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In this paper, a nonlinear activation function (NAF) is proposed to constructed

three recurrent neural network (RNN) models (Simple RNN (SRNN) model,

Long Short-term Memory (LSTM) model and Gated Recurrent Unit (GRU)

model) for sentiment classification. The Internet Movie Database (IMDB)

sentiment classification experiment results demonstrate that the three RNN

models using the NAF achieve better accuracy and lower loss values compared

with other commonly used activation functions (AF), such as ReLU, SELU etc.

Moreover, in terms of dynamic problems solving, a fixed-time convergent

recurrent neural network (FTCRNN) model with the NAF is constructed.

Additionally, the fixed-time convergence property of the FTCRNN model is

strictly validated and the upper bound convergence time formula of the

FTCRNN model is obtained. Furthermore, the numerical simulation results of

dynamic Sylvester equation (DSE) solving using the FTCRNN model indicate

that the neural state solutions of the FTCRNN model quickly converge to

the theoretical solutions of DSE problems whether there are noises or not.

Ultimately, the FTCRNN model is also utilized to realize trajectory tracking of

robot manipulator and electric circuit currents computation for the further

validation of its accurateness and robustness, and the corresponding results

further validate its superior performance and widespread applicability.

KEYWORDS

non-linear activation function, recurrent neural networks, sentiment classification,

dynamic sylvester equation, robot manipulator

Introduction

Sentiment classification and time-varying problem solving are two typical problems

in practical applications. Sentiment classification utilizes computational techniques

and natural language processing to classify specific text into positive and negative

categories (Abdi et al., 2018; Chen and Xie, 2020; Wang and Lin, 2020; Saeed et al.,

2021). As the document information generated by users increasing rapidly, the analysis

of this information becomes more and more important. Based on the analysis of
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this information, it can obtain the feedback information from

students, products, services and events, which is useful for

decision making of universities, companies and governments

(Yaslan and Aldo, 2017). As a powerful tool for calculation

and natural language processing, the recurrent neural network

(RNN) is widely used in medical treatment (He et al., 2020),

sentiment classification (Azadeh et al., 2017; Zablith andOsman,

2019) and other fields (Yu et al., 2019, 2022a,b; Wan et al.,

2022a,b). Note that, the performance of the RNN models for

sentiment classification depends on its activation function (AF),

which implies that the selection of AF will affect the accuracy of

sentiment classification. Therefore, several activation functions

are designed, for example, Rectified Linear Unit (ReLU), Leaky

Rectified Linear Unit (LReLU), Exponential Linear Unit (ELU)

and Scaled ELU (SELU). Motivated by the above discussions,

a non-linear activation function (NAF) is proposed in this

work. The proposed NAF is applied to a two-layer Simple

RNN (SRNN) model, a Long Short-term Memory (LSTM)

model and a Gated Recurrent Unit (GRU) model for sentiment

classification, respectively. For the purpose of comparison, the

RNN models (SRNN, LSTM, and GRU) activated by other

commonly used AFs are also used for the same sentiment

classification task. The simulation results demonstrate that the

three NAF-based RNN models have better accuracy and faster

loss decline than the RNN models activated by other commonly

used AFs.

On the other hand, solving time-varying problems is

becoming increasingly important in the fields of science and

engineering (Gong and Jin, 2021; Jin and Gong, 2021; Liu et al.,

2021; Jin and Qiu, 2022; Jin et al., 2022a,b,c,d; Zhu et al.,

2022). As most time-varying problems can be described by

time-varying matrix equations, the RNN is also widely used to

effectively solving them in the past few years (Zhang et al., 2002;

Xiao and Zhang, 2014b; Xiao et al., 2019; Jin, 2021a; Liu et al.,

2022). Zeroing neural network (ZNN) is a typical RNN model

developing rapidly for time-varying matrix equations solving,

and many researchers devote to improve the convergence and

robustness of the ZNN model in recent years. For example,

the varying-parameter ZNN model is proposed by Zhang et al.

(2018a,b,c, 2020b,d). The varying-parameter ZNN model is

a parallel processing approach with high-efficiency and high-

precision, and its unique advantage is that it is a real-time

solver without any pre-training. Moreover, a large number of

relevant literatures reveal that the performances of ZNN model

are intrinsically related to its AF. Therefore, researchers have

designed many AFs such as LAF and PSAF, and the ZNN

model activated by them could exponentially converge to the

theoretical solutions of dynamic problems in ideal no noise

environment (Zhang et al., 2018c). Besides, the SBPAF activated

ZNN model even converges in finite time, and the RNZNN

models in ref. (Li et al., 2013) achieve fixed-time convergence

and strong robustness to noises. Furthermore, the varying-

parameter ZNN model achieves super-exponential convergence

and strong robustness by introducing a variable convergent

factor γ (Zhang et al., 2020c; Xiao and He, 2021). Although

the improvements of AF and convergent factor γ both lead

to the improved performances of the ZNN model, this work

focuses on the development of AF of the ZNNmodel, and a NAF

is presented and employed to obtain a fixed-time convergent

recurrent neural network (FTCRNN) model for further enhance

its convergence and robustness, and the FTCRNN model not

only has strong robustness to noises but also converges in

fixed-time for time-varying problems solving.

Consequently, the main contributions and innovations of

this work are summarized as follows:

(1) An NAF suits for different RNN models is proposed.

(2) Three NAF activated RNN models (SRNN, LSTM, and

GRU) are developed for sentiment classifications.

(3) A robust and fixed-time convergent FTCRNN model for

DSE problem solving and robot manipulator trajectory

tracking is presented.

(4) An application of electric circuit currents calculation

based on the FTCRNN model is designed for its

further validation.

The rest of this paper is organized as follows. The

introduction of the proposed NAF is presented in Section

The proposed NAF. In Section NAF-Based RNN models for

Sentiment classification, the sentiment classification problem

is formulated and the experiments of sentiment classification

are presented. In Section NAF-Based FTCRNN model for

dynamic problems solving, the effectiveness and robustness of

the NAF-based FTCRNN model are verified by mathematical

analysis. Besides, the experiments of time-varying DSE problem

solving, robot manipulator trajectory tracking and electric

circuit currents calculation using the NAF-based FTCRNN

model are provided. Ultimately, the conclusions and future

research directions are discussed in Section Conclusions.

The proposed NAF

AF is an important part of RNN, which has great influences

on the performances of RNN models. For example, linear AF-

based RNN models are suitable for linear problems solving,

and non-linear AF-based RNN models can effectively solve the

non-linear problems while the linear AF-based RNNmodels are

powerless in non-linear problems.

The four basic AFs for RNN models to realize sentiment

classification are presented in Table 1. The ReLU-based RNN

models have the advantage of unnecessary pre-processing

operation. However, ReLU is relatively sparse, the useful

information of the ReLU-based RNN models is easy to be

ignored. Therefore, various improved AFs are proposed [e.g.,

Leak ReLU (LReLU), Exponential Linear Unit (ELU), Scaled

ELU (SELU). . . ].
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TABLE 1 Recently reported AFs for sentiment classification.

No. AFs Expression

1 ReLU φ(x) = max(0, x)

2 LReLU φ(x) =







x, x > 0

αx, otherwise

3 ELU φ(x) =







x, x > 0

α(ex − 1), otherwise

4 SELU φ(x) =







x, x > 0

αex − α, otherwise

5 Tanh φ(x) = ex−e−x

ex+e−x

FIGURE 1

NAF (1) with di�erent parameters.

The convergence characteristics of RNN models are closely

related to the slope of their AFs (Xiao et al., 2018). The adjustable

slope AF based RNN models have better flexibility in various

problems solving, and their slope can be set according to specific

practical requirements. Obviously, when x> 0, the slopes of AFs

in Table 1 are constant and they are not adjustable. Therefore, in

order to further improve the performance of the RNN models

for sentiment classification and time-varying problems solving,

and inspired by the method in Chen et al. (2020), a new NAF

with flexible slope adjustment property is proposed.

φ(x) = α0x+ α1sign(x)|x|
2φ1−1 + α2sign(x)|x|

2φ2−1 (1)

where α0 > 0, α1 >0, α2 >0, φ1 > 1, 0< φ2 < 1, and sign (•) is

the signum function.

In order to select proper parameter values of NAF (1)

for sentiment classification, the following two-step method

is applied.

Firstly, for the convenience of observation, the proposed

NAF with different parameters (a0, α1, and α2) are plotted from

the interval [−10, 10] in Figure 1. As seen in Figure 1, the slope

of the NAF is closely related to the above parameters, and the

middle blue curve with α0 = α1 = α2 = 0.05 is adopted.

FIGURE 2

NAF (1) and AFs in Table 1.

Then, the AFs in Table 1 and the proposed NAF are plotted

in Figure 2. As observed in Figure 2, the slope of the proposed

NAF can also be adjusted by the parameters φ1 and φ2, and the

middle curve with φ1 = 1.5, φ2 = 0.1 is adopted.

Generally, the parameters in Equation (1) can be chosen

arbitrarily as long as they satisfy α0 > 0, α1 >0, α2 >0, φ1 >

1, 0 < φ2 < 1. Here, we set α0 = α1 = α2 = 0.05, φ1 = 1.5,

φ2 = 0.1 to ensure the NAF-based RNN models for sentiment

classification achieve moderate convergence and robustness.

NAF-based RNN models for
sentiment classification

Sentiment classification is to judge whether the text

information is positive or negative (e.g., good or bad, like

or hate), which gathers classification information for users to

make decision. In recent years, sentiment classification has been

widely used in business, politics, social media, and other fields.

In this section, three NAF activated RNNmodels (SRNN, LSTM

and GRU) will be used for Internet Movie Database (IMDB)

sentiment classification. Besides, the RNN models (SRNN,

LSTM, and GRU) activated by other commonly used AFs in

Table 1 are also used for IMDB sentiment classification for the

purpose of comparison.

Headings sentiment classification
diagram

In this subsection, the diagram for IMDB sentiment

classification is introduced. As shown in Figure 3, sentiment

classification mainly includes the pre-processing part and the

deep learning sentiment classification part.
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FIGURE 3

Sentiment classification diagram.

FIGURE 4

SRNN model.

The IMDB is used for sentiment analysis in this work,

and the IMDB consists of 50,000 movie reviews. Before the

training of the RNN models, the pre-processing steps are

presented below.

Firstly, 25,000 reviews of the IMDB are used for test set, and

the rest of 25,000 reviews are used for training set;

Secondly, the English vocabulary of the RNN models is set

to be 10,000;

Thirdly, only 100 words of each comment can be read by the

RNN models;

Finally, each English word is transformed to be a 100-

dimensional vector.

After the pre-processing steps, the commonly used AF-based

RNN models and the proposed NAF-based RNN models are

used for sentiment classification, respectively.

It is worth pointing out that we use the command

“word2vec” in Python to convert IMDB into vectors for

calculation and training. “Word2vec” is an efficient model for

training word vectors. It converts text data into low dimensional

real number vectors through unsupervised training.

FIGURE 5

LSTM model.

Deep learning models for sentiment
classification

The SRNN, LSTM and GRU models are used as deep

learning models for sentiment classification in this work, and

the corresponding introduction of the three RNN models are

presented below.

SRNN model

The SRNNmodel is shown in Figure 4, and its operation can

be expressed mathematically as

Ht = f (WxhXt +WhhHt−1)

Ot = g(WxOHt)
(2)

where Xt is input at time.Ht is state at time.Wxh, Whh andWxO

are weight matrices.

LSTM model

Generally, the LSTM model consist of memory cell, input

gate, output gate and forgetting gate, and the LSTM model is

presented in Figure 5.

As a typical RNN model, the LSTM model has long-term or

short-termmemory, and the results of each LSTM cell are related

to its current and past states. The LSTMmodel effectively solves

the problems of gradient vanishing and gradient explosion, and

its mathematical expression is presented below.

ft = σ (Wf (ht−1, xt)+ bf ) it = σ (Wi(ht−1, xt)+ bi)

Ot = σ (Wo(ht−1, xt)+ bo) ht = tanh(xt ,Ht−1)

St = St−1ft + ht it Ht = tanh(St)× Ot

(3)

GRU model

TheGRUmodel is the simplified version of the LSTMmodel,

and it can also solve the problems of gradient vanishing and

gradient explosion. Compared with the LSTM model, the GRU
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FIGURE 6

GRU model.

TABLE 2 Computer hardware and software.

CPU Inter i5-7400

GPU Inter HD Graphics 630

RAM 8 GB

Python version 3.0

tensorflow version 2.0

model only has the update gate and reset gate, and it is easier to

be trained.

The GRU model is represented in Figure 6, and its

mathematical expression is

Zt = σ (Wz(Ht−1, xt)) Rt = σ (Wr(Ht−1, xt))

ht = tanh(Rtht−1, xt) Ht = (Zt × ht)+ ((1− Zt)×Ht−1)
(4)

IMDB sentiment classification

In this subsection, the IMDB sentiment classification

experiments are presented to verify the superior performances of

the proposed NAF. The hardware and software of the computer

used for sentiment classification are presented in Table 2. The

three RNN models all use the categorical cross entropy loss

function, and their training batch size values are 128 and 30

epochs. Moreover, the number of neurons in the SRNN, LSTM,

and GRUmodels is set as 100 in the input layer, 64 in the hidden

layer, 64 in the full connection layer and 1 in the output layer.

Firstly, the SRNN model activated by the proposed NAF

and other recently reported AFs in Table 1 are used for the

IMDB sentiment classification, and the experiment results are

presented in Table 3 and Figure 7. As observed in Table 3,

the NAF-based SRNN model and the SRNN model activated

by other recently reported AFs all have good training effects

with training accuracy >96.5% and training loss <0.93.

However, the NAF-based SRNN model is the best one among

them, and its training accuracy and training loss achieves

TABLE 3 SRNNmodel with di�erent AFs for IMDB sentiment

classification.

No. AFs Training

accuracy

(%)

Training

loss

Val-accuracy (%) Val-loss

1 ReLU 96.7400 0.0949 83.6300 0.9275

2 LReLU 96.9000 0.0911 83.3200 0.7104

3 ELU 97.0000 0.0864 83.6200 0.9135

4 SELU 96.6600 0.0957 83.0600 0.8323

5 Tanh 96.5700 0.1010 83.4700 0.9083

6 NAF 97.2700 0.0793 83.9000 0.4473

97.2700% and 0.0793, respectively. Moreover, we can also

observe that the NAF-based SRNN model and the SRNN

model activated by other recently reported AFs all have good

sentiment classification effects with sentiment classification

accuracy >83.62% and sentiment classification loss <0.9275.

Furthermore, the sentiment classification accuracy of the NAF-

based SRNN model even achieves 83.9000%, its loss value is

0.4473, which is the lowest of all the SRNN models.

In order to further clearly illustrate the training and

sentiment classification effects of the SRNN model activated

by the five AFs, the data in Table 3 is plotted in Figure 7.

Figures 7A,B are the training curves and the tested sentiment

classification curves, respectively. The X-axis represents the

number of iterations, and the Y-axis represents the accuracy and

loss values. As observed in Figure 7A, the training accuracy of

the NAF-based SRNN model is clearly higher than other SRNN

models, and the training loss value is always smaller than other

SRNN models. In addition, as observed in Figure 7B, the test

loss value of the NAF-based SRNNmodel is extraordinary stable

comparing with other SRNN models.

Secondly, the LSTM model activated by the proposed NAF

and other recently reported AFs in Table 1 are also used

for the IMDB sentiment classification, and the corresponding

experiment results are presented in Table 4 and Figure 8. From

Table 4 and Figure 8, it is clear that the sentiment classification

accuracy of the LSTM model activated by the proposed NAF

achieves 83.8700%, and its loss value is also the best one

among them.

Thirdly, the IMDB sentiment classification is realized by the

GRU model activated by the proposed NAF and other Afs in

Table 1, and the corresponding results are presented in Table 5

and Figure 9. As seen in Table 5 and Figure 9, the sentiment

classification loss value of the GRU model activated by the

proposed NAF is the lowest than other models, and it achieves

best sentiment classification accuracy with fewer epochs among

all the models.

Finally, in order to illustrate the training process of SRNN,

LSTM and GRU models for sentiment classification more
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FIGURE 7

Training and test curves of SRNN model for IMDB sentiment classification. (A) Training curves. (B) Tested sentiment classification curves.

TABLE 4 LSTMmodel with di�erent AFs for IMDB sentiment classification.

No. AFs Train accuracy (%) Train loss Val-accuracy (%) Val-loss

1 ReLU 95.5400 0.1227 83.6900 0.6315

2 LReLU 95.6000 0.1222 83.4200 0.6693

3 ELU 96.0300 0.1103 83.8900 0.7652

4 SELU 95.9400 0.1137 83.8900 0.8349

5 Tanh 95.8100 0.1189 83.6800 0.7827

6 NAF 95.7600 0.1181 83.8700 0.6226

clearly, the output layer weights of three models are presented

in Figure 10.

NAF-based FTCRNN model for
dynamic problems solving

Sylvester equation is frequently applied in science and

engineering fields, and many problems can be solved by finding

the solution of Sylvester equations (Darouach, 2006; Zhang et al.,

2018c).

In this section, for the purpose of verifying the

superior performance of the FTCRNN model, preliminary

mathematical preparation and theoretical analysis are

given. Besides, the NAF-based FTCRNN model is used

for three practical dynamic problems solving, which are

dynamic Sylvester equation solving, robot manipulator

trajectory tracking and electric circuit currents calculation.

Moreover, the original ZNN activated by other recently

reported AFs in Table 1 are also used to solve the

above three practical dynamic problems for the purpose

of comparison.

The dynamic sylvester equation

The DSE problem can be summarized in the following

matrix equation.

A(t)X(t)− X(t)B(t) = −C(t) ∈ R
n×n (5)

where t represents time, X(t) ∈ R
n×n is the unknown

matrix to be solved. A(t) ∈ R
n×n, B(t) ∈ R

n×n and

C(t) ∈ R
n×n are the known smooth dynamic coefficient

matrices, and their time derivatives matrices are also assumed

to be known.

Frontiers inNeurorobotics 06 frontiersin.org

https://doi.org/10.3389/fnbot.2022.1022887
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Zhu and Tan 10.3389/fnbot.2022.1022887

FIGURE 8

Training and test curves of LSTM model for IMDB sentiment classification. (A) Training curves. (B) Tested sentiment classification curves.

FIGURE 9

Training and test curves of GRU model for IMDB sentiment classification. (A) Training curves. (B) Tested sentiment classification curves.

ZNN model

As a special type of RNN, the ZNNmodel plays an important

role in solving time-varying problems in the past few years.

Following the methods in Zhang et al. (2002), the ZNN model

for solving DSE problems can be constructed as below.

Firstly, according to Equation (5), a dynamic error function

E(t) is adopted.

E(t) = A(t)X(t)− X(t)B(t)+ C(t) (6)

where E(t) ∈ R
n×n is the error matrix, and its time derivative

dE(t)/dt should be negative-definite to ensure each element of

E(t) converging to 0.

Secondly, the following formula is adopted for the

convergence of E(t).

dE(t)

dt
= −γ 9(E(t)) (7)

where γ > 0 is an adjustable parameter related to the

convergence performance of the ZNN model. ψ(•) :Rn×n →

R
n×n is an nonlinear AF array, and φ (•) is the element of the

matrix ψ(•).
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TABLE 5 GRU model with di�erent Afs for IMDB sentiment classification.

No AFs Train accuracy (%) Train loss Val-accuracy (%) Val-loss

1 ReLU 94.2500 0.1575 83.8900 0.5937

2 LReLU 94.4600 0.1553 84.0200 0.5755

3 ELU 94.7400 0.1475 84.1800 0.6061

4 SELU 94.5200 0.1533 84.0100 0.6202

5 Tanh 94.8000 0.1442 84.1300 0.6249

6 NAF 94.8100 0.1458 84.1900 0.4056

FIGURE 10

Output layer weights of SRNN, LSTM, and GRU model. (A) SRNN output layer weights. (B) LSTM output layer weights. (C) GRU output layer

weights.

TABLE 6 Recently reported AFs for ZNN model (9).

No. AFs Expression

1 Linear activation function (LAF) φ(x) = x

2 Power-Sigmoid activation function (PSAF) φ(x =) =







xp , |x| ≥ 1

1+e−ξ−e−ξx

1+e−ξ+e−ξx
, otherwise

3 Sign-bi-power activation function (SBPAF) φ(x) = 1
2 sgn

ξ1 (x)+ 1
2 sgn

ξ2 (x)

4 Versatile activation function (VAF) φ(x) = b1
p
exp(|x|p)|x|1−psgnx+ b2x+ b3sgn(x)

The time differential of equation (6) is

dE(t)

dt
=

•
A (t)X(t)+ A(t)

•
X (t)−

•
X (t)B(t)− X(t)

•
B (t)

+
•
C (t) (8)

At last, substituting equation (7) into (8), the ZNNmodel for

solving DSE is realized.

A(t)
•
X(t)−

•
X(t)B(t) = −

•
A(t)X(t)+ X(t)

•
B(t)−

•
C(t)

− γ 9(E(t)) (9)

ZNN model (9) is stable as long as AF ψ(•) is a

monotonically increasing function (Zhang et al., 2007, 2008),

and the recently reported AFs are listed in Table 6.

The NAF-based FTCRNN model

The FTCRNNmodel is obtained by introducing the NAF (1)

to the ZNN model (9), and its expression is

•
E (t) = −γ [α0(E(t))+ α1sign(E(t))

∣

∣

∣
E2φ1−1(t)

∣

∣

∣

+ α2sign(E(t))
∣

∣

∣
E2φ2−1(t)

∣

∣

∣
] (10)

Then, the FTCRNN model for solving DSE is shown

as below.

A(t)
•
X (t)−

•
X (t)B(t) = −

•
A (t)X(t)+ X(t)

•
B (t)−

•
C (t)

+
•
E (t) (11)
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FIGURE 11

FTCRNN model algorithm diagram.

To further analyze its robustness, the FTCRNN model with

additive noise N(t) is presented as follows.

A(t)
•
X (t)−

•
X (t)B(t) = −

•
A (t)X(t)+ X(t)

•
B (t)−

•
C (t)+

•
E (t)

+ N(t) (12)

The corresponding algorithm diagram of the FTCRNN

model for solving TODSE problem is presented in Figure 11.

A(t), B(t), C(t), X(t), and ψ(•) are the previous defined matrices.

Each orange circle represents a time-varying matrix or their

derivative matrix, and the number of neurons in each orange

circle depends on the number of matrix elements. Besides, the

convergence factor γ is set as 1 for fair comparison.

FTCRNN analysis

In order to verify the fixed-time convergence and robustness

to noise of the proposed FTCRNNmodel, the following Lemma

1 is presented in advance.

Lemma 1 (Chen et al., 2020). If V(•): Rn → R +
⋃

{0} is a

continuous radially unbounded function, and the following two

conditions hold.

(I) V(e(t))= 0 ⇔ e(t)= 0;

(II) Any e(t) in system (13) satisfies

•
V (e(t)) ≤ −αVξ (e(t))− βVη(e(t))− δV(e(t)),

t ∈ [0,+∞] (13)

where α, β, δ > 0, 0 < ξ < 1, and η > 1. Then the dynamic

system (13) is fixed-time stability, and

Tm =
1

δ(1− ξ )
ln(1+

δ

α
)+

1

δ(η − 1)
ln(1+

δ

β
) (14)

Definition 1 (Chen et al., 2020). The dynamic system (13)

achieves finite-time stability, if there exists a constant T(e(0)) >

0 such that lim
t→T(e(0))

||e(t)||1 and ‖e(t)‖1 = 0 for ∀ t > T (e(0)),

where T(e(0)) is the settling time.

Definition 2 (Chen et al., 2020). The dynamic system (13)

achieves fixed-time stability, if two conditions are satisfied: (i)

The dynamic system (13) achieves finite-time stability; (ii) For

any e(0), there exists a fixed constant Tm > 0 such that T(e(0))

≤ Tm.

Proof: Let U(s)= V1−ξ (s), then we have

•
V (s) =

1

1− ξ

•
U (s)Vξ (s) (15)

Combining Equations (13, 15) yields

1

1− ξ

•
U (e(t))Vξ (e(t)) ≤ −αVξ (e(t))− βVη(e(t))

− δV(e(t)) (16)

Then, we can rewrite Equation (16) as

•
U (e(t)) ≤ −α(1− ξ ) (17)

Because
•
U (e(t)) ≤ −α(1− ξ ), there always exists a constant

T(e(0)) =
U(e(0))
α(1−ζ )

> 0, such that lim
t→T(e(0))

U(e(t)) = 0 and

U(e(t)) = 0 for ∀t > T(e(0)). In view of U(e(0)) = 0 ⇔

V(e(t)) = 0 ⇔ e(t) = 0, so there exists a constant T(e(0)) > 0

such that lim
t→T(e(0))

||e(t)||1 = 0 and ||e(t)||1 = 0 for ∀t >

T(e(0)). According to Definition 1, the dynamic system (13) is

finite-time stable.

Equation (16) can be written in the following form

dt

dV(e(t))
≥

1

−αVξ (e(t))− βVη(e(t))− δV(e(t))
(18)

and we have

T(e(0)) ≤

∫ V(e(0))

0

1

αsξ + βsη + δs
ds (19)

Then, the analysis of Equation (19) should be divided into

the following two cases.

(i) If 0 ≤ V(e(0)) ≤ 1,

T(e(0)) ≤

∫ 1

0

1

αsξ + βsη + δs
ds ≤

∫ 1

0

1

αsξ + δs
ds (20)

Let ω = s1−ξ , we have dω = (1− ζ )s−ξds, thus

∫ 1

0

1

αsξ + δs
ds =

1

1− ξ

∫ 1

0

sξ

αsξ + δs
dω

=
1

δ(1− ξ )
ln(1+

δ

α
) (21)

Therefore, we can obtain

T(e(0)) ≤
1

δ(1− ξ )
ln(1+

δ

α
) (22)
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(ii) If V(e(0)) ≤ 1,

T(e(0)) ≤

∫ 1

0

1

αsξ + βsη + δs
ds+

∫ V(e(0))

1

1

αsξ + βsη + δs
ds

≤

∫ 1

0

1

αsξ + δs
ds+

∫ +∞

1

1

bsη + δs
ds (23)

Let c = s1−η , we have dc = (1− η)s−ηds, thus

∫ +∞

1

1

βsη + δs
ds =

1

1− η

∫ 0

1

sη

βsη + δs
dc

=
1

δ(η − 1)
ln(1+

δ

β
) (24)

Therefore, we can obtain

T(e(0)) ≤
1

δ(η − 1)
ln(1+

δ

β
) (25)

According to Definition 2, we can obtain that dynamic

system (13) is stable in fixed-time Tm.

Tm ≤
1

δ(1− ξ )
ln(1+

δ

α
)+

1

δ(η − 1)
ln(1+

δ

β
) (26)

The proof of Lemma 1 is completed.

According to Lemma 1, we will verify the fixed-time

convergence and robustness to noises of the proposed FTCRNN

model in the following two cases.

Case 1: Convergence analysis without noise

Theorem 1. If the solution of DSE (1) exists, the state

solution X(t) of FTCRNN model (11) will converge to the

theoretical solution X∗(t) of DSE (1) in fixed-time Ts.

Ts ≤
1

2α0(1− φ1)
ln(1+

α0

α1
)+

1

2α0(φ2 − 1)
ln(1+

α0

α2
)

Proof. According to Equation (10), the ijth dynamic error

function eij(t) of FTCRNNmodel (11) can be expressed as

•
e ij(t) = −γ

[

α0(eij(t))+ α1sign(eij(t))
∣

∣

∣
eij

2φ1−1(t)
∣

∣

∣

+ α2sign(eij(t))
∣

∣

∣
eij

2φ2−1(t)
∣

∣

∣

]

(27)

When γ = 1, we choose the following Lyapunov function.

V(eij(t)) =
1

2

∣

∣eij(t)
∣

∣

2
(28)

•
V (eij(t)) = eij(t)

•
e ij(t) = eij(t)×

{

−γ
[

α0(eij(t))

+ α1sign(eij(t))
∣

∣

∣
eij

2φ1−1(t)
∣

∣

∣

+ α2sign(eij(t))
∣

∣

∣
eij

2φ2−1(t)
∣

∣

∣

]}

= −γ
(

α0e
2
ij(t)+ α1

∣

∣

∣
eij

2φ1 (t)
∣

∣

∣
+ α2

∣

∣

∣
eij

2φ2 (t)
∣

∣

∣

)

= −

(

2α0V(eij(t))+ 2α1V
φ1 (eij(t))

+ 2α2V
φ2 (eij(t))

)

(29)

According to Lemma 1, the convergent time of FTCRNN

model (11) can be obtained.

Tij ≤
1

2α0(1− φ1)
ln(1+

α0

α1
)+

1

2α0(φ2 − 1)
ln(1+

α0

α2
)(30)

Case 2: Convergence analysis with noises

Noise interference is inevitable in the practical applications,

therefore, it is necessary to consider the capability of anti-

noises ability. Therefore, in this subsection, the robustness of

the proposed FTCRNN model is analyzed, and the following

theorem 2 guarantees the fixed-time stable of FTCRNN (12) in

noisy environment.

Theorem 2. If FTCRNN model (12) is polluted by external

noise N(t) with its ijth element satisfying |nij(t)| ≤ γ|eij(t)|,

where σ ∈ (0, +∞), |eij(t)| and |nij(t)| are the absolute values

of the ijth element of E(t) and N(t), respectively. In addition,

suppose γ×min(α,α1,α2) > σ. Then, neural state solution X(t)

of FTCRNN model (12) converges to the theoretical solution

X∗(t) of DSE (5) in fixed-time Ts.

Ts ≤
1

(2α0 + σ )(1− φ1)
ln(1+

2α0 + σ

2α1
)

+
1

(2α0 + σ )(φ2 − 1)
ln(1+

2α0 + σ

2α2
) (31)

where the parameters a, α1, α2, φ1, φ2 are defined similar

as before.

Proof: The ijth dynamic error function eij(t) of FTCRNN

model (12) with noises can be expressed as

•
e ij(t) = −γ

[

α0(eij(t))+ α1sign(eij(t))
∣

∣

∣
e
2φ1−1
ij (t)

∣

∣

∣

+ α2sign(eij(t))
∣

∣

∣
e
2φ2−1
ij (t)

∣

∣

∣

]

− nij(t) (32)

When γ = 1, we choose the following Lyapunov function.

V(eij(t)) =
1

2

∣

∣eij(t)
∣

∣

2
(33)

•
V (eij(t)) = eij(t)

•
e ij(t) = eij(t)× {−γ

[

A(eij(t))

+ α1sign(eij(t))
∣

∣

∣
eij

2φ1−1(t)
∣

∣

∣
+ α2sign(eij(t))

∣

∣

∣
eij

2φ2−1(t)
∣

∣

∣

]

−nij(t)}=− γ
(

α0e
2
ij(t)+ α1

∣

∣

∣
eij

2φ1 (t)
∣

∣

∣
+ α2

∣

∣

∣
eij

2φ2 (t)
∣

∣

∣

)

−nij(t)× eij(t) ≤ −2α0V(eij(t))− 2α1V
φ1 (ei,j(t))

−2α2V
φ2 (eij(t))− σV(eij(t)) = −2(α0 +

1

2
σ )V(eij(t))

−2α1V
φ1 (eij(t))− 2α2V

φ2 (eij(t)) (34)

According to Lemma 1, the convergence time of FTCRNN

model (12) can be obtained.

Tij ≤
1

(2α0 + σ )(1− φ1)
ln(1+

2α0 + σ

2α1
)

+
1

(2α0 + σ )(φ2 − 1)
ln(1+

2α0 + σ

2α2
) (35)
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Remark 1.As observed in Equations (30, 34), the parameters

(α0, α1, α2, φ1, and φ2) of NAF (1) are closely related to the

convergent time of the FTCRNN model. Considering the above

equations and the numerical simulation in the next section, we

set α0 = 50, α1 = α2 = 0.2, φ1 = 1.3, φ2 = 0.2 to ensure the

FTCRNNmodel achieve better convergence and robustness.

Dynamic problems simulation verification

In this subsection, three experiments using the NAF-

based FTCRNN model are demonstrated. In example 1, a

third-order DSE (TODSE) is solved by using the proposed

NAF-based FTCRNN model. The FTCRNN-based robotic

manipulator trajectory tracking application is applied in

example 2. In example 3, an application of electric circuit

currents computation using the NAF-based FTCRNN model

is presented.

Example 1. TODSE problem solving

In this subsection, the proposed FTCRNN model is used to

solve a TODSE problem on the basis of the following dynamic

coefficient matrices. Additionally, the ZNN model (9) activated

by other three AFs in Table 6 is also applied to solve the same

TODSE problem for comparison.

A =







sin 3t cos 3t sin t

− cos 3t sin 3t cos t

− sin t − cos 2t sin 3t







B =







20 0 10

0 30 15

0 15 20







C =







sin 3t cos 3t sin t

− cos 3t sin 3t cos t

sin t cos t sin 3t







FIGURE 12

TODSE (5) solved by ZNN model (9) and the proposed NAF-based FTCRNN model (11) without noise. (A) Solved by FTCRNN model (11) without

noise. (B) Solved by VAF-based ZNN model (9) without noise. (C) Solved by SBPAF-based ZNN model (9) without noise. (D) Solved by LAF-based

ZNN model (9) without noise.
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FIGURE 13

Residual errors of the ZNN model (9) and the NAF-based

FTCRNN model (11) for solving TODSE without noise.

The simulation results of the ZNN model (9) activated

by other three AFs in Table 6 and the proposed NAF-based

FTCRNN model (11) for solving the above TODSE (5) in no

noise environment are presented in Figure 12. The red dotted

curves and blue solid curves are the theoretical solutions and

neural state solutions of TODSE (5), respectively. As observe

in Figure 12, the ZNN model (9) and the proposed NAF-based

FTCRNNmodel all effectively solve the TODSE (5).

To clearly compare their effectiveness for solving TODSE

(5) in no noise environment, the simulated residual errors
∥

∥A(t)X(t)− X(t)B(t)+ C(t)
∥

∥

F of the ZNN model (9) activated

by other three AFs in Table 6 and the proposed NAF-based

FTCRNN model are presented in Figure 13. It is obvious that

all the models possess the ability to converge to the theoretical

solution of TODSE (5), but their effectiveness are quite different.

The proposed FTCRNN model (11) spends only about 0.15 s to

find the theoretical solution of TODSE (5), which is the most

effective candidate for solving TODSE in no noise environment.

Moreover, according to Equation (30), the convergent

time of the FTCRNN model in no noise environment can

be calculated.

Ts ≤
1

2α0(1− φ1)
ln(1+

α0

α1
)+

1

2α0(φ2 − 1)
ln(1+

α0

α2
)

≈ 0.7s (36)

The theoretical convergent time of the FTCRNN model in

no noise environment is 0.7 s, and the simulated convergent time

is about 0.15 s, which prove that the theoretical analysis result is

consistent with the experimental result.

Considering the inevitable noises in practical application,

ZNN model (9) activated by other three AFs in Table 6

and the proposed NAF-based FTCRNN model (12) are also

applied to solve the TODSE (5) in noisy environment, and

the dynamic mixed-noise matrix N(t) is presented as below.

The corresponding simulation results for solving TODSE (5) in

noise-polluted environment are presented in Figures 14, 15.

N(t) =







1.5 sin t 0.5t 1.5

1.5e−t 0.5+ 0.1t 1.5 cos t + 0.1

1.5 sin t + 0.1t 1.5 cos t + e−t e−t + 0.1






(37)

As shown in Figure 14, the proposed NAF-based FTCRNN

model (12) and the VAF-based ZNN model (9) still effectively

solve TODSE (5) in noisy environment, but the ZNN model (9)

activated by the LAF and SBPAF fail to solve TODSE (5) due to

the influence of noises.

The residual errors of the ZNN model (9) activated by other

three AFs in Table 6 and the proposed FTCRNN model (12) are

also presented in Figure 15 for further comparison. However, it

can be seen from Figure 15 that the convergence performance

of the FTCRNN model and the VAF-based ZNN model is

completely different. With the increase of solution time, the

residual error of the VAF-based ZNN model is increasing, while

the residual error generated by the FTCRNN model remains

stable at zero.

Moreover, according to Equation (34), the theoretical

convergent time of the FTCRNN model in noisy environment

can be calculated.

Ts ≤
1

(2α0 + σ )(1− φ1)
ln(1+

2α0 + σ

2α1
)

+
1

(2α0 + σ )(φ2 − 1)
ln(1+

2α0 + σ

2α2
) ≈ 0.7s (38)

The theoretical convergent time of the FTCRNN model in

noisy environment is 0.7 s, and the simulated convergent time is

about 0.2 s, which further indicates the theoretical analysis result

is consistent with the experimental result.

For showing the different performances of the four AFs

based models, comprehensive comparisons are listed in Table 7.

Obviously, the NAF-based FTCRNN model is the best one not

only in convergence performance but also in robustness. Besides,

only the NAF-based FTCRNN model realizes fast convergence

under the condition of noise interference.

Based on the above analysis, we can conclude that

the proposed FTCRNN model has better robustness and

effectiveness than recently reported works.

Remark 2. According to the hypothesis in Theorem 2 and

the noise matrix N(t), we have |nij(t)| ≤ σ |eij(t)| and |nij(t)| ≤

2.5. We can also have |eij(t)| ≈ 50 from Figure 15. Then, the

value of parameter σ is σ ≥ 0.005, and we set σ = 0.07.

Example 2. Application to robotic manipulator

The research on robots becomes popular in recent years (Jin

et al., 2020; Zhang et al., 2020a, 2021; Jin, 2021b). Therefore, the

FTCRNN-based RM trajectory tracking application is realized
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to further verify the practical application feasibility of the

FTCRNNmodel.

The three-dimensional structure and geometrical model of a

RM are presented in Figure 16. As observed in Figure 16A, the

RM consists of a movable platform with a manipulator with six

joints, and its geometrical model is depicted in Figure 16B.

Based on the modeling method in Xiao and Zhang (2014a)

and Zhao et al. (2021), its kinematic matrix equation in velocity

level is presented as follows.

•
rm = B(φ, θ)

•
2 (39)

where rm is an end-effector position vector, Θ = [ϕT , θT] T

denotes a combined RM angle vector. Besides,
•
rm ∈ R

m and
•
2 are time derivatives of rm and Θ , respectively. B(φ, θ) ∈

R
m×(2+n) is defined as

B(φ, θ) =

[

M 0

0 0

]

+ J(φ, θ)

[

N 0

0 I

]

(40)

where

M =
r

2

[

cosφ − sinφ

sinφ cosφ

][

1 1

−d/b d/b

]

,N =
r

2b

[

−1

1

]T

(41)

FIGURE 15

Residual errors of ZNN model (9) and NAF-based FTCRNN

model for solving TODSE in noisy environment.

FIGURE 14

TODSE (5) solved by ZNN model (9) and the proposed NAF-based FTCRNN model (12) in noisy environment. (A) Solved by FTCRNN model (12)

in noisy environment (B) Solved by VAF-based ZNN model (9) in noisy environment. (C) Solved by SBPAF-based ZNN model (9) in noisy

environment (D) Solved by LAF-based ZNN model (9) in noisy environment.
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FIGURE 16

Modeling of the RM. (A) Three-dimensional structure of the RM. (B) Geometrical model of the RM.

TABLE 7 Comparisons of the LAF, SBPAF, VAF, and NAF based models for solving TODSE.

LAF-based ZNN (9) SBPAF-based ZNN (9) VAF-based ZNN (9) FTCRNN

Convergence Poor Poor Better Best

Robustness Weak Weak Strong Very strong

Convergence time in ideal environment 5.5 s 2.5 s 0.6 s 0.15 s

Convergence time in noise environment / / / 0.2 s

and J (ϕ, θ) is the Jacobian matrix.

Here, rmd(t) ∈ R
m is the desired path to be tracked.rm(t) is

the actual path of the RM end-effector, and we have

f (2, t) = rm(t) → rmd(t) (42)

where f (•) stands for a continuous non-linear kinematic map of

the RM.

Then, differentiating Equation (37) yields the following

velocity level kinematic equation.

B(φ, θ)
•
2 =

•
rm (t) →

•
rmd (t) (43)

On the basis of the above discussion, it is clear that the

desired path rmd(t) ∈ R
m is given in advance, and the joint and

wheel trajectories of the RM are required to be calculated by the

RNN models. Therefore, the RNN models for solving the above

tracking task are constructed as the following steps.

Firstly, a vector-valued error matrix is defined.

E(t) = rmd(t)− rm(t) (44)

The trajectory tracking task is transformed to ensure each

element ei(t) of E(t) converging to 0, and the following formula

is used to guarantee its convergence.

•
E (t) = −λ9(E(t)) (45)

For better comparison, both of the FTCRNN model

(12) and the SBPAF-based ZNN model (9) are applied to

ensure the convergence of E(t) in noisy environment, and the

corresponding models are shown as follows.

B
•
2 =

•
rmd (t)+ λ91

(

rmd(t)− rm(t)
)

+ N(t) (46)

B
•
2 =

•
rmd (t)+ λ92

(

rmd(t)− rm(t)
)

+ N(t) (47)

where ψ1(•) is the proposed NAF in Equation (1), and ψ2(•) is

the SBPAF in Table 6.

The desired tracking path is a helical line, and the initial state

of the robotic manipulator is set as Θ (0) = [π /6, π /3, π /6,

π /3, π /3, π /3]T , and N(t) = 0.025cost. The trajectory tracking

experiment results of robotic manipulator synthesized by the

proposed FTCRNN-based model (41) and the SBPAF-based

ZNNmodel (42) are displayed in Figures 17, 18.

It can be seen from Figures 17, 18 that the FTCRNN-based

model (41) successfully completes the tracking task in noisy

environment, and the end-effector trajectory coincides with

the desired path. Besides, the tracking errors of the FTCRNN-

based model (41) are all <0.1 cm. However, the SBPAF-based

ZNN model (42) fails to complete the tracking task due to the

disturbance of additive noises, and tracking errors of the SBPAF-

based ZNN model (42) are all more than 1.5 cm. Furthermore,

Frontiers inNeurorobotics 14 frontiersin.org

https://doi.org/10.3389/fnbot.2022.1022887
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Zhu and Tan 10.3389/fnbot.2022.1022887

FIGURE 17

Trajectory tracking results synthesized by the FTCRNN-based model (41) in noisy environment. (A) Whole tracking motion trajectories. (B)

Desired path and actual trajectory. (C) Tracking errors.

FIGURE 18

Trajectory tracking results synthesized by the ZNN-based model (42) in noisy environment. (A) Whole tracking motion trajectories. (B) Desired

path and actual trajectory. (C) Tracking errors.

compared with the RM trajectory tracking methods in Xiao

and Zhang (2014a) and Zhao et al. (2021), the most significant

improvement of this work lies in its strong robustness to noises,

which ensures the success of actual RM trajectory tracking

application considering noises in reality.

Conclusion

In this paper, a NAF is proposed and employed in different

RNN models to handle sentiment classification problem

and dynamic problems solving. Experiment results of IMDB

sentiment classification demonstrate that the NAF-based RNN

models have better training and test accuracy, lower and more

stable loss values than other AFs in Table 1 based RNN models.

Besides, based on the NAF, the FTCRNN model is developed.

The effectiveness and robustness of the proposed FTCRNN

model are analyzed in theory and simulation experiment.

Moreover, the FTCRNN-based robotic manipulator trajectory

tracking application is carried out to verify the practical

application feasibility of the FTCRNN model. Furthermore,

the application of electric circuit currents computation further

verifies the wide applicability of the FTCRNN model. This

work provides a promising choice for the selection of AF

of RNN models in sentiment classification and time-varying

problems solving applications. The fixed-time convergence

and strong robustness of the proposed NAF-based FTCRNN

model guarantee its real-time online computing capability in

noisy environment. Note that, only sentiment classification and

time-varying problems solving of the NAF-based RNN models

are considered in this paper. Thus, extending the applications

of the NAF in different RNN models for text classification and

translation needs future research.
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