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Abstract

Type 2 diabetes and obesity are associated with back pain in juveniles and adults and are
implicated in intervertebral disc (IVD) degeneration. Hypercaloric Western diets are associ-
ated with both obesity and type 2 diabetes. The objective of this study was to determine if obe-
sity and type 2 diabetes result in spinal pathology in a sex-specific manner using in vivo
diabetic and dietary mouse models. Leptin is an appetite-regulating hormone, and its defi-
ciency leads to polyphagia, resulting in obesity and diabetes. Leptin is also associated with
IVD degeneration, and increased expression of its receptor was identified in degenerated
IVDs. We used young, leptin receptor deficient (Db/Db) mice to mimic the effect of diet and
diabetes on adolescents. Db/Db and Control mice were fed either Western or Control diets,
and were sacrificed at 3 months of age. Db/Db mice were obese, while only female mice
developed diabetes. Female Db/Db mice displayed altered 1VD morphology, with increased
intradiscal notochordal band area, suggesting delayed IVD cell proliferation and differentia-
tion, rather than IVD degeneration. Motion segments from Db/Db mice exhibited increased
failure risk with decreased torsional failure strength. Db/Db mice also had inferior bone quality,
which was most prominent in females. We conclude that obesity and diabetes due to impaired
leptin signaling contribute to pathological changes in vertebrae, as well as an immature IVD
phenotype, particularly of females, suggesting a sex-dependent role of leptin in the spine.

Introduction

Back pain is the leading cause for global disability and the most common reason for doctor vis-
its [1]. Obesity is among the strongest risk factors for back pain [2,3] and in the United States,
obesity is rising among children and adolescents with a prevalence of 21% among those 12-19
years old [4]. Children who are obese are at significantly higher risk of health problems and
the most common co-morbidity associated with obesity is type 2 diabetes [1].
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The susceptibility to skeletal fractures is increased in obese and diabetic children and adults
[5-7]. However, little is known about the characteristics of bone structure in early life and how
diabetes affects the bone modeling and remodeling. Bone mineral density of diabetic patients
can be lower, normal, or even greater compared to age-matched non-diabetic controls [8-10],
suggesting that increased fracture risk in diabetic patients is likely associated with alterations
in bone microstructure and material properties rather than bone mineral density alone. Body
fat mass has sex dependent effects on vertebral and femoral bone quality of juveniles, demon-
strated by an association of body fat mass with decreased bone stiffness [11,12]. Moreover, the
prevalence of obesity and fracture risk are higher in diabetic women than men [13-15]. The lit-
erature on sex-dependent bone changes highlights a need to identify the sex effects of obesity
and diabetes on vertebral pathologies in the development of spinal pathologies.

Recent literature also suggest that women are more susceptible to IVD disorders than men
[16] and while the sex-dependent effect of diabetes on IVD degeneration is not known, several
clinical studies demonstrated that the incidence of IDD is higher in obese and diabetic individ-
uals [17-21].

Yet, the evidence for a link between these conditions remains inconsistent and some studies
did not identify an association between obesity, diabetes and IVD degeneration [22-25]. The
hypothesis that diabetes contributes to IVD degeneration is supported mostly by animal experi-
ments, which demonstrate diabetes as a contributor to IVD degeneration [25]. In UCD-T2DM
rats, diabetes and obesity together caused significantly decreased IVD creep strain and increased
IVD stiffness, which was not observed in obese, non-diabetic control rats [26]. In mice with
type 1 diabetes, we previously demonstrated decreased glycosaminoglycan content, structural
deterioration in IVDs and decreased bone mass in vertebrae [27]. The literature highlights a
need to identify a more mechanistic understanding of the contribution of obesity and diabetes
on IVD and vertebral dysfunction in the development of spinal pathologies.

Obesity is characterized by hyperleptinemia due to the development of leptin resistance
[28]. Leptin is a cytokine-like hormone that primarily regulates appetite, is increased with obe-
sity, and significantly higher expressed in obese women than in obese men [29]. Mice with lep-
tin receptor deficiency exhibit polyphagia, resulting in severe obesity, elevated blood glucose,
diabetes, and increased vertebral bone mass [30-32]. Db/Db mice develop obesity and diabetes
early in life, making it a suitable model to mimic the effects of diabetes in children and juve-
niles. In addition to its role in appetite regulation, leptin and its receptors have been associated
with human IVD degeneration [33,34]; and in vitro studies have demonstrated pro-catabolic
and proinflammatory effects of leptin on nucleus pulposus (NP) and annulus fibrosus (AF)
cells [35-37].

This study utilized the Db/Db genotype as well as the Western diet to enhance obesity and
diabetes due to impaired leptin signaling. We hypothesized that leptin receptor deficient Db/
Db mice would exhibit altered vertebral structure, IVD morphology, and spinal mechanical
behavior, particularly in female mice.

Methods
Mouse model and experiment design

All animal experiments were performed according to the IACUC protocol at the Icahn School
of Medicine at Mount Sinai, New York, NY. To investigate the effects of diet, sex and obesity-
associated diabetes on spine, leptin receptor-deficient mice on a C57BL/6] background (B6.
BKS(D)-Leprdb/I (Db/Db) (15 females, 19 males) mice and their heterozygoes (Control) litter-
mates (21 females, 27 males) mice were used (Fig 1A). We chose Db/Db mice on a C57BL/6]
background because this mouse strain becomes identifiably obese around 3 to 4 weeks of age,
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Fig 1. Study design. A) Leptin receptor deficient mice and their heterozygous controls were fed either a Western Diet or Control Diet diet. Mice
were sacrificed at 12 weeks. B) Dietary information.

https://doi.org/10.1371/journal.pone.0227527.9001

becomes polyphagic, polydipsic, and polyuric and have compensatory hyperplasia of the islet
B cells, resulting in a mild diabetic phenotype. [38] After weaning, both Db/Db and Control
mice were assigned to receive either Western diet (WD) or Western control diet (CD). The
WD diet was formulated to mimic a “Western fast-food diet” with about 40% kcal from fat
and 45% from carbohydrates (5TJN - Western Diet for Rodents, TestDiet, St. Louis, MO,
USA); while the CD diet was a low-fat control for the Western diet with about 10% kcal from
fat and 72% from carbohydrates (5TJS - Low Fat Control for Western Diets, TestDiet; Fig 1B).
Mice were group housed with ad libitum access to water and assigned diet as well as unre-
stricted cage activities. At 12 weeks of age, the mice were anesthetized by Ketamine-Xylazine
injection (Forane, Baxter, IL, USA), body weights were measured, and mice were euthanized
by cardiac puncture. After sacrifice, blood was collected for fasting blood glucose and hemo-
globin Alc (HbAlc) levels. Lumbar spines were collected for structural, biochemical analysis.
Coccygeal spines were used for biomechanical analyses (Fig 1A).

Blood glucose and HbAlc

Fasting blood glucose and HbA1c levels were used to determine the diabetic status of the mice.
After 6 hours of fasting, blood glucose was analyzed using an Aimstrip Plus Glucose Meter
(Germaine Laboratories, San Antonio, TX, USA). For the measurement of HbA1c levels, the
collected blood was stored in EDTA coated tubes at -80°C until further analysis. HbAlc levels
were assessed using an enzymatic assay kit (Mouse Hemoglobin Alc Assay Kit #80310, Crystal
Chem, Elk Grove Village, IL, USA) according to manufacturer’s instructions.
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MicroCT assessment of vertebral morphology

Lumbar spines (L3-5) were dissected and stored in 10% buffered formalin phosphate fixative
prior to pCT scanning. L4 vertebraes were scanned at 77-78 kV x 80 uA power with a resolu-
tion of 4.9-5.0 um/pixel, an X-ray exposure time of 1767 ms (SkyScan 1172; Bruker Corp.,
Kontich, Belgium). Samples were kept hydrated in PBS while scanned in air. Hydroxyapatite
phantoms (0.25 and 0.75 mg/cm®) were also scanned for mineral density calibration. pCT pro-
jections were reconstructed (N-Recon, V1.01; Bruker), and digitally aligned for consistent
measurements between samples (Dataviewer V1.01; Bruker). A 1 mm region of interest was
analyzed and selected to exclude growth plates based on a 0.5 mm offset from a landmark that
consisted of approximately 50% of the caudal growth plate. A sole experimenter conducted all
analyses to prevent bias selection of landmarks. Trabecular and cortical bone parameters were
assessed following separation of bone compartments using a custom task list created in the
custom processing tab of CTAn. Trabecular bone parameters assessed by 3D analysis for tra-
becular bone volume fraction, trabecular thickness, trabecular number, and trabecular spacing.
Cortical bone parameters were assessed by 2D analysis for cortical area fraction, cross-sec-
tional thickness, cortical area, and total area. Bone mineral density and tissue mineral density
parameters were also calculated in CTAn under the Binary Image tab, keeping the threshold
value consistent for all samples.

IVD height index (DHI)

Mid-sagittal uCT images of the mice lumbar spine were used to manually identify the bound-
aries of the L4-5 IVD and the L4 vertebra using ImageJ. Coordinates were then used to deter-
mine IVD height and vertebral length using a customized MATLAB script (Mathworks, Inc.,
Natick, MA). To exclude the effects of body size between groups mice, an index was used to
compare IVD heights: DHI = (DH1 + DH2 + DH3)/(Al + A2 + A3), where A represents the
length of the L4 vertebral bone immediately caudal to the L4-5 IVD, and DH represents the
IVD height of the adjacent IVD (modified from [39]).

IVD morphology

Immediately after euthanization, L1-3 motion segments were isolated, and fixed in 10% buff-
ered formalin. IVD-vertebrae segments were decalcified then embedded in paraffin, and sec-
tioned sagittally at 5pum intervals for histological analysis. Mid-sagittal sections were stained
with Picrosirius Red-Alcian Blue staining (PRAB) for collagen and proteoglycans, and imaged
under bright field microscopy with standardized exposure time. The severity of IVD degenera-
tion was quantified using a semi-quantitative grading system within 5 parameters for signs of
degeneration, including NP structure, NP clefts/fissures, AF structure, AF clefts/fissures, and
NP/AF boundary [40]. All sections were examined by two researchers blinded to the experi-
mental groups, and then averaged for analysis [41]. The boundaries of notochordal band and
NP were manually defined in photoshop, and the area of notochordal band relative to area of
NP was calculated by outlining both notochordal band and total NP area in photoshop. IVD
cellularity was visualized using hematoxylin staining with eosin as counter-staining [42], and
then imaged under bright field microscopy with standardized exposure time. IVD cells within
the notochordal band were manually counted using Image]J, and then normalized to the area
counted.

PLOS ONE | https://doi.org/10.1371/journal.pone.0227527 May 6, 2020 4/20


https://doi.org/10.1371/journal.pone.0227527

PLOS ONE

Sex dependent effects of leptin signaling in mice

Motion segment biomechanics

Biomechanical properties of caudal vertebra-IVD-vertebra motion segment (Co4-5) were
assessed via tension-compression, creep, and torsional tests; which provide substantial infor-
mation to evaluate properties of NP pressurization and hydration, AF lamellae integrity and
quality, as well as IVD laxity and viscoelasticity. Immediately after dissection, Co4-5 motion
segments were wrapped in phosphate buffer saline (PBS)-soaked paper towels and stored at
—80°C until the day of testing. Axial and creep tests were performed using the ElectroForce
3200 testing machine (Bose Corporation, Eden Prairie, MN), and torsional tests were per-
formed using the AR2000x Rheometer (TA Instruments, New Castle, DE, USA).

The testing protocol was adopted from our previous studies [43-45]. In brief, on the day of
testing, after 10 mins in PBS for thawing and hydrating, the motion segment specimens were
loaded into parallel-platens of an axial loading machine (Bose ElectroForce 3220; TA Instru-
ments, New Castle, DE, USA) using a custom-designed fixture with a fluid bath of PBS for
axial testing. During the axial testing, specimens underwent 20 cycles of 0.5 N tension-com-
pression test at 1 Hz, followed by 1 min of dwelling to allow the specimens to relax, and then
45 mins of creep test with the compressive force at 0.5 N. After 30 min of rehydration in PBS,
specimens were attached to a rheometer (AR2000; TA Instruments, New Castle, DE, USA)
using a custom-designed fixture for torsional testing which consisted of 20 cycles of £10° rota-
tion in both directions at 1 Hz, followed by torsion-to-failure test at the rate of 1°/s. The load-
ing profile obtained from the 20th cycle of tension-compression and torsional tests were used
to determine compressive stiffness, tensile stiffness, axial range of motion, axial neutral zone
length, torsional stiffness (average from the stiffness obtained from clockwise and counter-
clockwise direction), torsional neutral zone length and torque range using custom-written
MATLAB codes. For analyzing the characteristics of creep test, a 5-parameter viscoelastic solid
model was applied to calculate creep and total displacements, elastic stiffness, time constant
(7) and stiffness for both fast response and slow response using a custom-written MATLAB
code as previously described [43,46]. For the torsion-to-failure test, the failure strength and
angle to failure were identified manually from the loading profile.

Statistical analyses

Body weight, blood glucose level, HbA1lc, vertebral morphology, DHI, motion segment biome-
chanics, and IVD score were compared using two-way ANOVA to assess the effects of geno-
type and diet. Tukey’s post-hoc comparison was performed to assess the effects of Western
diet and Db/Db genotype on vertebral and IVD changes. Results were analyzed for females
and males separately and displayed as average + standard deviation. All statistical analyses
were performed using Graphpad Prism7 (GraphPad Software, Inc., La Jolla, CA) with level of
significance set at 0.05.

Results

General observations confirmed an obese and pre-diabetic phenotype

As expected, at 3 months, Db/Db genotype and WD caused significantly increased body
weight compared to control mice on CD and Db/Db mice on WD (Table 1 and Fig 2). Db/Db
genotype caused significantly increased HbA1c levels and was highest in female Db/Db WD
mice (Table 1 and Fig 3). Only Female Db/Db mice on WD developed diabetes (<150 mg/dL
[47]), which was significantly increased at 4 weeks. (Table 1 and Fig 3). Male mice were pre-
diabetic with significantly increased blood glycose levels in Db/Db mice on WD compared to
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Table 1. General observations.

Body 4wk
Weight (g)

8 wk
(8

12 wk
()

Blood 4wk
Glucose (mg/
dL)
8 wk
(mg/
dL)
12 wk
(mg/
dL)
HbAlc (%)

Contr.
14.89
+2.25
19.74
+1.22
22.84
+1.71

114.72

+28.33

118.56
+34.49

108.22
+30.31

4.84
+0.38

CD
Db/Db
17.35
+2.49
31.04
+4.29
39.36
+3.56
122.50
+31.14

187.50
+87.03

170.64
+49.52

6.23
+2.16

Female Male CD versus WD (p)
WD CD WD Female Male
P Contr. Db/Db P Contr. Db/Db P Contr. | Db/Db P Contr. Db/Db | Contr. Db/Db
0.421 16.00 | 22.51 | <0.001 1491 | 14.77 | >0.999 19.08 | 20.48 | 0.733 0.783 0.012 | 0.010 @ 0.001
+2.88 | £2.46 +3.59 | +2.42 +2.47 | £3.76
<0.001 | 24.44 | 41.56 | <0.001 | 24.24 | 30.07 | <0.001 | 32.98 | 43.71 | <0.001  0.004 | <0.001  <0.001 <0.001
+2.67 | £3.44 +3.34 | +2.34 +3.52 | £2.76
<0.001 | 30.28 | 49.20 | <0.001 | 27.28 | 40.21 | <0.001 | 37.60 | 54.11 | <0.001 <0.001 | <0.001  <0.001 <0.001
+3.19 | £5.65 +3.66 | +2.82 +3.28 | £2.84
0.996 | 122.15 | 218.30 | 0.031 | 131.00 | 106.40 | 0.488 | 141.21 | 154.30 | 0.874 | 0.982 | 0.001 0.926 | 0.044
+29.44 | £65.19 +41.97 | £35.60 +40.91 | £47.73
0.091 | 122.12 | 159.65 | 0.417 | 130.56 | 92.68 | 0.078 | 141.50 | 141.30 | >0.999 0.999 0.764 0.890 0.034
+26.64 | £80.30 +29.18 | £12.32 +34.39 | £62.08
0.148 | 113.39 | 172.89 | 0.017 | 131.47 | 122.18 | 0.938 | 141.29 | 141.33 | >0.999 0.997 0.954 0.923 0.718
+26.24 | £80.81 +36.33 | £35.39 +54.22 | £20.58
0.474 5.15 7.49 0.031 5.29 5.69 0.312 5.13 6.09 0.002 | 0.982 0.527 0.866 0.428

https://doi.org/10.1371/journal.pone.0227527.t001

+0.34 | £3.10 +0.55 | +£0.57 +0.46 | +£0.63

control mice at 4 & 8 weeks (Table 1 and Fig 3). Overall, HbAlc results indicate that all Db/Db
mice were pre-diabetic and female Db/Db WD mice were diabetic [48,49].

Western diet and Db/Db genotype had sex-dependent effects on vertebral
bone microstructure

Trabecular bone structure was strongly affected by Db/Db genotype. Two-way ANOVA dem-
onstrated a genotype effect on trabecular bone structure and subsequent post-hoc testing
revealed that both female and male Db/Db mice had increased trabecular bone volume frac-
tion with increased trabecular number and decreased trabecular spacing, which was indepen-
dent from diet (Fig 4 and Table 1). In female mice, 2-way ANOVA testing demonstrated a
strong genotype effect on cortical bone volume fraction, cortical thickness, cortical area, and
cortical bone surface to volume ratio, which, after post-hoc testing, remained significant for
Db/Db mice on WD. In male mice, 2-way ANOVA revealed that a genotype effect was only
observed for cortical thickness and cortical bone surface to volume ratio, while diet affected
the cortical area. However, after post-hoc testing, only cortical bone surface to volume changes
were independent from diet, while no differences were observed in male mice for any other
parameters; suggesting that dietary effects on bone structure in Db/Db mice were sex-depen-
dent (Fig 5 and Table 2).

Db/Db genotype caused sex dependent changes in IVD morphology, but
did not induce IVD degeneration

Pronounced differences in IVD morphology were observed between female Control and Db/
Db mice (Fig 6). IVDs of female Db/Db mice had a significantly increased notochordal band
area with large, vacuolated cells, and significantly fewer cells per area compared to female con-
trol mice. These changes were independent from diet. Despite these pronounced differences in
morphology, leptin receptor deficiency did not cause IVD degeneration in 3 months old mice
(Table 3). There was no difference in Tam IVD grading score between any groups. No effects
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Fig 2. Leptin receptor deficiency and Western diet both increased fasting body weight in mice, for both male and female groups. p < 0.5.

wk = weeks.

https://doi.org/10.1371/journal.pone.0227527.9002

of diet or genotype on IVD structure or morphology were detected in male mice (Table 3). No
differences in DHI were observed for any group, although some significant but subtle alter-
ations in vertebral length and IVD height were identified (Table 4 and Fig 7).

Motion segment torsional, but not axial, biomechanical behavior was
compromised with leptin receptor deficiency

Leptin receptor deficiency significantly diminished torsional biomechanical properties of mice
caudal motion segments (Fig 8 and Table 5). In Db/Db mice, cyclic torsional testing showed
significantly decreased torsional stiffness and the torsion-to-failure test further demonstrated
significantly decreased torsional failure strength with Db/Db genotype for both sexes. WD
caused a small but significant increase in torsional failure strength in both sexes. The angle-to-
failure, on the other hand, significantly decreased in female Db/Db mice only, while no
changes were shown in male Db/Db mice. The majority of motion segments failed at the
growth plate.

There were no significant differences between groups in axial biomechanical properties.
Neither compressive and tensile stiffness, nor range of motion, or axial neutral zone length
showed any significant changes associated with Db/Db genotype or WD (Table 5). Addition-
ally, there were no changes in creep parameters with Db/Db genotype or WD. No differences
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Fig 3. Leptin receptor deficiency increased HbA1lc in mice for both male and female groups. A) HbAlc was elevated to diabetic levels in female
mice. B) Blood glucose did not reach diabetic levels. p < 0.5. wk = weeks.

https://doi.org/10.1371/journal.pone.0227527.g003

were observed in fast or slow time constants, creep displacements, or stiffnesses. Together, the
highly significant changes in torsional biomechanical properties suggests leptin receptor defi-
ciency and obesity had the largest functional changes in vertebral properties.

Discussion

There is a need for a more mechanistic understanding of interactions between obesity, type 2
diabetes and spinal pathologies because of their increasing prevalence. This study used Db/Db
mice with leptin receptor deficiency and Western diet to test the hypothesis that type 2 diabe-
tes and obesity would develop dysfunctional vertebral structure, IVD morphology, and spinal
biomechanical function in a sex-dependent manner. Db/Db mice and Western Diet both
resulted in severe obesity, and Db/Db genotype also significantly increased HbAlc indicating
diabetic/prediabetic conditions. The most important finding of our study is that the Db/Db
genotype resulted in the severe alterations in spinal structures that were most prominent in
females and subtle or not present in males. Specifically, Db/Db genotype increased vertebral
trabecular bone volume fraction and density, decreased vertebral cortical thickness and area,
disrupted IVD morphology, and resulted in increased motion segment torsional failure risk.
Interestingly, Db/Db mice did not develop any signs of IVD degeneration and IVDs instead
appeared less mature with large notochordal cells populating the NP, suggesting that diabetes
and impaired leptin signaling had more substantial effects on vertebrae than on IVDs.
Clinically, obesity and type 2 diabetes are often associated with increased bone mineral den-
sity and fracture risk [50-52], which has been speculated to involve reduced cortical bone den-
sity in type 2 diabetics [53,54]. In our study, no significant effects of diet were detected on
trabecular bone properties, suggesting this was predominantly a diabetic- and not an obesity
phenotype. In cortical bone, the Db/Db genotype caused increased bone volume to surface
ratio, which is thought to reflect a more porous bone, potentially resulting in decreased
strength [55]. In line with our study, Williams et al. found that lumbar vertebrae of 10 week-
old male Db/Db mice had decreased cortical thickness but no changes in trabecular bone vol-
ume fraction. Huang et al. used lumbar vertebrae of 36 week old male mice and demonstrated
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Fig 4. Trabecular bone increased with leptin receptor deficiency. A) 3D uCT images of trabecular bone of (top)
female and (bottom) male mice. B) BV/TV C) Tb.Sp, and D) Tb.N demonstrate inferior Tb microstructure with Db/
Db genotype. Only female Db/Db mice had E) increased Tb. BMD and F) decreased Tb.Th. p < 0.05. BV/TV = bone
volume fraction; Tb.Sp = trabecular spacing; Tb.N-trabecular number; Tb. BMD = trabecular bone mineral density;
Tb.Th = trabecular thickness.

https://doi.org/10.1371/journal.pone.0227527.9004

that leptin receptor deficiency increased bone volume fraction and density and increased tra-
becular number [56], also consistent with our findings. Biomechanical testing of vertebra-
IVD-vertebra motion segments demonstrated that the Db/Db genotype exhibited significantly
reduced torsional failure strength for both sexes. In contrast, WD significantly increased fail-
ure strength on two-way ANOVA, leading us to conclude that the increased fracture risk
involved the pre-diabetic/diabetic condition and not obesity. Torsional failure occurred in the
growth plate, so that the inferior spinal torsional failure behaviors are suggestive of differences
in growth or maturation patterns. However, inferior cortical bone changes in Db/Db genotype
also resulted in significantly inferior cortical bone structure which could contribute to
increased failure risk. Acevedo et al. demonstrated in diabetic rats that type 2 diabetes caused
reduced whole-bone strength in vertebrae due to deficits in both structural and tissue material
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Fig 5. Leptin receptor deficiency caused decrease in cortical bone mainly in female mice. A) 3D uCT images of cortical bone
for (top) female and (bottom) male mice. Two-way ANOVA revealed that, in female mice, leptin receptor deficiency decreased B)
Ct.Ar/Tt.Ar C) Ct.Ar and D) Ct.Th. While increasing G) Ct.BS/BV. Post Hoc testing indicated that this effect was only significant
in female mice on WD. No changes were observed for E) Tt.Ar or F) Ct. TMD. In male 2-way ANOVA analysis indicated a diet
effect in Ct.Ar and a genotype effect in Ct.Th and Ct. BS/BV. Post Hoc testing indicated that increased Ct.BS/BV was only
significant in male mice on WD p < 0.05. Ct.Ar/Tt.Ar = cortical area fraction; Ct.Ar = cortical area; Ct.Th = cortical thickness; Tt.
Ar = total area; Ct. TMD cortical tissue mineral density.

https://doi.org/10.1371/journal.pone.0227527.9005

properties which resulted in diminished vertebral stiffness, lower yield force, and lower ulti-
mate force of the lumbar vertebrae [57]. This study focused on structural biomechanical prop-
erties of motion segments in order to determine the functional behaviors and failure risk of
these spinal segments. These results are limited since they do not distinguish material from
structural properties or IVD from vertebral properties, which all contribute to motion segment
biomechanical and failure behaviors [57,58].
Leptin is likely to play a role in functional spinal behaviors. Similar to this db/db mouse
model, UCD-T2DM diabetic rats developed defective leptin receptor signaling via beta cell
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Table 2. uCT parameters.

Trabecular | Tb.
BV/TV
(%)
Tb.Sp
(mm)

Tb.N
(1/
mm)
Tb.
BMD
(mg/
cm3)
Tb.Th
(mm)

Tb. BS/
BV
(mm™)

Cortical | Ct.Ar/
Tt.Ar

Ct.Ar

(mm?)

Ct.Th
(mm)

Tt.Ar

(mm?)

Ct.
TMD
(mg/
cm3)
Ct.BS/
BV
(mm")

Contr.
19.650
+1.991

0.187
+0.018

3.951
+0.412

0.313
+0.033

0.050
+0.002
69.530

+2.59

0.210
+0.019
1.470
+0.075
0.063
+0.006
1.47
+0.08
1.141
+0.060

41.5
+3.23

CD
Db/Db
26.663
+2.603

0.148
+0.010
5.215
+0.344

0.396
+0.030

0.051
+0.005
66.020

+7.41

0.202
+0.021
1.463
+0.066
0.058
+0.005
1.56
+0.07
1.117
+0.027

46.17
3.97

Female Male CD versus WD (p)
WD CD WD Female Male
p Contr. | Db/Db P Contr. | Db/Db P Contr. Db/Db P Contr. | Db/Db | Contr. | Db/Db

0.0001 | 21.516 | 24.105 | 0.151 | 20.852 | 26.004 | 0.003 | 20.773 | 25.152 | 0.011 & 0.469 | 0.223 | >0.999 0.991
+2.220 | £3.241 +1.841 | £1.590 +2.324 | £4.349

<0.001 | 0.180 | 0.142 | <0.001 0.153 | 0.134 | <0.001 | 0.151 | 0.137 | 0.002 | 0.643 @ 0.814 | 0.954 | 0.867
+0.012 | £0.010 +0.007 | £0.003 +0.009 | £0.009

<0.001 | 4.189 | 5.210 | <0.001 | 4.594 | 5.387 | 0.001 | 4.574 | 5.403 | <0.001 | 0.641 | >0.999 | >0.999 | >0.999

+0.3603 | £0.489 +0.185 | £0.168 +0.458 | £0.548

0.0003 | 0.323 | 0.351 | 0.443 | 0.335 | 0.390 | 0.058 | 0.324 | 0.373 | 0.099 | 0.949 & 0.132 | 0.132 | 0.848
+0.043 | +0.047 +0.034 | £0.033 +0.036 | £0.062

0.858 0.051 0.046 | 0.012 | 0.045 | 0.048 | 0.327 | 0.045 | 0.046 | 0.953 | 0.779 | 0.029 | >0.999 | 0.653
+0.001 | £0.001 +0.003 | £0.003 +0.003 | £0.004

0.625 | 68.110 | 75.480 | 0.030 | 75.800 | 70.250 | 0.458 | 76.930 | 75.540 | 0.981 | 0.951 | 0.009 | 0.989 | 0.498
+4.38 | +6.26 +5.82 | %551 +6.08 | +11.44

0.880 0.224 0.186 | 0.003 @ 0.198 | 0.194 @ 0947 | 0.201 | 0.196 | 0.994 @ 0.528 @ 0.499 @ 0.959 | 0.994
+0.015 | £0.027 +0.019 | £0.006 +0.012 | £0.014

0.892 1.564 1.453 | <0.001  1.606 | 1.516 | 0.787 | 1.680 | 1.654 | 0.189 | 0.074 & 0.449 | 0.507 | 0.390
+0.144 | £0.093 +0.086 | £0.126 +0.118 | £0.104

0.312 0.069 | 0.054 |<0.001 | 0.061 | 0.057 | 0.203 | 0.063 | 0.059 | 0.698 | 0.144 | 0.394 | 0.693 | 0.216
+0.005 | +0.006 +0.005 | £0.002 +0.004 | +0.005

0.999 1.46 1.45 0.115 1.61 1.68 0.337 | 1.516 | 1.654 | 0.961 | 0.278 | 0.997 | 0.492 | 0.062
+0.14 | +0.09 +0.09 | £0.13 +0.12 | £0.10

0.629 1.094 1.022 | 0.111 1.121 | 1.096 | 0.895 | 1.094 | 1.056 | 0.743 | 0.938 0.23 0.927 | 0.764
+0.114 | £0.075 +36.33 | £35.39 +54.22 | £20.58

0.167 38.53 50.14 | <0.001 | 42.65 | 46.87 | 0.037 | 41.32 | 45.25 | 0.049 & 0.468 | 0.243 | 0.794 | 0.697

https://doi.org/10.1371/journal.pone.0227527.t1002

+2.74 | £5.73 +3.17 | *£1.83 +2.32 | £4.21

decompensation [57]. Studies of children with congenital leptin deficiency suggest that leptin
may mediate central control of bone mass. Leptin deficient children are obese but present nor-
mal age- and sex-related whole-body BMD [59], moreover, children with leptin receptor defi-
ciency have a high bone mass phenotype [60]. While leptin dysfunction is only one aspect of
diabetes, together with the literature, our data suggest that its dysfunction plays a significant
role in diminished vertebral structure and material properties that can increase fracture risk,
and might have important parallels with the clinical observations.

The association of metabolic syndrome with low back pain has greater prevalence in
women than in men [61] and in our study, female Db/Db mice on WD had the most substan-
tial effects on vertebral bone structure and IVDs. A limitation of this study is that we did not
assess the underlying mechanisms that might be responsible for these observed sex-effects. Sex
dependent effects of leptin receptor deficiency were also suggested in a recent study by
McCabe et al. [62] who demonstrated that alterations of specific leptin receptor sites contrib-
uted to sex-dependent bone responses to leptin, which could be particularly relevant during
juvenile obesity, where loss of leptin signaling could diminish bone development and growth
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Table 3. IVD morphology.

Female

Male

IVD score

IVD

-

Noto. Band / NP (%)

A
%7755

2%

7.

Female Male Female Male Female Male
Female Male Female Male Female Male
Interaction | P=0.441 | P=0.451 Interaction | P=0.558 | P=0.712 | |Interaction | P=0.138 | P=0.503
Genotype | P=0.971 | P=0.172 | |Genotype | P<0.001 | P=0.203 | |Genotype | P<0.001 | P=0.029
Diet P=0.624 | P=0.529 | |Diet P=0.707 | P=0.554 ||Diet P=0.549 | P=0.294
[] Control CD Db/DbCD [ Control WD Db/Db WD

Fig 6. Notochordal band size increased in female leptin receptor deficient mice. A) Representative Picrosirius red/
Alcian blue images demonstrate an increased notochordal band in (top) female Db/Db mice. B) Db/Db genotype did
not cause IVD degeneration. In female Db/Db mice, C) notochordal cell size was increased and D) cells per area was

decreased. No changes were observed in male IVDs. Black boxes mark region of interest (ROI).

https://doi.org/10.1371/journal.pone.0227527.9006

Female Male CD versus WD (p)
CD WD CD WD Female Male
Contr. | Db/Db P Contr. Db/Db| p | Contr. Db/Db  p | Contr. Db/Db| p | Contr. Db/Db Contr.  Db/Db
IVD Score 0.75 0.57 0.944 0.69 0.85 | 0946  0.71 193 0432 0.79 1.14 | 0969 | 0997 | 0.800 | >0.999 @ 0.754
+0.71 | £0.450 +0.530 | £0.71 +0.57 | £2.23 +0.906 | *£1.52
Noto. Band/ NP (%) | 23.77 | 49.24 0.039 16.05 50.53 | 0.002 | 16.47 19.39 1 0.905 | 17.17 | 22.38 | 0.633 | 0.893 0.999 0.998 0.898
+14.06 | £23.92 +5.52 | £19.95 +6.29 | £7.15 +3.989 | +8.954
Cells/mm? 9977 2752 | <0.001 | 9275 4378 | 0.001 | 6952 5385 | 0.682 | 8633 5762 | 0.153 | 0.907 | 0.471 0.609 0.992
+2517 | £907 +2230 | +2874 +1390 | +2325 +3538 | +2597
https:/doi.org/10.1371/journal.pone.0227527.t003
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Table 4. IVD height index (DHI).
Female Male CD versus WD (p)
CD WD CD WD Female Male
Contr. Db/Db | p | Contr. Db/Db P Contr. Db/Db| p | Contr. Db/Db  p | Contr. Db/Db Contr.  Db/Db
Vertebral length (mm) | 2.965 2.848 | 0.563 @ 3.079 2.729 | 0.0003 | 3.077 2.889 | 0.007  3.179 3.127 | 0.727 | 0.493 0.509 0.225 | 0.0004

+0.084 | +0.143 +0.155 | £0.214 +0.085 | £0.117 +0.134 | £0.081

IVD height (mm) 0.307 | 0.310 | 0.997 | 0.333 | 0.308 | 0.242 | 0.323 | 0.311 | 0.774 @ 0.357 | 0.325 | 0.037 | 0.240 | 0.999 | 0.030 | 0.653
+0.031 | £0.010 +0.038 | £0.010 +0.018 | £0.036 +0.022 | £0.016

DHI 0.103 | 0.109 | 0.768 | 0.108 | 0.116 | 0.359 | 0.105 | 0.108 | 0.863 = 0.112 | 0.104 | 0.068 A 0.819 | 0.603 | 0.146 | 0.688
+0.010 | +0.007 +0.009 | £0.013 +0.006 | £0.010 +0.007 | £0.004

https://doi.org/10.1371/journal.pone.0227527.t1004

[62]. Sex hormones such as sex hormone-binding globulin have been identified to have sex-
dependent effects on leptin and Type 2 diabetes [63,64], and might explain the sex-dependent

A B Control CD Db/Db CD Control WD Db/Db WD

Female

DHI = DH/VL

Male

DH: Disc height
VL: Vertebral length

[J Control CD Db/Db CD
[ Control WD Db/Db WD

Cc

]U

5

w

IVD height (mm)

Female Male

Vertebral length (mm)
(=] N

Female Male
Interaction | P=0.055 | P=0.075 | | Interaction | P=0.172 | P=0.219 | | Interaction | P=0.755 | P=0.026
Genotype | P<0.001 | P=0.003 || Genotype | P=0.284 |P=0.013 || Genotype | P=0.081 | P=0.239
Diet P=0.962 | P<0.001 | | Diet P=0.241 | P=0.007 | | Diet P=0.143 | P=0.446

Fig 7. Leptin receptor deficiency caused decrease vertebral length and disc height, but no change in disc height
index. A) Schematic of IVD height and vertebrae length measurement. B) uCT midsagittal sections of vertebral bone
for (top) female and (bottom) male. p < 0.05. C) vertebral length D) IVD height E) DHI.

https://doi.org/10.1371/journal.pone.0227527.9007
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Fig 8. Torsional strength decreased with Db/Db genotype. Schematic curves from A) axial-compression and torsion testing, B) Creep, and C)
torsion to failure curves after biomechanical testing analysis. D) torsional stiffness E) Failure strength F) angle to failure. p<0.05.

https://doi.org/10.1371/journal.pone.0227527.9008

effects of leptin that were observed in this study. Future studies are required to address the
effects of sex-hormones on leptin receptor deficiency mechanistically. We conclude that
female mice had the most severe effects of Db/Db genotype and WD on spinal structures;
although we note that female on WD had the most significant elevation of HbAlc levels, sug-
gesting that their larger alterations in spinal structures may also be due to the greatest severity
of the diabetic condition.

The lack of degenerative changes in IVDs of Db/Db mice is in contrast with our previous
studies on western style diets in C57BL/6] mice, which demonstrated that pre-diabetes con-
tributed to inferior vertebral quality, accelerated progression of IVD degeneration, and
increased leptin levels [65]. The monogenic mutation of the Leptin receptor might not repre-
sent the clinical development of diabetes, however, the model provided important information
about diminished leptin signaling in IVDs. Leptin is increased in degenerated human IVDs
[33] and thought to stimulate cell proliferation of human NP cells via its receptors OBRa and
OBRD [66]. Taking into account its contribution to IVD degeneration, diminished leptin sig-
naling of our study might have been protective against IVD degeneration by maintaining large
vacuolated cells in the notochordal band via decelerating NP cell proliferation and differentia-
tion. Based on these observations, we speculate that leptin deficiency may have decelerated
IVD degeneration despite the increased body weight and pre-diabetic status which likely
caused IVD degeneration in prior animal models. Nevertheless, longer duration studies and

PLOS ONE | https://doi.org/10.1371/journal.pone.0227527 May 6, 2020 14/20


https://doi.org/10.1371/journal.pone.0227527.g008
https://doi.org/10.1371/journal.pone.0227527

PLOS ONE Sex dependent effects of leptin signaling in mice

Table 5. Biomechanical properties.

Female Male CD versus WD (p)
CD WD CD WD Female Male
Contr. Db/Db, p | Contr. Db/Db P Contr. Db/Db, p | Contr. Db/Db p | Contr. Db/ | Contr. | Db/Db
Db

Axial | Compr.Stff. | 1659 | 1432 | 0797 | 1568 | 17.38 | 0.844  19.05 @ 1895  >099 18.83 | 17.32 | 0.934 0970 | 0.613 | >0.999 0.906
(N/mm) +498 | +3.65 +3.09 | +3.68 +508 | +3.81 +7.42 | +4.54

Tensile Stiff. | 9.15 | 121 | 0705 11.61 | 13.31 | 0.858 | 12.81 | 12.06 | 0.976 | 11.92 | 11.84 | >0.99 | 0719 | 0.965 | 0.967 & 0.999
(N/mm) +3.89 | +4.10 +4.12 | 4677 +417 | +4.40 +4.15 | +3.52

ROM (mm) | 0.19 | 0.19 | >099| 017 | 020 | 0216 | 017 | 018 | 0.895| 0.16 | 0.18 | 0.694  0.667 | 0.846 | 0.985 | >0.999
+0.04 | +0.03 +0.02 | +0.03 +0.04 | +0.05 +0.04 | +0.04

Neutral Zone | 0.07 | 005 | 0419 | 006 | 007 | 0525 | 0.06 | 007 | 0.543 | 006 | 0.07 | 0974 | 0.787 | 0254 | 0.956 | 0.984
(mm) £0.03 | 0.02 £0.02 | +0.02 £0.02 | +0.03 £0.02 | 0.02

11 (fastresp.) | 5171 | 5475 | 0.992 | 41.85 | 37.68 | 0.965 | 45.13 | 41.79 | 0.975 | 32.51 | 53.220 | 0.086 | 0.683 | 0.392 | 0.449 | 0.487
(sec) +27.13 | £12.16 +13.84 | +16.55 +9.83 | +21.00 +14.78 | £20.41

12 (slowresp.) | 739.0 | 900.8 | 0.570 | 707.7 | 669.0 | 0.982 | 724.7 | 746.2 | 0.989 | 453.1 | 806.0 | 0.001 | 0.990 | 0.268 | 0.009 | 0.821
(sec) +255.8 | +92.1 +242.7 | +194.4 +182.8 | £134.8 +37.8 | +171.8

CreepDispl. | 020 | 021 0972 0.8 | 0.8 | 0999 @019 | 017 | 0679 015 @ 019 | 0244 0853 0624  0.170 & 0.801
(mm) +0.05 | +0.02 +0.03 | +0.07 +0.05 | +0.05 +0.04 | +0.04

Creep | TotalDispl. | 024 | 025 | 0982 022 | 022 | 0994 @ 023 | 020 | 0598 0.8 | 023 | 0257 0882 0635 018 @ 0.718
(mm) +0.06 | +0.03 +0.04 | +0.07 +0.06 | +0.05 +0.03 | +0.04

Elastic Stiff. | 11.66 | 1256 | 0.95 | 13.06 | 13.08 | >0.999 14.65 | 16.57 | 0.713 | 16.03 | 14.12 | 0.752 | 0.757 | 0.990 @ 0.888 | 0.534
(N/mm) +247 | +2.39 +311 | +3.18 +419 | +3.91 +453 | +3.02

Stiffness] (N/ | 12.64 | 14.94 | 0.706 | 17.53 | 15.10 | 0.548 | 17.01 | 19.44 | 0917 | 27.17 | 1722 | 0.079 | 0.059 K >0.99 | 0.071 | 0.935
mm) +2.00 | +2.73 +4.44 | +3.43 +6.96 | +9.51 +10.17 | #5.31

Stiffness2 (N/ | 3.15 | 275 |0.747 | 331 | 3.12 | 0943 @ 327 | 373 | 0.664 | 4.08 | 299 |0.078 0965 | 0.810 | 0243 | 0.294
mm) +0.94 | +0.31 +0.50 | +0.79 +0.93 | 0.93 +0.97 | +0.89

Torsion | Tors. Stiff. | 0.016 | 0.014 | 0.875 | 0.02 | 0.0l | 0998 | 0.02 | 001 | 099 | 0018 | 0012 | 0.127 @ 0.900 | 0.327 | 0.055 | >0.999
(Nm/rad) + + + + + + + +
0.004 | 0.004 0.005 | 0.005 0.004 | 0.005 0.007 | 0.006

Failure 0.005 | 0.003 | 0.073 | 0.007 | 0.004 | 0.0002 0.005 | 0.004 | 0.025 0.007 | 0.005 | 0.005 0.108 | 0.973 | 0.042 @ 0.166
Strength (Nm) + + + + + + + +
0.002 | 0.001 0.001 | 0.001 0.001 | 0.001 0.001 | 0.001

Angle to 1.013 | 0.664 | 0.038 | 1.10 | 069 | 0.004 087 | 1.05  >099 0889 | 1.185 | 0.812  0.852 @ 0.997 @ 0.695 | 0.213
Failure (rad) + + + + + + + +
0.246 | 0.145 0218 | 0.201 0212 | 0332 0300 | 0.421

Torque Range | 0.003 | 0.003 | 0.980 0.004 = 0.003 & 0432 0003 | 0.003  0.667 0004 0003 0343 0978 0945 0975 @ 0.997
(Nm) +0.001 | +0.001 +0.002 | +0.002 +0.002 | +0.001 +0.002 | +0.001

Neutral Zone | 039 | 037 | 0916 | 039 | 040 | 0946 | 034 | 038 | 0414 | 036 | 039 | 0675 >0.99  0.652 | 0.962  >0.999
(rad) +0.04 | +0.03 +0.04 | =007 +0.06 | +0.08 +0.07 | +0.04

https://doi.org/10.1371/journal.pone.0227527.1005

aging may accumulate more IVD structural alterations suggestive of degeneration, as was
observed in our type 1 diabetes model [27].

The present study applied Db/Db mice and WD in order to distinguish obesity effects from
type 2 diabetes effects in adolescent mice. Highly processed Western diets cause excess calorie
intake and are associated with the rising prevalence of obesity [67] and diabetes [67]. Our diet
resembled a Western diet that is high in fat and low in carbohydrates and caused increased
weight gain all groups; however, effects on spinal structures were overshadowed by the Db/Db
genotype. While Db/Db genotype significantly increased HbAlc and blood glucose levels at
some point during the study period, not all our Db/Db mice developed sustained
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hyperglycemia. Hyperglycemia in B6.BKS(D)-Leprdb/] is transient and does not manifest with
stable elevated levels in all Db/Db mice [68]. To fully assess the diabetic status, we assessed
HbA1lc levels in addition to hyperglycemia, which revealed that most female Db/Db mice on
WD did develop diabetes at some time during their lifespan and many mice in the Db/Db
cohorts exhibited pre-diabetic conditions. The Db/Db model is well accepted in the literature
as a type 2 diabetes model, although other diabetic models exist and assessments of spinal
pathologies in additional diabetic mouse models and/or leptin impairments [69] would enable
broadened interpretations. This model demonstrated that prediabetes/diabetes resulted in
more substantial changes in spinal structures than obesity in these adolescent mice, although
some effects of obesity were detected and longer duration diets in older mice are likely to result
in more substantial spinal changes in support of the clinical literature that obesity can induce
spinal changes in juveniles and adults [18,70].

In conclusion, prediabetes/diabetes from leptin receptor deficiency resulted in cortical and
trabecular bone changes and diminished torsional failure strength. Pre-diabetes/diabetes from
leptin receptor deficiency dominated obesity effects and these changes were greatest in
females. No evidence for IVD degeneration was observed, and taken with the literature, results
suggested a potential protective role of impaired leptin signaling against diabetes- and obesity-
induced IVD degeneration.

Significance

The tremendous public health burden of back pain is increasing, and is likely to grow due to
known associations with obesity and DM, which are also increasing in prevalence. This study
directly informs physiological factors important in spinal health, emphasizes the need to inves-
tigate sex differences, and highlights a potential role for leptin in the development and matura-
tion of the spine.
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