of the middle ear (ME),
involves interplay between many different factors, including the pathogenicity of infectious
pathogens, host immunological status, environmental factors, and genetic predisposition,
which is known to be a key determinant of OM susceptibility. Animal models and human
genetics studies have identified many genes and gene variants associated with
OM susceptibility: genes that encode components of multiple signaling pathways
involved in host immunity and inflammatory responses of the ME mucosa; genes
involved in cellular function, such as mucociliary transport, mucin production, and
mucous cell metaplasia; and genes that are essential for Eustachian tube (ET)
development, ME cavitation, and homeostasis. Since our last review, several new
mouse models with mutations in genes such as CCL3, IL-17A, and Nisch have been
reported. Moreover, genetic variants and polymorphisms in several genes, including
FNDC1, FUT2, A2ML1, TGIF1,CD44, and IL1-RA variable number tandem repeat (VNTR)
allele 2, have been identified as being significantly associated with OM. In this review, we
focus on the current understanding of the role of host genetics in OM, including recent
discoveries and future research prospects. Further studies on the genes identified thus far
and the discovery of new genes using advanced technologies such as gene editing, next
generation sequencing, and genome-wide association studies, will advance our
understanding of the molecular mechanism underlying the pathogenesis of OM and
provide new avenues for early screening and developing effective preventative and
therapeutic strategies to treat OM.
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INTRODUCTION

Otitis media (OM) is an inflammatory disease of the middle ear (ME) that is most commonly caused
by bacterial pathogens, such as Streptococcus pneumoniae (Spn), nontypeable Haemophilus
influenzae (NTHi), and Moraxella catarrhalis, and is one of the most common diseases in young
children. There are several types of OM, such as acute OM (AOM), chronic OM with effusion
(COME), and chronic suppurative OM (CSOM). More than 80% of children under the age of three
suffer at least one episode of AOM; however, only a small subset of children experience recurrent or
chronic OM (COM), and the reason for this remains unclear (Kong and Coates, 2009). Although
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most cases of OM are resolved by the age of six, prolonged ME
inflammation can lead to hearing loss and other complications in
some cases.

The pathogenesis of OM is known to be multifactorial,
involving pathogen virulence, host immune status, genetic
predisposition, and environmental factors, alongside other risk
factors that affect the occurrence of COM, such as allergy/atopy,
prior upper respiratory tract viral infection, early or recurrent
AOM, and passive smoking (Zhang et al., 2014). Genetics has
also been shown to play a critical role in host susceptibility to
OM; therefore, identifying genetic loci that are associated with
OM could help to elucidate potential disease mechanisms and
develop effective therapies. Many host genes identified and
associated with OM have been reviewed before (Rye et al.,
2011a; Kurabi et al., 2016; Bhutta et al., 2017b; Lin et al., 2017).
In this review, we provide an update on the identification of new
host genes, make progress in our understanding of previously
identified genes in OM predisposition, and discuss the prospects
for future research in this field.
INNATE IMMUNE AND INFLAMMATORY
RESPONSES IN OM

The epithelial lining of the ME possesses several defense
mechanisms; for instance, ME epithelial cells secret mucin and
other defense molecules (e.g. defensins, interferons, lactoferrin,
and nitric oxide) to attack and trap pathogens, particles, and dead
cells, which are conveyed toward the nasopharynx via the
Eustachian tube (ET) and cleared from the ME by the constant
unidirectional beating of the cilia of ciliated epithelial cells. ME
epithelial cells also express pattern recognition receptors (PRRs),
such as Toll-like receptors (TLRs) and Nod-like receptors (NLRs),
which recognize bacterial pathogens by binding to pathogen-
associated molecular patterns (PAMPs) on their surface. The
binding of PRRs and PAMPs activates downstream MAPK or
NFkB signaling cascades to induce the expression and activation
of pro-inflammatory transcription factors, such as NFkB and
interferon-regulatory factors (IRFs). These transcription factors
translocate to nucleus and induce the production and release of
inflammatory cytokines and chemokines, which recruit and
activate neutrophils, macrophages, and monocytes that destroy
and clear invading bacterial pathogens (Leichtle et al., 2011;
Kurabi et al., 2016).

Genes Involved in Inflammatory
Responses in OM
During the past decade, considerable progress has been made in
our understanding of the fundamental molecular mechanisms
underlying the role of innate immunity and inflammatory
responses in OM (Kurabi et al., 2016). The innate immune
system plays important roles in the initiation of inflammation,
clearance of invading pathogens, and recovery in AOM. Many
genes have been identified that are involved in immunity and
inflammatory responses in OM, and their functions have been
studied in animal models. The most important discoveries of
Frontiers in Genetics | www.frontiersin.org 2
mouse models and gene association studies are briefly
summarized and discussed below.

Pro-inflammatory molecules, such as TNF-a, IL-1b, and C-C
motif chemokine ligand 3 (CCL3), play key roles in the
recruitment of inflammatory cells into the ME and the
activation of these cells for microbial clearance. Mice deficient
in pro-inflammatory molecules, such as TNF-a and CCL3,
displayed diminished but prolonged leukocyte recruitment,
defective macrophage function, and failure to clear NTHi from
the ME cavity (Leichtle et al., 2010; Deniffel et al., 2017).
Moreover, exogenous CCL3 can restore phagocytosis and fully
restore OM recovery, suggesting that CCL3 acts downstream of
TNF-a (Leichtle et al., 2010). These data pinpoint the essential
roles of pro-inflammatory molecules in the initiation and
recovery in AOM.

Mouse mutants deficient in PRRs (TLR2, TLR4, and TLR9),
NLRs [apoptosis-associated speck-like protein containing a
caspase-activating and recruitment domain (ASC)], and
adaptor proteins (MyD88 and TRIF) display reduced
production and maturation of pro-inflammatory cytokines,
such as IL-1 and TNF-a, which leads to reduced leukocyte
recruitment to the ME and, more profoundly, persistent
inflammation with impaired bacterial clearance, and this is
consistent with their roles in mediating the production of pro-
inflammatory cytokines in response to pathogens and in the
recovery of AOM (Hirano et al., 2007; Hernandez et al., 2008;
Han et al., 2009; Leichtle et al., 2009a; Leichtle et al., 2009b;
Leichtle et al., 2012). Similarly, in children, genetic
polymorphisms in TLR2, TLR4, and the TLR co-receptor
CD14 have been found to be associated with an increased
incidence of OM, while TLR4 also plays a role in acquired
adaptive mucosal immunity in the ME (Wiertsema et al., 2006;
Emonts et al., 2007; Hafren et al., 2015; Toivonen et al., 2017).

The active form of IL-1b is a cleavage product formed by the
inflammasome, a multi-protein complex that consists of the
NLRs ASC and pro-caspase 1. ASC-deficient mutants display a
lack of IL-1b maturation in the ME, reduced leukocyte
recruitment and infiltration in the ME cavity, and reduced
NTHi phagocytosis (Kurabi et al., 2015). Moreover, ASC
deficiency increases the degree and duration of mucosal
epithelial hyperplasia in the ME and delays bacterial clearance
in the infected ME cavity (Kurabi et al., 2015). In a microphage
cell model infected with Spn, IL-1b and TNF-a secretion were
significantly reduced by treatment with inhibitors of c-Jun N-
terminal kinase (JNK) or spleen tyrosine kinase (Syk).
Furthermore, it has been demonstrated that JNK is required
for ASC oligomerization and caspase-1 activation, and that JNK
activation via phosphorylation is regulated by Syk (Feng et al.,
2018) with similar results having also been obtained in
neutrophils upon Spn infection. In addition to JNK, neutrophil
serine proteases have also been found to participate in IL-1b
secretion by regulating ASC oligomerization and caspase-1
activation (Zhang et al., 2019).

It has also been shown that IL-17A levels are significantly
upregulated in ME fluid during AOM. Wang et al. reported that
IL-17A promotes neutrophil recruitment to the ME cavity and
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neutrophil apoptosis for bacterial clearance via the p38 MAPK
signaling pathway during Spn infection (Wang et al., 2014a). The
same group found that IL-17A also induces ME injury since IL-
17A knockout (KO) mice display less severe pathological changes
in their ME and lower pro-inflammatory cytokine and
myeloperoxidase (MPO) levels. Furthermore, the group
showed that neutrophil MPO production is mediated by the
p38 MAPK signaling pathway (Wang et al., 2017).

In summary, the innate immune system mediated by TLR,
NLR, and their downstream effectors and signaling pathways
play critical roles in the production of pro-inflammatory
molecules in response to pathogens for the recruitment of
leukocytes into ME and recovery of AOM. Other signaling
pathways, such as JNK and MAPK, also participate in the
initiation of inflammation and ME injury, which may be
caused by prolonged existence of leukocytes and elevated level
of myeloperoxidase in the ME.

Genes Involved in Anti-Inflammatory
Responses in OM
While pro-inflammatory responses fight infection and damage
host tissue, they are balanced by anti-inflammatory responses that
are thought to protect against host tissue damage and initiate
repair and healing to restore tissue homeostasis. Both pro- and
anti-inflammatory cytokines and cytokine signaling genes are
rapidly upregulated in response to NTHi, as shown by
transcriptome assays performed during a complete episode of
AOM (Hernandez et al., 2015). IL-6, which acts as both a pro-
and anti-inflammatory cytokine, is significantly upregulated 3–6
h after NTHi inoculation, with its decline followed by significant
increases in other pro-inflammatory cytokines (IL-1 b and TNF-
a) and anti-inflammatory cytokines (IL-1 receptor antagonist
(IL-1RA) and IL-10) (Hernandez et al., 2015). It has been found
that IL-10 is associated with OM and plays a critical role in
protecting the cochlea from inflammation-mediated tissue
damage by negatively regulating MCP-1/CCL2 expression (Ilia
et al., 2014; Woo et al., 2015). Deubiquitinase cylindromatosis
(CYLD) has been found to suppress NTHi-induced inflammation
by inhibiting the expression of the key pro-inflammatory
chemokine IL-8 via the MAP kinase phosphatase 1 (MKP-1)–
dependent inhibition of extracellular signal-regulated kinase
(ERK) (Wang et al., 2014b). In a recent study, Zivkovic et al.
found that the IL-1RA VNTR allele 2 was associated with a
chronic OM patient in Serbia and suggested that the allele is
associated with higher IL-1RA levels, consistent with the increase
in IL-1RA observed in mouse models of OM (Zivkovic
et al., 2018).

Several TGFb signaling pathway genes have been associated
with AOM in humans, and the TGFb signaling pathway has been
shown to be involved in anti-inflammatory function in mouse
models of OM (Ilia et al., 2014; Rye et al., 2014). The
immunomodulatory gene transforming growth interacting
factor 1 (TGIF1) is a negative regulator of the TGFb signaling
pathway, and Tgif1 knockout mice develop spontaneous COME,
which is characterized by significant thickening of theMEmucosa
lining and goblet cell population expansion (Tateossian et al.,
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2013). In addition, studies in Fbxo11- and Evi1-deficient mouse
models have indicated that OM is associated with defects in the
regulation of TGFb signaling. Evi1 is known to repress TGFb
signaling in several pathological processes by interacting with
different proteins and negatively regulate NTHi-induced
inflammation by inhibiting NFkB activity (Kurokawa et al.,
1998; Izutsu et al., 2001; Sato et al., 2008; Xu et al., 2012).
Moreover, Evi1 dominant mutations lead to the spontaneous
development of OM in mice under specific pathogen-free
conditions (Parkinson et al., 2006; Hood et al., 2016). Fbxo11 is
also involved in TGFb signaling by regulating phosphoSmad2
levels in the epithelial cells of palatal shelves, while a recent report
showed that Fbxo11Jf/+ mutations cause failed mesenchymal
regression during bulla cavitation, which may be the underlying
cause of OM (Tateossian et al., 2009; Del-Pozo et al., 2019a).
FBXO11 and TGIF1 have also been associated with COM in
humans (Segade et al., 2006; Rye et al., 2011b; Bhutta et al.,
2017a), and the involvement of EVI1, FBXO11, and TGIF1 in the
development of COM may be mediated via vascular endothelial
growth factor (VEGF) signaling, which was found to be
upregulated in the leukocytes of these mutant mice during the
bulla fluid response to inflammatory hypoxia (Cheeseman et al.,
2011). Furthermore, VEGF signaling has also been demonstrated
in the effusions of children with COME, while NFkB has been
detected in the mucosa of patients with CSOM (Sekiyama et al.,
2011; Jesic et al., 2014). These data further suggest the regulation
of ME inflammation involves complex interactions between
several signaling pathways. Continuing study is needed to reveal
the molecular mechanism underlying the pathogenesis of COM.

Other Genes Involve in Innate Immune and
Inflammatory Response in OM
BPIFA1 (SPLUNC1), which is abundant in the mammalian
nasal, oral, and respiratory mucosa, has broad-spectrum
antimicrobial activity and can act as a chemoattractant that
recruits macrophages and neutrophils to the site of infection
(Sayeed et al., 2013). In mice, BPIFA1 is highly expressed in the
surface epithelium, submucosal glands in the ME, and ET, while
BPIFA1-deficient mice display an increased COM frequency, as
characterized by the accumulation of neutrophils, proteinaceous
fluid, and mucus in the ME and extensive remodeling of the ME
walls (Bartlett et al., 2015). Recently, Mulay et al. found that
Bpifa1 deletion in Evi1Jbo/+ mice significantly worsened the OM
phenotype, thickening the ME mucosa and increased collagen
deposition, without significantly increasing pro-inflammatory
gene expression. The authors concluded that BPIFA1 is
involved in maintaining homeostasis within the ME and its
loss causes more severe OM via a mechanism other than the
inflammatory response (Mulay et al., 2018). In this study, the
deletion of BPIFA1 alone does not increase the susceptibility to
OM, which is different from the ENU Bpifa1−/− mutant. This
discrepancy in the predisposition to OM may be due to the fact
that the mutations are in different genetic backgrounds (Bartlett
et al., 2015; Mulay et al., 2018).

Recently, Wang et al. found a multifunctional growth factor,
Progranulin (PGRN), was involved in AOM in an unusual way in
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the study of PGRN-deficient (PGRN-/-) mouse model (Wang
et al., 2018). After Spn inoculation, PGRN-/- mice exhibited
increased macrophage recruitment in ME but delayed bacteria
clearance. They found the production of CCL2 is increased, which
could contribute to enhanced macrophage recruitment, whereas
the delayed bacteria clearance is most likely due to impaired
endocytosis capacity of macrophages (Wang et al., 2018).

Many studies have induced AOM in rodent models using
Spn, NTHi, and influenzae A virus to conduct transcriptomic
analyses and thereby identify genes and associated pathways
involved in OM. These studies have found that expression of the
inflammatory cytokines Cxcl1, Cxcl2, and IL-6, and genes
involved in NFkB signaling, innate immune, and inflammatory
responses are upregulated in OM. These data further support the
roles of inflammatory cytokines and innate immune response in
AOM (MacArthur et al., 2013; Hernandez et al., 2015). Genes
that are important for craniofacial structure and ME cellular
function in OM.

The coordinated movement of cilia toward the pharynx via
the ET is essential for trapping pathogens and mucociliary
clearance. Many OM mouse models are characterized by gene
mutations that cause defects in craniofacial anatomy or ME
cellular function, including mucin production, ciliated cell
function, ET structure and function, ME cavitation, and
mucosal hyperplasia. Many of these mouse mutants
spontaneously develop COME and thus can serve as good
models for studying COME (Bhutta et al., 2017b; Lin et al., 2017).

In the past few years, continuing efforts have been made to
identify new genes and further characterize existing mouse
models. Mutations in TNF-like ligand ectodysplasin (Eda) and
its receptor, Edar, result in the impaired development or loss of
submucosal glands, leading to reduced ET gating and the
ascension of bacteria and foreign body particles into the ME
cavity as well as reduced mucociliary clearance in mice and rats
(Azar et al., 2016; Del-Pozo et al., 2019b). Mutations in the EYA
transcriptional coactivator and phosphatase 4 (Eya4) and Fbxo11,
which cause delayed or failed mesenchyme regression during ME
cavitation, have also been associated with OM (Depreux et al.,
2008; Del-Pozo et al., 2019a). T-box transcription factor 1 (Tbx1)
deficiency disrupts the function of the muscles that control ET
function (Fuchs et al., 2015; Funato and Yanagisawa, 2018), while
OM model mice carrying mutations in the cell adhesion protein
Cdh11 display ME cavitation defects (Kiyama et al., 2018).
Further study of many of previous identified genes in mouse
models is needed to elucidate the cellular and molecular
mechanism of these genes in OM.
RECENTLY IDENTIFIED GENES
ASSOCIATED WITH OM

In the past decade, a number of genetic loci, such as those at
10q26.3, 19q13.43, 17q12, 10q22.3, and 2q31.1, and genes
including A2ML1, BPIFA1, CAPN14, GALNT14, FBXO11,
FNDC1, FUT2, and TGIF1, have been reported to be associated
with OM (Daly et al., 2004; Casselbrant et al., 2009; Chen et al.,
Frontiers in Genetics | www.frontiersin.org 4
2011; Rye et al., 2011b; Rye et al., 2012; Allen et al., 2013; Rye
et al., 2014; Santos-Cortez et al., 2015; Einarsdottir et al., 2016;
Santos-Cortez et al., 2016; van Ingen et al., 2016; Bhutta et al.,
2017a; Santos-Cortez et al., 2018). In addition, several genes have
been identified as associated with childhood ear infection via a
genome-wide association study (GWAS), such as FUT2, TBX1,
ABO, MKX, FGF3, AUTS2, CDHR3, and PLG (Tian et al., 2017).
Among these, FUT2 and TBX1 were associated with OM by
separate studies; however, many of these associations did not
reach the genome-wide significance threshold (p < 5 × 10−8),
therefore their involvement in OM requires further validation.
Fortunately, during the past three years, an increasing number of
genes have been identified by GWAS, exome sequencing, linkage
analysis, and the use of mouse mutants.

The alpha-2-macroglobulin-like 1 (A2ML1) gene encodes an
ME-specific protease inhibitor with 41% identity and 59%
similarity with alpha-2-macroglobulin (A2M), an inflammatory
marker of the ME and oral cavity. A number of rare A2ML1
variants have been associated with OM susceptibility in
indigenous Filipino and in European- and Hispanic-American
children (Santos-Cortez et al., 2015; Santos-Cortez et al., 2016;
Larson et al., 2019). An RNAseq analysis has shown that A2ML1
upregulation is correlated with the differential expression of genes
in the keratinocyte and epidermal cell differentiation pathways,
further suggesting that these rare A2ML1 variants play a role in
ME mucosal pathology.

FUT2, which encodes alpha-(1,2)-fucosyltransferase, is a
human secretion gene that controls the expression of the Lewis
and ABO(H) antigens on the mucosal epithelia, via which
bacterial pathogens bind (Goto et al., 2016). GWAS identified
FUT2 as a potential susceptibility gene for ear infections in
children (Tian et al., 2017), while Santos-Cortez et al. found
that common and rare FUT2 variants confer susceptibility to
recurrent/chronic OM in patients from various ethnicities. FUT2
likely modulates the ME microbiome by regulating A antigen
levels in epithelial cells (Santos-Cortez et al., 2018).

Van Ingen et al. identified that the fibronectin type III domain
containing 1 (FNDC1) gene is significantly associated with AOM
via GWAS (van Ingen et al., 2016). Previous reports have
suggested that FNDC1 is involved in multiple cellular processes,
including inflammation. The AOM-associated FNDC1 variants
were correlated with the methylation status of the FNDC1 gene
and their association surpassed the threshold of genome-wide
significance and was replicated in an independent cohort.
Moreover, Fndc1 is expressed in the ME tissue of mice and its
expression upregulated upon lipopolysaccharide treatment, which
is known to potently induce inflammation and stimulate TGF-b,
TNF-a, and IL-1 signaling. Thus, these studies imply that FNDC1
may be involved in the pathogenesis of OM by modulating
immunity or inflammatory responses (van Ingen et al., 2016).

CD44 is a transmembrane glycoprotein receptor for
hyaluronic acid that is widely expressed on the surface of
leukocytes, endothelial cells, epithelial cells, fibroblasts, and
keratinocytes and is involved in cell-cell interactions, cell
adhesion, and migration. Mice deficient in CD44 exhibit
reduced early mucosal hyperplasia and leukocyte recruitment
February 2020 | Volume 10 | Article 1395
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and delayed bacterial clearance, suggesting it plays a critical role
in the cellular function of leukocytes and epithelial cells as wells
as in the pathogenesis and recovery of OM (Lim et al., 2019).

Nischarin is a cytosolic protein that is involved in the
regulation of cell motility, cell invasion, vesicle maturation, and
tumor suppression by interacting with multiple interacting
partners. Crompton et al. reported that mice with a mis-sense
mutation in the Nisch gene spontaneously develop OM, with
progression to chronic OM evidenced by histological
examinations (Crompton et al., 2017). Moreover, the mutant
mice exhibit serous or granulocytic effusions, become
increasingly macrophage- and neutrophil-rich with age, and
develop a thickened, inflamed mucoperiosteum. Significant
genetic interactions have also been observed between Nisch
and Itga5 mutations in the penetrance and severity of chronic
OM, while immunohistochemical staining and protein
expression analysis have implicated PAK1, RAC1, and
downstream LIM domain kinase 1 (LIMK1) and NFkB
pathway signaling in the development of chronic OM
(Crompton et al., 2017). Further study on the molecular
pathways involve these recently identified genes could provide
insight into the pathogenesis of OM.
MicroRNAs AND OM

Several reports have suggested that miRNAs are involved in the
pathogenesis of OM. Song et al. identified 15 differentially
expressed miRNAs from human ME epithelial cells (HMEECs)
treated with lipopolysaccharides (LPS), which are a cell wall
component of gram-negative bacteria. The predicted target genes
of these miRNAs are involved in developmental processes,
regulating cell growth, innate immune responses, acute
inflammatory responses, the IkB kinase/NFkB cascade,
complement activation, cell communication, and cell
differentiation, among others (Song et al., 2011). Val et al.
detected miRNAs from chronic OM ME effusions and
identified five miRNAs (miR-378a-3p + miR-378i, miR-200a-
3p, miR-378g, miR30d-5p, and miR-222-3p) that were
significantly induced in exosomes from HMEECs exposed to
NTHi lysates, all of which are known to target innate immunity
genes (Val et al., 2018). Associations between miRNAs and OM
have also been reported in humans; for instance, miR-146
expression is increased in the ME of OM patients and in vitro
cultured ME epithelial cells stimulated with proinflammatory
cytokines. Therefore, identifying miRNA target genes and their
downstream pathways could provide new insights into OM
(Samuels et al., 2016).
CONCLUDING REMARKS

During the past decade , mutagenes is and mutant
characterization studies in mouse models have identified many
genes as predisposing factors to OM which are predominantly
Frontiers in Genetics | www.frontiersin.org 5
involved in host immune and inflammatory responses, cellular
function in mucin production, mucociliary transport, and the
development of the ME cavity and craniofacial structure. Genetic
studies in human patients have identified far fewer genes and loci
that are significantly associated with OM due to small patient
sample sizes, poor phenotyping, and more complex genetic
polymorphisms. However, there has been some consistency
between the genes identified by human and mouse genetic
studies, with polymorphisms or variants of the human
orthologs of mouse genes, such as TLR2, TLR4, FBXO11, and
BPIFA1, also found to be significantly associated with OM in
humans. Moreover, some OM-associated syndromic disease
genes have also been identified in mice.

Studies in both human and mouse models have shown that
the host innate immune system plays crucial roles in the
pathogenesis and recovery of AOM. Deficiency in PRRs and
downstream signaling molecules that affect pro-inflammatory
factor production delay OM recovery, while mouse mutants with
ME cellular function defects and craniofacial abnormalities often
spontaneously develop chronic OM. Chronic OM has also been
associated with genetic polymorphisms or mutations in genes
involved in or mediated by innate immunity, VEGF, and TGFb
signaling pathways, such as Tlr4, Evi1, Nisch, Bpifa1, Tgif1,
and Fbxo11.

Mouse mutants have been shown to recapitulate many
features of human chronic OM, including ME leukocyte
infiltration, mucosal hyperplasia, and the production of
mucus-rich effusions, thus serve as excellent models for
studying the pathology and mechanism underlying the
pathogenesis and recovery of OM. The human counterparts of
these mouse genes associated with OM predisposition should be
investigated as candidate genes for genetic linkage or association
studies in human OM patients of different ancestries. However,
the majority of studies in animal models are phenotypic or
pathophysiological, and little is known about the disease-
related pathways or molecular mechanisms underlying the
pathogenesis of chronic OM. Thus, further studies on these
animal models are necessary.

There are several limitations to the study of OM using mouse
models. Firstly, they may not fully recapitulate the features of
human OM; for example, there is no mouse model of CSOM.
Secondly, the human counterparts of COME causal genes in
mice, such as those causing syndromic disease and craniofacial
abnormalities, may not account for the high prevalence of OM in
humans as the correlation between ET abnormalities and chronic
OM susceptibility in young children remains unclear (Sade et al.,
1986; Takasaki et al., 2007). Instead, craniofacial abnormalities
may be more associated with chronic OM in adult patients (Dinc
et al., 2015; Nemade et al., 2018). OM susceptibility is likely to be
polygenic. Thirdly, many of these mouse models have been
obtained by mutagenesis in isogenic inbred lines housed in
clean facilities, whereas the human population has huge
genetic variation and polymorphisms, experiences diverse
living conditions, and is exposed to different environments.
Studying OM gene function in outbred laboratory animals may
February 2020 | Volume 10 | Article 1395
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be a better approach. Nevertheless, mice still serve as good
models for studying the etiology, pathophysiology, and
recovery process of human OM. Therefore, the genes that have
been associated with OM in humans but failed to exceed
genome-wide significance thresholds or could not be replicated
in different cohorts should be further investigated in mice using
reverse genetics tools, such as gene editing.

In the past three years, promising results have been obtained
by using GWAS, exome sequencing, and linkage analysis to
identify human genes associated with OM. Genetic variants and
polymorphisms in several genes, such as FNDC1, FUT2, A2ML1,
TGIF1, and CD44, have been identified as significantly associated
with OM, confirming that the genome-wide significance of
genetic associations can be improved by increasing the size of
the study group. With continuing advancements in genetic
analysis technologies and experimental design, such as
increased sample size, more defined phenotyping, and less
diversity in the ancestry of the study group, future studies
should be able to identify more novel OM-predisposing genes
to advance our understanding of the mechanism underlying the
Frontiers in Genetics | www.frontiersin.org 6
pathogenesis and recovery of OM. This information would, in
turn, provide new options for efficient diagnosis and developing
effective therapies that target the specific etiology of OM.
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