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Background: Immunecheckpoint blockade (ICB) represents a promising treatment

for cancer, but predictive biomarkers are needed. We aimed to develop a cost-

effective signature to predict immunotherapy benefits across cancers.

Methods: We proposed a study framework to construct the signature.

Specifically, we built a multivariate Cox proportional hazards regression

model with LASSO using 80% of an ICB-treated cohort (n = 1661) from

MSKCC. The desired signature named SIGP was the risk score of the model

and was validated in the remaining 20% of patients and an external ICB-treated

cohort (n = 249) from DFCI.

Results: SIGP was based on 18 candidate genes (NOTCH3, CREBBP, RNF43,

PTPRD, FAM46C, SETD2, PTPRT, TERT, TET1, ROS1, NTRK3, PAK7, BRAF, LATS1,

IL7R, VHL, TP53, and STK11), and we classified patients into SIGP high (SIGP-H),

SIGP low (SIGP-L) and SIGP wild type (SIGP-WT) groups according to the SIGP

score. A multicohort validation demonstrated that patients in SIGP-L had

significantly longer overall survival (OS) in the context of ICB therapy than those

in SIGP-WT and SIGP-H (44.00months versus 13.00months and 14.00months,

p < 0.001 in the test set). The survival of patients grouped by SIGP in non-ICB-

treated cohorts was different, and SIGP-WT performed better than the other

groups. In addition, SIGP-L + TMB-L (approximately 15% of patients) had similar

survivals to TMB-H, and patients with both SIGP-L and TMB-H had better survival.

Further analysis on tumor-infiltrating lymphocytes demonstrated that the SIGP-L

group had significantly increased abundances of CD8+ T cells.

Conclusion: Our proposed model of the SIGP signature based on 18-gene

mutations has good predictive value for the clinical benefit of ICB in pancancer

patients. Additional patients without TMB-Hwere identified by SIGP as potential

candidates for ICB, and the combination of both signatures showed better

performance than the single signature.
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Introduction

Immune checkpoint blockade (ICB) is regarded as a major

breakthrough in increasing the survival time of patients

undergoing cancer treatment (Couzin-Frankel, 2013a; Couzin-

Frankel, 2013b; Adachi and Tamada, 2015; Ito et al., 2015; Kelly,

2018). In reality, available immunotherapeutic agents are

expensive. Only a few patients benefit from ICB treatment,

and a few patients might experience adverse effects, such as

hyperprogressive disease (HPD) (Corsello et al., 2013; Wang

et al., 2018; Martins et al., 2019; Thapa et al., 2019; Jin et al.,

2020). For the safety of patients and to avoid ineffective

treatment, it is significant to identify patients who will benefit

from ICB treatment (Ventola, 2017).

In recent years, an increasing number of studies have

focused on predicting the response of patients to ICB. These

studies developed biomarkers to predict the prognosis of

patients treated with ICB (Topalian et al., 2016; Havel et al.,

2019; Otoshi et al., 2019). PD-L1 expression, microsatellite

instability (MSI), and tumor mutation burden (TMB) are the

most investigative biomarkers for predicting the response to

immunotherapy (Patel and Kurzrock, 2015; Hugo et al., 2016;

Goodman et al., 2017; Chang et al., 2018; Miao et al., 2018;

Samstein et al., 2019). However, the use of the three biomarkers

in the clinic remains limited; thus, only a small portion of

patients are candidates for ICB therapy (Duffy and Crown,

2019). A large number of studies utilized the survival data of

patients who received ICB treatment to identify the

characteristics of patients with good survival. These studies

sought to identify a biomarker consisting of particular genes or

construct a signature based on mRNA expression profiles or

mutation data of genes that could accurately represent the

response to ICB (Patel and Kurzrock, 2015; Hugo et al.,

2016; Goodman et al., 2017; Jamieson and Maker, 2017;

Panda et al., 2017; Chang et al., 2018; Cristescu et al., 2018;

Miao et al., 2018; Duffy and Crown, 2019; Samstein et al., 2019;

Bai et al., 2020; Zhou et al., 2020; Jiao et al., 2021; Pan et al.,

2021). Most of the signatures were constructed for specific

cancers, such as melanoma and non-small cell lung cancer

(NSCLC) (Bai et al., 2020; Zhou et al., 2020; Jiao et al., 2021; Pan

et al., 2021). For pancancer, high TMB (TMB-H) [≥10 muts/

Mb] has been approved to be a biomarker for ICB selection by

the FDA (Food and Drug Administration, 2021). In fact, the

determination of TMB requires the assessment of mutational

features of hundreds of genes. TMB treats mutational

information for genes equally and simply focuses on the

number of mutations. Thus, TMB might not represent a

cost-effective signature. Therefore, it is critical to find a

more effective and precise signature for ICB treatment.

In this study, we focused on predicting the pancancer

response of patients to ICB with agents, such as anti-

programmed cell death protein 1 (PD-1), anti-programmed

death-ligand 1 (PD-L1), and/or anti-cytotoxic T-lymphocyte-

associated protein 4 (CTLA-4). We proposed a framework to

construct a signature with a small number of genes. The signature

was expected to have a better predictable performance on ICB-

treated datasets than TMB. To better demonstrate the

performance of the proposed signature, we performed

multicohort validation. Furthermore, an association analysis of

tumor-infiltrating lymphocytes (TILs) was conducted.

Materials and methods

Clinical cohorts

As mentioned above, we conducted a multicohort

validation. Specifically, in our study, we used two types of

cohorts: ICB-treated datasets and non-ICB-treated datasets.

For ICB-treated datasets, we used two immunotherapy

cohorts from Memorial Sloan-Kettering Cancer Center

(MSKCC) and Dana-Farber Cancer Institute (DFCI), termed

MSK-TMB and ALLEN, respectively (Miao et al., 2018;

Samstein et al., 2019). Non-ICB-treated datasets included

two nonimmunotherapy cohorts from MSKCC and TCGA

(named as MSK-IMPACT and TCGA). All data were

collected from previously published clinical cohorts. We

obtained MSK-TMB, ALLEN, and MSK-IMPACT from the

cBioPortal database (https://www.cbioportal.org) (Cerami et al.

, 2012) and obtained Pan-Cancer Atlas Hub of TCGA data from

UCSC Xena (https://xenabrowser.net/datapages/) (Goldman

et al., 2020). We randomly partitioned 80% and 20% of the

samples fromMSK-TMB into a training set and a test set named

MSK-TMB-training and MSK-TMB-test, respectively. For the

analysis of the tumor immune microenvironment (TiME), we

obtained infiltration estimations for all TCGA tumors from

http://timer.cistrome.org, which included the results of the

CIBERSORT algorithm (Newman et al., 2015; Li et al.,

2017). GEPIA (http://gepia.cancer-pku.cn) was used to

analyze the gene mRNA expression levels in tumors

compared with paired normal tissues. Information regarding

protein expression of cell lines and tissues was obtained from

the Human Protein Atlas (HPA, https://www.proteinatlas.org).

We also used the TISIDB database (http://cis.hku.hk/TISIDB)

to infer the relationship between the abundance of TILs and

DNA methylation.

After removing patients with missing survival times, the

MSK-TMB-training, MSK-TMB-test, and ALLEN datasets

consisted of 1329, 332, and 249 samples, respectively. MSK-

IMPACT and TCGA had 6256 and 8724 samples, respectively.

The MSK-TMB-test and ALLEN datasets represent two ICB-

treated cohorts from different centers for validation. The

mutations (1 for mutated and 0 for wild type) of 468 cancer-

related genes from the MSK-TMB-training cohort were

considered as candidate features for constructing a signature.

The overall survival (OS) time was the target of our statistical
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model. More details about the clinical characteristics of the five

datasets are provided in online supplementary Table S1.

Construction of a signature framework
and statistical analysis

We developed a study framework to construct a signature for

predicting the response to ICB treatment. We learned a signature

based onMSK-TMB-training and then validated the signature on

the other four datasets. The signature was constructed based on

gene feature selection and weighting, and the candidate features

for the work were mutational data of hundreds of genes.

Because genes mutated with extreme-low frequency were

unable to provide reliable information for the predictable task, we

only considered genes with mutation frequency ≥1%. Then, we

selected genes for which their mutations might represent

potential factors influencing patient survival. Specifically, we

conducted a univariate Cox proportional hazards regression

analysis for each gene, and genes with a p value ≤ 0.05 were

selected for the next step. Given that only a few genes among the

selected genes that truly impact survival, we conducted a

multivariate analysis to achieve both gene selection and

signature generation.

We built a multivariate Cox proportional hazards regression

model with the least absolute shrinkage and selection operator

(LASSO), and the features included the mutational status of the

selected genes (Tibshirani, 1996; Huang et al., 2016; Reichling et al.,

2020). LASSO is powerful in selecting the key features and avoiding

model overfitting. Specifically, based on Cox regression, LASSO

introduced a penalty item with a hyperparameter on feature

variables, and the choice of the hyperparameter impacted the

result of feature selection. A large numeric hyperparameter might

lead to an overpenalty on feature selection, causing few features to

remain and the model to be underfit. In contrast, a low numeric

hyperparameter might lead to a weak effect on feature selection.

Thus, we conducted 5-fold cross-validation to determine the

hyperparameter. Since the concordance index (C-index)

evaluated the predicted performance of a Cox regression model,

we could decide on a hyperparameter based on the C-index. The

model with fewer features (genes in our study) and satisfactory

C-index value should be preferred. Therefore, our recommendation

strategy was that we should determine the hyperparameter

considering both the C-index and the number of remaining

features, rather than maximizing the C-index. After the penalty

hyperparameter was determined, a Cox model with LASSO was

built. The risk score of the model, which is derived from a weighted

sum of gene mutations, is the desired signature.

Kaplan–Meier survival curves were generated to intuitively

display the survival of patients in groups. The log-rank test was

used to analyze the differences in survival among the different

patient groups. A 95% confidence interval for median OS was

reported. All statistical analyses were performed in R language

(version 4.1.0). Unless stated otherwise, all p-values were two-

sided with an α of 0.05.

Results

Development of a potential immune
predictive gene signature of signature of
pancancer

The use of potential gene mutations as biomarkers could

functionally affect the outcome of immunotherapy. Starting with

468 genes, we constructed a signature with 18 genes. There were

288 genes with mutational frequency ≥1% in MSK-TMB-

training. After univariate Cox proportional hazards regression

analysis, 109 genes with statistical significance remained (p ≤
0.05). We performed 5-fold cross-validation to decide an

appropriate penalty hyperparameter λ of the Cox regression

model with LASSO. Supplementary Figure S1 shows the

association between penalty hyperparameter λ and the

C-index. Considering the trend of the association between the

C-index and the number of the remaining genes, we took λ =

0.0575 and built a Cox regression model with LASSO using the

hyperparameter. Finally, we determined the Cox regression

model with LASSO, which included 18 genes. We named the

risk score the SIGP (signature of pancancer) score. The desired

risk score formula from the model was defined as follows:

SIGP score � −0.3485pVHL − 0.2073pTET1 − 0.1501
pFAM46C − 0.1294pNTRK3 − 0.1006pBRAF − 0.0986
pNOTCH3 − 0.0983pRNF43 − 0.0807pTERT − 0.077p

PTPRT − 0.0582pLATS1 − 0.0509pSETD2 − 0.0448
pPAK7 − 0.0381pPTPRD − 0.0366pIL7R − 0.0192
pROS1 − 0.0178pCREBBP + 0.0908pSTK11 + 0.1304pTP53

For the 18 selected genes, Figures 1A–C shows the prevalence

of the genes mutated among patients and the proportion of

patients with different number of genes mutated in the MSK-

TMB-training cohort and the MSK-TMB-test cohort, and

proportion of patients with different cancer types in the MSK-

TMB-training cohort. Most of the 18 genes of SIGP

corresponded to a prevalence greater than 5%, and SIGP was

available for providing a predicted result of the response to ICB

for a large proportion of patients. However, we should note that

approximately 28% of patients did not harbor any mutations

among the 18 genes. We included patients with no mutations

among 18 genes as a group, i.e., SIGP-WT. We used the

maximally selected rank statistics based on the SIGP score

and OS for patients with mutated genes in the training cohort

to determine the optimal cutoff point. Then, we separated

patients into three groups: SIGP-WT, SIGP-L (≤−0.0212241),
and SIGP-H (>−0.0212241 & ≠ 0). As a result, 373 (28.07%), 400

(30.10%), and 556 (41.83%) of 1329 patients in the MSK-TMB-

training dataset were classified into the SIGP-WT, SIGP-L, and
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SIGP-H groups, respectively, and their median OS values were 15

(13–17), 47 (42-NA), and 10 (9–12) months, respectively.

Patients with low SIGP obtained significantly longer OS than

the other patients (p < 0.0001). Figure 1D shows the performance

of SIGP in the training set.

Validation of signature of pancancer on
the immune checkpoint blockade-treated
cohorts

We validated the performance of SIGP in predicting the

efficacy of ICB treatment in the MSK-TMB-test cohort. To

demonstrate the generalization of SIGP, we validated ALLEN,

which is an ICB-treated cohort from a different center. We

calculated the SIGP scores of patients of the MSK-TMB-test

and ALLEN and separated patients into three groups based on

the determined cut-point (−0.0212241) and the SIGP scores. The

validation result shows a general pattern of SIGP: patients with

SIGP-L had a significantly longer OS than patients with SIGP-

WT and SIGP-H (Figures 2A,B). The median OS values of SIGP-

WT, SIGP-L, and SIGP-H in the MSK-TMB-test were 13.00

(8.00–23.00), 44.00 (28.00-NA), and 14.00 (11.00–21.00)

months, respectively, while those in ALLEN were 12.11

(8.22–26.91), 31.32 (23.82-NA), and 12.63 (9.61-NA) months,

respectively. In particular, a large proportion of patients with

FIGURE 1
The prevalence of 18 selected genes mutated among patients and the proportion of patients with the different number of genes mutated in the
MSK-TMB-training cohort and the MSK-TMB-test cohort, the proportion of patients with different cancer types and Kaplan–Meier (KM) curves of
SIGP in MSK-TMB-training. (A) Prevalence of the 18 selected genes mutated among patients; (B) Proportion of patients with the different number of
genes mutated; (C) Proportion of patients with different cancer types in MSK-TMB-training (n = 1329); (D) KM curves of SIGP in MSK-TMB-
training.
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longer OS (e.g., >20.00 months) were identified in SIGP-L. As a

result, SIGP-L was determined to represent a potential signature

of a good response to ICB treatment.

Performance of signature of pancancer on
the non-immune checkpoint blockade-
treated cohorts

We conducted an experiment to verify whether SIGP

represents a specific signature for ICB treatment without the

independent influence of prognostic factors. Thus, we validated

the performance of SIGP on the non-ICB-treated cohorts and

compared the results between non-ICB-treated cohorts and ICB-

treated cohorts. We computed the SIGP scores of patients in two

non-ICB-treated cohorts and then obtained the SIGP-WT, SIGP-

L, and SIGP-H groups (Figures 2C,D). Kaplan–Meier survival

curves of OS were generated for three groups of patients from the

MSK-IMPACT and TCGA datasets. Compared with the results

of the ICB-treated cohorts (Figures 2A,B), we observed the

following: 1) Patients in the SIGP-L group did not exhibit the

best prognosis, and their survival was significantly lower than

that of the SIGP-WT group (log-rank test for SIGP-WT and

SIGP-L: MSK-IMPACT, p < 0.0001; TCGA, p = 0.0428). 2) It is

obvious that patients in the SIGP-WT group had significantly

longer OS than patients in the SIGP-H group. These findings

were different from the results of the ICB-treated cohorts.

Therefore, SIGP generated from ICB-treated cohorts plays a

FIGURE 2
Kaplan–Meier (KM) curves of SIGP in two ICB-treated cohorts and two non-ICB-treated cohorts: MSK-TMB-test, ALLEN, MSK-IMPACT and
TCGA. (A) KM curves of SIGP in MSK-TMB-test; (B) KM curves of SIGP in ALLEN; (C) KM curves of SIGP in MSK-IMPACT; (D) KM curves of SIGP in
TCGA.
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potential specific role in predicting the response to ICB treatment

and was not able to be generalized to non-ICB-treated cohorts.

Performance of signature of pancancer
against tumor mutation burden

As mentioned above, TMB-H was approved as one of the

biomarkers for ICB treatment by the FDA. We compared the

performance of SIGP-L with that of TMB-H in the MSK-TMB-

test cohort (Figure 2A and Supplementary Figure S2). We

observed that SIGP had a similar performance to TMB.

However, SIGP is based on only 18 genes and recognized

more patients with longer OS, whereas TMB is based on

hundreds of genes. Thus, our signature SIGP is cost-effective.

Here, we explored the effects of the combination of SIGP and

TMB. As demonstrated above, low SIGP and high TMB indicated

a good response to ICB therapy. Consistent with our expectation,

the combination of SIGP-L and TMB-H exhibited the best

survival result, whereas the combination of SIGP-H and

TMB-L corresponded to the worst survival curve

(Supplementary Figure S3). In addition, we observed that the

SIGP-L + TMB-L group shows a good prognosis for ICB therapy.

Table 1 shows the proportions and median survival of the three

groups: SIGP-L + TMB-H, SIGP-L + TMB-L, and SIGP-H +

TMB-L. Approximately 30% of patients in the cohorts SIGP-L +

TMB-H and SIGP-L + TMB-L were predicted to benefit from the

ICB treatment, whereas an additional 30% of patients, i.e., SIGP-

H + TMB-L might not be recommended to accept ICB treatment.

Furthermore, we stratified patients into three groups: TMB-

H, SIGP-L + TMB-L, and others. The median OS in the MSK-

TMB-test was NA (25-NA), 44 (21-NA), and 12 (9–18) for the

TMB-H, SIGP-L + TMB-L, and others groups, respectively, and

the median OS in the MSK-TMB-training was 42 (32–60), 36

(32-NA), and 12 (11–14), respectively. Figure 3 displays the KM

curves of the three groups. The SIGP-L + TMB-L group had

similar survival to the TMB-H group. Thus, our signature SIGP

identified extra candidates (16.57% in MSK-TMB-test, 13.32% in

MSK-TMB-training) for ICB treatment in addition to the

patients with TMB-H.

Overall, the combination of SIGP and TMB could improve

the predictive value and increase the confidence of identifying

patients with a positive or negative response to ICB treatment.

An additional approximately 15% of patients with low TMB were

identified as candidates for ICB treatment by the SIGP.

Association between signature of
pancancer and tumor immune
microenvironment

TiME, an important effector battlefield for immunotherapy,

has been shown to correlate with the efficacy of immunotherapy

in numerous studies (Ock et al., 2016; Varn et al., 2017; Bagaev

et al., 2021). We obtained CIBERSORT estimates of abundances

of 22 immune cell types for 8724 TCGA cohort patients and

observed the differences between the three groups separated by

SIGP to assess the association between SIGP and TiME. Figures

4A,B illustrate medians and means of CIBERSORT estimates of

abundances of 22 immune cell subtypes. Significant differences in

the abundances of CD8+ T cells, M0 macrophages, activated NK

cells, and especially CD8+ T cells were noted between SIGP-L and

SIGP-H. Figures 4C,D shows boxplots of CIBERSORT estimates

of the abundances of CD8+ T cells and activated NK cells.

Compared with SIGP-H and SIGP-WT, SIGP-L had a higher

proportion of CD8+ T cells and activated NK cells, which would

play a crucial role in eliminating cancer cells.

Expression of genes involved in signature
of pancancer

Gene mutations may affect protein expression and function,

and we additionally assessed the mRNA and protein expression

levels of the most important genes in SIGP [top2 in positive

contribution for SIGP score (TP53, STK11) and top4 genes in

negative contribution for SIGP score (VHL, TET1, FAM46C, and

NTRK3)] in our study in cell lines and human tissues from public

databases, including TCGA and HPA (Supplementary Figure

S4). The results showed that these genes were expressed

TABLE 1 Proportions (Prop.) and median survival of SIGP-L + TMB-H, SIGP-L + TMB-L, SIGP-H + TMB-L and Others in the MSK-TMB-test cohort and
the MSK-TMB-training cohort.

Group MSK-TMB-test MSK-TMB-training

Prop Median OS (95% CI) Prop Median OS (95% CI)

SIGP-L + TMB-H 49/332 (14.76%) NA (31-NA) 223/1329 (16.78%) 60 (44-NA)

SIGP-L + TMB-L 55/332 (16.57%) 44 (21-NA) 177/1329 (13.32%) 36 (32-NA)

SIGP-H + TMB-L 107/332 (32.23%) 12 (8–18) 392/1329 (29.50%) 9 (8–11)

Others 121/332 (36.45%) 18 (12–31) 537/1329 (40.41%) 14 (13–16)
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differently in different types of cell lines and tissues. STK11 and

VHL were widely expressed at the mRNA and protein levels in

various cell lines and tissues, whereas TP53 was more sensitively

detected at the mRNA level. We also explored the differences

between these genes in tumor tissues and normal tissues, which

may explain the potential basis of this model (Supplementary

Figure S5). The expression levels of oncogenes or tumor-related

genes, such as BRAF, NOTCH3, and TERT, were higher in tumor

tissues compared with paired normal tissues. Tumor suppressor

genes TP53 and VHL also showed a tendency to be more highly

expressed in tumor tissues than in normal tissues. We further

examined the relationship between DNA methylation and the

immune microenvironment, and the results showed that the

methylation of several important genes in this model (TP53,

STK11 and VHL) may be associated with a better immune

microenvironment (Supplementary Figure S6). The current

results make it difficult to explain whether DNA methylation

is related to the model in this study, and further data are needed

to clarify this issue.

Discussion

Immunotherapy, especially ICB treatment, is a

breakthrough in antitumor therapy and has revolutionized

outcomes in advanced cancers. However, ICB therapy might

cause adverse effects, and only a proportion of patients could

benefit from it. It is crucial to have biomarkers to accurately

predict the efficacy of ICB treatment and support treatment

decisions for patients. Our work conducted a multicohort and

retrospective study to develop a potential pancancer signature

to predict ICB therapy efficacy.

We conducted multiple experiments to verify the

performance of our proposed 18-gene-based SIGP signature,

and the validation results of SIGP in two ICB-treated cohorts

from different centers and two non-ICB-treated cohorts

demonstrated that the signature captured a general pattern of

predicting the response to ICB. The comparison experiment

between SIGP and TMB showed that SIGP could recognize

more patients with a longer survival time. The analysis on the

merging of SIGP and TMB revealed a better result: patients with

two positive signs for ICB, i.e., SIGP-L and TMB-H, had a higher

survival probability. in contrast, most of the patients with SIGP-

H and TMB-L had a shorter OS and a lower survival probability.

Thus, SIGP-L + TMB-H and SIGP-H + TMB-L potentially

represent positive and negative ICB treatment efficacy,

respectively. In addition, SIGP-L + TMB-L performed

similarly to TMB-H in terms of survival in approximately

15% of patients. Thus, the discovery ability of TMB-H in

patients who responded to ICB was limited, and SIGP-L

identified a few responders ignored by TMB-H.

Our framework selected key genes during statistical

modeling. As mentioned above, the computation of TMB is

based on hundreds of genes with the same level of

importance. Our framework identified 18 key genes and

assigned them with different importance values (see the

coefficients) to represent varying impacts. In fact, gene

selection was performed three times in our network. First, we

removed genes with a prevalence of mutations less than a given

threshold. Second, we conducted a univariate analysis to

FIGURE 3
Kaplan–Meier curves of TMB combinedwith SIGP (three groups) inMSK-TMB-training andMSK-TMB-test. (A) KM curves of SIGP+ TMB inMSK-
TMB-training; (B) KM curves of SIGP + TMB in MSK-TMB-test.
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determine the impact of gene mutations on the survival of

patients and selected genes with significant influences. Finally,

a multivariate Cox regression with LASSO was built where the

penalty hyperparameter was determined by considering the

associations between the C-index and the number of the

remaining genes after a 5-fold cross-validation experiment.

The LASSO method reduces the variance of the predicted

values by shrinking the coefficients without a substantial

increase in the bias, which means that LASSO could drop

many irrelevant features that are not associated with the

response variable. As a result, the LASSO method could

reduce overfitting and improve the predictive performance of

models, especially when the number of features is large. The

LASSO method is powerful and widely used in multiple tasks,

such as high-dimensional cancer classification, genomic

selection, and prediction tasks (Wu et al., 2009; Ogutu et al.,

2012; Algamal and Lee, 2015; Ranstam and Cook, 2018; Xiong

et al., 2019).

The immune subsets in the TiME were recently recognized

to be closely involved in the response of ICB treatment. It is

interesting to explore the associations between SIGP and the

TiME. Our further TCGA cohort analyses demonstrated that

SIGP was associated with higher CD8+ T cells in the TiME.

Existing evidence has confirmed that CD8+ T cells are the

most powerful effectors in the antitumor immune response,

and ICB treatment works to block suppressive immune

FIGURE 4
Medians and means of CIBERSORT estimates of abundances in a mixed cell population for 22 TIL cell types and boxplots of CIBERSORT
estimates of abundances for CD8+ T cells and NK cell activated in the TCGA cohort. (A)Medians of CIBERSORT estimates of abundances for immune
cell types; (B)Means of CIBERSORT estimates of abundances for immune cell types; (C) Boxplot for CD8+ T cells (Wilcoxon test); (D) Boxplot for NK
cell activated (Wilcoxon test).

Frontiers in Genetics frontiersin.org08

Yu and Gong 10.3389/fgene.2022.917118

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.917118


receptors and then restore the functions of T cells, including

CD8+ T cells (Savage et al., 2008; Mahmoud et al., 2011;

Hadrup et al., 2013; Raskov et al., 2021). Specifically, a

study of various cancers showed that the abundance of

CD8+ T cells in a tumor was the best predictive factor for

the efficacy of anti-PD-1/PD-L1 therapy (Lee and Ruppin,

2019). Actually, the coefficients of the selected genes in SIGP

indicated their impacts on ICB efficacy and were associated

with the basis of SIGP scoring. Based on the coefficients of the

18 genes, two groups of genes, which corresponded with

positive or negative coefficients, were identified. Given that

patients with a low SIGP score had better survival than others,

genes with positive coefficients should be expected to be

tumor suppressor genes, and mutations in these genes

negatively affect the efficacy of ICB. On the one hand,

STK11 and TP53 were the only two coefficients with a

positive value, indicating that mutations in these genes

would lead to a poor response to ICB treatment in our

study. This result was consistent with the fact that

STK11 and TP53 are two tumor suppressor genes and that

their mutations are known as negative prognostic effectors of

ICB treatment (Schabath et al., 2016; Pécuchet et al., 2017). On

the other hand, mutations in the other 16 genes with negative

coefficients contributed to a good response to ICB treatment,

and these genes seemed to be associated with better

immunogenicity and immunomodulatory effects.

RNF43 was identified as a tumor-associated antigen that

can lead to tumor-reactive cytotoxic T-cell responses

(Uchida et al., 2004), and a VHL mutation was associated

with outcomes and promoted increased NK cell infiltration

(Perier et al., 2011), explaining the increased number of CD8+

T cells and NK cells in patients with low SIGP scores in this

study. Mutations in TET1, a DNA demethylase, were enriched

in responders to ICB and were strongly associated with

enhanced tumor immunogenicity and a relatively hot

immune microenvironment (Wu et al., 2019). Mutations in

PTPRD, CREBBP, BRAF, NOTCH3, TERT, and SETD2,

which are involved in various aspects of immune

regulation, were reported as potential biomarkers in cancer

patients after immunotherapy with improved survival

(Ackerman et al., 2014; Ortiz et al., 2014; Li et al., 2020;

Lin et al., 2020; Lu et al., 2021; Yan et al., 2021; Zhang et al.,

2022). Cells with NTRK3 mutations are more immunogenic

(Niu et al., 2020; Zhang et al., 2021), and LATS1 mutations

may lead to considerable immune reprogramming (Moroishi

et al., 2016). Therefore, the genes in SIGP might affect the

response to ICB treatment positively or negatively. And,

patients categorized into SIGP-L based on immune-related

genes had a higher abundance of CD8+ T cells compared with

the other patients, explaining why SIGP-L patients had a

better prognosis in response to ICB treatment.

The patient distribution of the training cohort had an

impact on our predictive work. Here, our discussion focused

on the types of cancer among patients. First, we should note

that our predictive work did not consider any information

about cancer types. Figure 1C shows the proportions of the

cancer types in the training cohort, which might affect the

selection of genes related to immunotherapy. There were

numerous studies about the associations between the

selected 18 genes and the cancer types. TET1, TERT, and

SETD2 mutations represent potential biomarkers of ICB

treatment in multiple cancers (Wu et al., 2019; Li et al.,

2020; Lu et al., 2021). NTRK3 mutation might contribute

to a good prognosis of ICB in NSCLC and bladder cancer (Niu

et al., 2020; Zhang et al., 2021). VHL mutation was associated

with the better survival of renal cell carcinoma patients (Kim

et al., 2005; Patard et al., 2008; Kammerer-Jacquet et al., 2017).

TERT, BRAF, NOTCH3, and PRPRT mutations were

associated with the response in melanoma patients

(Ackerman et al., 2014; Li et al., 2020; Yan et al., 2021;

Zhang et al., 2022). Furthermore, different cancer types

might different survival times in response to

immunotherapy. Thus, a few cancer types might have a

relatively long survival time, such as renal cell cancer,

whereas a few cancer types corresponded to a relatively

short overall survival, such as breast cancer. The aim of our

work was to predict a longer overall survival in the context of

ICB treatment, and our validation result demonstrated that

our SIGP signature had a good predictive performance.

Because particular cancer types might have a longer

survival time than other cancer types, our work might

classify patients with cancer types with relatively longer OS

into the long-surviving group. The differences in the survival

of patients with different particular cancer types might be

much larger than those with the same cancer type. Thus, our

predictive work might give more attention to the differences

between cancer types rather than the differences in patients

with the same cancer type. However, stratifying long-

surviving patients with a particular cancer type is an

important task. This issue could potentially be solved by

incorporating the information of cancer types or targeting

a single cancer type, representing aims of our future studies.

The performance of SIGP was relative to the patient

distribution of validation cohorts. The MSK-TMB-test

cohort followed the same patient distribution as noted in

the training cohort, and the performance of SIGP in the

MSK-TMB-test was similar to that noted in the training

cohort. As an extra validation dataset, ALLEN had a

different patient distribution (Supplementary Table S1),

and its SIGP performance was not as good as that of the

MSK-TMB-test. We need to consider the distribution of

cancer types to pursue better performance in the prediction

of efficacy to ICB treatment in multiple cancers.

The comparison of the performance of SIGP between the

ICB-treated cohorts and the non-ICB-treated cohorts also

demonstrated that our predictive work selected the key genes
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with mutations related to ICB treatment. Our validation result

shows that SIGP-WT in the non-ICB-treated cohorts had the

best survival performance compared with the other two groups,

which was consistent with biological knowledge. For non-ICB

treatment, gene mutations might cause aggressive tumors or drug

resistance, so patients with longer OS might have wild-type

genes.

There are several limitations of our work in addition to

those mentioned above. First, only a few patients with short

survival were classified into the SIGP-L group. Thus, our SIGP

model is not perfect in precisely identifying responders to ICB.

In fact, screening all responders is difficult and challenging.

Considering more information is one method to improve the

performance of the predictive model. Our work was based on

the mutational status (1/0) of 468 genes and ignored the

number of mutations and specific variant types of a gene.

In fact, considering too many features increases the number of

samples required. Even when considering the mutational

status of 468 genes, there may be numerous combinations

of genes that serve as patterns for signatures of ICB efficacy.

However, the sample size of the training dataset for our

predictive task is too small to provide sufficient

information for models to identify an optimal pattern.

Regarding model structure, two limitations of Cox

regression with LASSO are noted. One limitation is that

LASSO might select one feature randomly in the case there

are two or more highly collinear variables. Another limitation

is that the regression is based on the assumption of the linear

relationship between features and log hazard ratio, which

might not be logical when the relationship is nonlinear. It

is challenging to address these issues, and it would be our

future work.

In conclusions, our work proposed a study framework for

constructing a genetic mutation signature predictive of ICB

treatment response. The SIGP signature is cost-effective and

performed well in predicting the response to ICB. SIGP was

associated with CD8+ T cells. Specifically, SIGP-low patients who

benefited from ICB exhibited an increased abundance of CD8+

T cells. Compared with TMB, SIGP potentially identified more

patients who would benefit from ICB. The combination of SIGP

and TMB improved the predictive value of the efficacy of ICB and

identified a large proportion of patients with a positive or

negative response to ICB. Approximately 15% of patients

without TMB-H were identified as candidates of ICB therapy

by SIGP. Furthermore, our framework provided a potential

solution for solving a similar task.
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