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Abstract: Viticis Fructus (VF) was named Manjingzi as a commonly used traditional Chinese medicine
(TCM) targeting various pains and inflammation for more than 2000 years. To guarantee the quality of
Viticis Fructus, a simple, quick and eco-friendly Beta/ZSM-22 zeolites-based-mixed matrix solid-phase
dispersion method (B/Z-MMSPD) was established for simultaneous extraction and determination
of eight compounds (two phenolic acids, two iridoid glycosides, vanillin and three flavonoids)
with different polarities from Viticis Fructus by high performance liquid chromatography coupled
with a diode array detector (HPLC-DAD). Beta and ZSM-22 were mixed as the sorbent. Water,
tetrahydrofuran and methanol were blended with certain ratio as the eluent. Several parameters
including types of sorbents, mass ratio of Beta to ZSM-22, mass ratio of matrix to sorbent, grinding
time, types, concentration and volume of eluent were optimized. The recoveries of eight analytes were
within the range of 95.0%–105% (RSDs ≤ 4.13%). The limits of detection and limits of quantitation
ranged from 0.5 to 5.5 µg/g and from 1.5 to 16 µg/g, respectively. Compared to the traditional
extract methods, it was a simple, rapid, efficient and green method. The results demonstrated that a
simple, rapid, efficient and green B/Z-MMSPD was developed for the simultaneous extraction and
determination of eight target analytes with different polarities for quality control of Viticis Fructus.

Keywords: Beta/ZSM-22 zeolites-based-mixed matrix solid-phase dispersion; flavonoids; HPLC;
iridoid glycosides; phenolic acids; vanillin; Viticis Fructus

1. Introduction

Viticis Fructus (VF), the dried ripe fruit of Vitex trifolia L. var. simplicifolia Cham. or Vitex trifolia
L. (Verbenaceae), was named Manjingzi as one of commonly used traditional Chinese medicines
(TCMs). It has been used as medicine for more than 2000 years in China. It was recorded in the
Shennong Ben Cao Jing (Shennong’s Classic of Materia Medica) [1]. It was listed as one of the supreme
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Chinese herbs for alleviating cold-heat between tendons and bones, damp arthralgia and muscular
spasms, eyesight-improving, teeth-strengthening, nine-orifices benefiting, expelling white worms,
losing weight and delaying senility [2]. In the other ancient Chinese herbal classic, Qian Jin Yi Fang,
VF was used for alleviating headache and promoting hair growth. VF was also adopted to eliminate
the symptoms of eye-swelling, eye-itching and eye-drying in Zhou Hou Bei Ji Fang (A Handbook of
Prescriptions for Emergencies). According to Ben Cao Gang Mu (Compendium of Materia Medica),
the famous classic book of Chinese materia medica, it could delay fatigue [3]. As documented in the
Pharmacopoeia of the People’s Republic of China, VF could dispel wind-heat and improve mentality
and vision. It has the effect of alleviating pyrexia, eyes and gums pain, giddiness and headache [4,5].
In Japan, VF derived from the fruit of Vitex rotundifolia or Vitex trifolia, used for sedation, relieving
pains and diminishing inflammation. Moreover, its congenic species, Vitex agnus-castus, was used as a
medicine for curing climacteric disorder and premenstrual syndrome in Europe [6].

There were plenty of studies about curing various pains and diminishing inflammation. Otherwise,
some investigations have revealed that VF has the antipyretic, analgesic, antibacterial, anti-tumor,
antihypertensive and anti-oxidant activities [7–13]. The chemistry compositions of VF included volatile
oils, flavonoids, iridoids, diterpenoid, alkaloids and steroids [5,14,15]. Among these compounds,
protocatechuic acid (PCA), p-hydroxybenzoic acid (PHBA), agnuside, 10-O-vanilloylaucubin (VA),
vanillin, luteolin, 5,3′-dihydroxy-6,7,4′-trimethoxyflavanone (DHTMF) and casticin are the main active
compounds, which have been reported to obtain various biological and pharmacological activities, such
as antibacterial, apoptotic, anti-cancer, anti-inflammatory, anti-oxidant, antimicrobial, proangiogenic,
anti-nociceptive and anti-hyperprolactinemia effects [16–23]. Therefore, it is fairly significant to extract
and analyze these compounds for quality control and subsequent investigations of VF.

Methodologies for analyzing the chemical constituents in VF differ in the extraction technique
used. The reported methods include maceration, heated reflux extraction (HRE), microwave assisted
extraction (MAE), ultrasonic-assisted extraction (UAE), supercritical fluid extraction (SFE), solid phase
microextraction (SPME) and Soxhlet extraction [24–30]. The main drawbacks of those mentioned
techniques are that they usually required a quantity of samples and organic reagent (maceration, MAE
and Soxhlet), specific instrumentation (MAE and SFE), specific fibers (SPME) or considerable time
(maceration, HRE, MAE, UAE, SFE and Soxhlet). Fortunately, matrix solid phase dispersion (MSPD), as a
versatile technique that integrates disruption, extraction, fractionation and purification, could overcome
those drawbacks [31–37]. In other words, it could be realized to use less samples, organic reagent and
extraction duration without specific instrumentation and fibers than the others. However, MSPD has
not been used for simultaneous analysis of multiple components in VF. With regard to the separation and
detection, liquid chromatography (LC), gas chromatography coupled to mass spectrometry (GC-MS)
and ultra-high-performance liquid chromatography coupled to mass spectrometry (UPLC-MS) have
been developed to determine some components in VF [5,24,25,38]. Nevertheless, there was no method
for simultaneous determination of hydrophilic (PCA, PHBA, agnuside, VA and vanillin) and lipophilic
constituents (luteolin, DHTMF and casticin) in VF.

Owing to the large differences in polarities of constituents in VF and limitation of MSPD, only
constituents with similar polarities could be extracted simultaneously by one sorbent. As generally
known, the selection of sorbent was a decisive step for MSPD method. An ideal adsorbent should
have the following properties, including certain hardness to disrupt the sample architecture, suitable
adsorption capacity to ensure adsorption and desorption of target compounds, certain selectivity for
clean-up and suitable particle size for material transferring and rapid elution [39–41]. To achieve
simultaneously the maximum extraction yield of hydrophilic and lipophilic constituents, two or
more sorbents-Based-Mixed Matrix Solid-Phase Dispersion Method as alternative sample preparation
method was needed to extract the main constituents with different polarities in herbal medicine.

Zeolites, owing to their unmatched catalytic properties such as thermal stability, crystal structure,
active centers and intrinsic porosity at molecular scale were widely applied for all kinds of interesting
chemical processes [42]. In recent years, zeolites were gradually developed as sorbents due to their
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excellent adsorption properties [43–45]. Beta or ZSM-22 possessed prominent adsorption and selectivity
to compounds with different polarities. The powerful adsorption ability of them mainly derived
from their intracrystalline mesopores, which could be adjusted by changing the SiO2/Al2O3 ratio
of them [44,46].

In this study, a Beta/ZSM-22 zeolites-based-mixed matrix solid-phase dispersion method
with HPLC-DAD was firstly developed for simultaneous extraction and quantification of eight
compounds with different polarities from VF including two phenolic acids (protocatechuic acid
and p-hydroxybenzoic acid), two iridoid glycosides (agnuside and 10-O-vanilloylaucubin), one
benzaldehyde (vanillin) and three flavonoids (luteolin, DHTMF and casticin). The mixed sorbent
consisting of Beta and ZSM-22 was adopted for matrix solid-phase dispersion method to extract
multiple compounds in VF. The three-phase mixture made of water, tetrahydrofuran and methanol
was used as eluent in MSPD method. The essential parameters including types of sorbents, mass
ratio of Beta to ZSM-22, mass ratio of matrix to sorbent, grinding time, types, concentration and
volume of eluent were studied to obtain optimal extraction yield. Compared to the traditional MSPD
method, it was easy to obtain the maximum extraction yield for simultaneous extracting hydrophilic
and lipophilic constituents utilizing the mixed sorbents. The proposed mixed matrix solid-phase
dispersion method was expected to be beneficial for the extraction and determination of constituents
across a great polarity span.

2. Materials and Methods

2.1. Chemicals and Reagents

Reference standards including protocatechuic acid, p-hydroxybenzoic acid and luteolin were
obtained from Chengdu Desite Bio-Technology Co., Ltd. (Chengdu, China). The other five reference
substances were isolated and purified from VF extract by our laboratory and were identified by IR,
HPLC-MS and H-NMR spectroscopy. The purities of all compounds were not less than 98%. Beta (40,
SiO2/Al2O3 ratio), Beta (100, SiO2/Al2O3 ratio), ZSM-22 (70, SiO2/Al2O3 ratio), ZSM-35 (60, SiO2/Al2O3

ratio) and ZSM-5 (300 nm) were supplied from Nanjing JI Cang Nano Technology Co., Ltd. (Nanjing,
China). Alumina-A was supplied from Welch Materials (Shanghai, China). ODS C18 (50 µm, 60A) was
supplied from Agela technologies. HPLC-grade acetonitrile (ACN) and tetrahydrofuran (THF) was
obtained from Concord Technology (Tianjin, China). HPLC-grade methanol (MeOH) was obtained
from Fisher (Leicestershire, UK). LC-MS/HPLC-grade formic acid (FA) was obtained from Anaqua
Chemicals Supply (Wilmington, USA). Other reagents were of analytical grade. Ultrapure water was
obtained from a Milli-Q academic ultrapure water system (Millipore, Milford, MA, USA). All reagents
were filtered through a 0.22 µm nylon syringe filter for HPLC analysis.

2.2. Plant Material

The seven dried ripe fruit samples of VF were separately purchased from Guangxi, Guangdong,
Hubei, Sichuan, Shandong, Hebei and Anhui province in China. Those crude materials of VF were
smashed into powder by a pulverizer (Zhongcheng Pharmaceutical Machinery) before passing through
a 0.355 mm sieve.
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2.3. Preparation of Standard Solutions

All target analytes except agnuside were individually dissolved in MeOH at the concentration
of 1 mg/mL, respectively. Agnuside (2 mg/mL) was dissolved in MeOH. Appropriate
amounts of above solutions were accurately pipetted to prepare the mixed stock solution
containing 45 µg/mL protocatechuic acid, 46 µg/mL p-hydroxybenzoic acid, 146 µg/mL
agnuside, 38 µg/mL 10-O-vanilloylaucubin, 50 µg/mL vanillin, 10 µg/mL luteolin, 50 µg/mL
5,3′-Dihydroxy-6,7,4′-trimethoxyflavanone and 80µg/mL casticin and then stored at 4 ◦C before analysis.

2.4. HPLC Analysis

The analyses of all samples were carried out on an Ultimate 3000 HPLC (Thermo Scientific,
Waltham, MA, USA) coupled with a diode array detector (DAD). A Syncronis C18 column
(250 mm × 4.6 mm × 5 µm, Thermo Scientific, USA) was used for chromatographic separation.
The column temperature was fixed at 30 ◦C, and the injection volume was 10 µL. The mobile
phase was composed of 0.4% (v/v) formic acid (A) and acetonitrile (B) with the gradient elution:
15%–17%B (0–6 min), 17%–20%B (6–15.8 min), 20%–25%B (15.8–18 min), 25%B (18–20 min), 25%–43%B
(20–38 min), 43%B (38–42 min), 43%–60%B (42–50 min), 60%–100%B (50–52 min) at the flow rate of
1 mL/min. The wavelength of detector was set at 270 nm. Under the above chromatographic conditions,
excellent separations were achieved for all target analytes as showed in Figure 1.
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Figure 1. High performance liquid chromatogram of Viticis Fructus, extracted by UAE directly with
the eluent of MSDP (A), extracted by B/Z-MMSPD (B), mixture of standard compounds (C), double
magnification of peak 4, 5 (D), 6 (E), 7 (F). Peaks: 1, protocatechuic acid; 2, p-hydroxybenzoic acid; 3,
agnuside; 4, 10-O-vanilloylaucubin; 5, vanillin; 6, luteolin; 7, 5,3′-Dihydroxy-6,7,4′-trimethoxyflavanone;
8, casticin.
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2.5. B/Z-MMSPD Procedure

The sample (20.0 mg) of VF, 37.5 mg Beta (40, SiO2/Al2O3 ratio) and 22.5 mg ZSM-22 (70,
SiO2/Al2O3 ratio) were accurately weighed and blended in an agitated mortar for 75 s. Then the
mixture was transported into a 3-mL polypropylene SPE cartridge with a sieve tray loaded at the
bottom in advance. The second plate was put subsequently. The eluent was a mixture of water:
tetrahydrofuran: methanol (3:3:4, v/v/v). The power of elution was afforded with a vacuum pump. The
resulting solution was collected in a 1-mL volumetric flask in which 0.25 mL eluent was already added.
The solution was homogenized by vortex for about 10 s and then filtered through a filter membrane
(0.22 µm). The filtrate was analyzed by HPLC.

2.6. Heating Reflux Extraction

The sample (2.000 g) of VF was accurately weighed and transported into a 100-mL round-bottom
flask. After adding 50 mL MeOH, the total weight was recorded. Heated and refluxed for 1 h,
the mixture was cooled down and made up to the recorded weight with methanol. After being
shaken well, the extraction solution was filtered with a 0.22 µm filter membrane and then injected into
HPLC [4].

2.7. Ultrasonic-Assisted Extraction

The sample (1.000) of VF was accurately weighed and transferred into a 100-mL Erlenmeyer flask,
then blended with 50 mL MeOH. After recording the total weight, the mixture was processed with
ultrasonic extraction (40 KHz, 180 W) for 1 h and cooled to room temperature. The loss of total weight
was supplemented with MeOH. After shaking well, the solution was filtered with a 0.22 µm filter
membrane before HPLC analysis [5].

3. Results and Discussion

3.1. Optimization of B/Z-MMSPD Method

3.1.1. Type of Sorbent

The suitable sorbents were indispensable for MSPD method in that they determined whether
there were high adsorption capacity and selectivity between sorbents and samples. Herein, seven types
of adsorbents (Beta (40, SiO2/Al2O3 ratio), Beta (100, SiO2/Al2O3 ratio), ZSM-22 (70, SiO2/Al2O3 ratio),
ZSM-35 (60, SiO2/Al2O3 ratio), ZSM-5 (300 nm), Alumina-A and ODS C18) were screened. As exhibited
in Figure 1A,B, there was about 43 min difference of retention time between protocatechuic acid and
casticin, which demonstrated that their polarities vary greatly. As showed in Figure 2A, it could not be
achieved that all compounds obtain the maximum extraction efficiency when only one type of adsorbent
was used. It was found that four analytes (protocatechuic acid, agnuside, 10-O-vanilloylaucubin and
vanillin) obtained the maximum extraction efficiency by Beta (40, SiO2/Al2O3 ratio) and another four
analytes (p-hydroxybenzoic acid, luteolin, DHTMF and casticin) obtained the maximum extraction
efficiency by ZSM-22 (70, SiO2/Al2O3 ratio). Therefore, Beta (40, SiO2/Al2O3 ratio) and ZSM-22 (70,
SiO2/Al2O3 ratio) were chosen as the mixed adsorbents.
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Figure 2. Effects of parameters on efficiency of 8 contents: a, protocatechuic acid; b, p-hydroxybenzoic acid;
c, agnuside; d, 10-O-vanilloylaucubin; e, vanillin; f, luteolin; g, 5,3′-Dihydroxy-6,7,4′-trimethoxyflavanone;
h, casticin. (A) Types of the sorbent. (B) Ratios of Beta to ZSM-22. (C) Ratios of sample to sorbent.
(D) Grinding time.

3.1.2. Mass Ratio of Beta to ZSM-22

Considering the different selectivity and adsorption capacity between Beta and ZSM-22, the mass
ratio of them should be regarded as a vital factor to optimize. Thus, the mass ratio of Beta to ZSM-22
(8:0, 7:1, 6:2, 5:3, 4:4, 3:5, 2:6, 1:7, 0:8) with the total amount of sorbents fixed at 60 mg was studied.
As showed in Figure 2B, the extraction efficiencies of four analytes (protocatechuic acid, agnuside,
10-O-vanilloylaucubin and vanillin) were gradually decreased while those of another four analytes
(p-hydroxybenzoic acid, luteolin, DHTMF and casticin) were gradually increased with the ratio from
8:0 to 4:4. With the ratio from 4:4 to 0:8, the extraction efficiencies of some target compounds were
distinctly decreased. As the dispersing sorbent of MSPD, the mixed zeolites were not only used as an
abrasive to break the sample architecture for exposing the sample compounds but also a solid support
to disperse the sample for promoting solvent–sample interactions. The mixed pattern could integrate
the respective advantages of Beta and ZSM-22 for improving the extraction efficiencies of target
compounds. However, the clean-up function of the mixed sorbent was not significant (Figure 1A,B).
In order to obtain the maximum total content, the Beta/ZSM-22 zeolites ratio of 5:3 was adopted for the
next step of experiments.

3.1.3. Mass Ratio of Matrix to Sorbent

The mass ratio of sample to sorbent was also one of the important factors that could influence the
extraction efficiency of the target compounds by affecting the contact area between sample and sorbent.
It could be seen that the extraction efficiencies of most compounds were gradually increased with the
ratio from 1:0 to 1:3 (Figure 2C). Because of that, more sorbent could lead to the more sorbent–analytes
and solvent–sample interface area, which promoted the extraction of target compounds into solvent.
Nevertheless, the extraction efficiencies of some analytes were evidently decreased with the ratio
from 1:3 to 1:4. The reason was that too much sorbent produced the adsorption for target compounds
resulting in difficult elution. Thus, 1:3 was chosen as the optimal value of sample/sorbent ratio.
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3.1.4. Grinding Time

Grinding time was another factor to be investigated for MSPD method. Grinding time could
influence the mean particle size and particle size distribution of sample and sorbent when they were
blended with a pestle in a mortar. The longer the grinding time was, the tinier the particles that were
obtained. A series of grinding times (30 s, 45 s, 60 s, 75 s, 90 s and 105 s) were tested. It was found that
the contents of nearly all target analytes were increased with grinding time increasing from 30 s to 75 s
(Figure 2D). The reason could be that the longer the grinding time was, the tinier the particles that
were obtained and the more chances there would be for compounds to transfer from sample to solvent.
However, the contents of all target analytes were decreased when grinding time increased from 75 s to
105 s. It was probably the reason that grinding with longer time obtained excessively tiny particles,
which led to harder elution [40]. Therefore, 75 s of grinding time was chosen.

3.1.5. The Organic Part of Elution Solvent

The elution solvent was also a crucial factor of MSPD method. Appropriate elution solvent could
obtain the maximum elution on not only compound species but also compound amount. Different
elution solvents, such as methanol, tetrahydrofuran, ethanol, acetonitrile and ethyl acetate, were
investigated. As showed in Figure 3A, all target compounds could be eluted by methanol, and
methanol could gain higher contents of them. Although other elution solvents cannot elute all target
compounds, tetrahydrofuran could obtain higher content of casticin than methanol because of the
lower polarity. In order to achieve the maximum elution efficiency, methanol and tetrahydrofuran
were selected as the mixed elution solvent.Molecules 2019, 24, x FOR PEER REVIEW 7 of 14 
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The concentration of elution solvent could make a significant impact on elution process. According
to our previous research, the low polar components would be hardly eluted when the percentage of
water was over 60% (v/v). Therefore, the mixed solvent composed of water in range of 0%–60% (v/v),
tetrahydrofuran in range of 0%–90% (v/v) and methanol in range of 10%–100% (v/v) were investigated
by Optimal (custom) Design of Mixture (Design-Expert 10.0.7). In this investigation, nine systems of
three phases were studied. The total content of all target compounds was regarded as the response to
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fitting model of experimental design. As showed in Figure 3B, the result of fitting performed well with
only a 0.22% chance that could occur due to noise. However, higher total content was not obtained
than that by using system 9 (3H2O: 3THF: 4MeOH) when the solutions proposed by the model of
experimental design were adopted. Therefore, system 9 was chosen as the optimal concentration of
elution solvent.

The volume of eluent determined whether all the target analytes got eluted thoroughly. With far
from enough eluent, the compounds adsorbed in sorbent could not be eluted completely, whereas
overmuch eluent could lead to the elution of impurities, longer elution time and even loss of some
target compounds. Different volumes of eluent were studied, and the result was exhibited in Figure 3C.
It could be found that the extraction yields of most target analytes were increased when the volume of
eluent increased from 0.25 to 0.75 mL. However, the content of agnuside was declined with the volume
from 0.75 to 1.25 mL. Therefore, 0.75 mL was chosen as the volume of eluent.

3.2. Method Validation

3.2.1. Selectivity and Linearity

At least six different amounts of mixed stock solution were added into the adsorbents selected
in this work and then processed by the MSPD method. After HPLC analysis, the calibration curves
were obtained by plotting the peak areas (Y-axis) versus the concentrations of compounds in µg/mL
(X-axis). Fitted by a weighted (1/x) least-squares linear regression method, the calibration curves of
eight compounds had high correlation coefficients (r > 0.9992) (Table 1).

Table 1. Linearity, LOD, LOQ and repeatability of the proposed method (n = 6).

Compounds Regressive Equation Linear Range (µg/g) r LOD (µg/g) LOQ (µg/g) Repeatability RSD (%)

PCA Y = 0.4676x − 0.0088 9–2250 0.9999 0.5 1.5 2.68
PHBA Y = 0.6944x − 0.0011 9–2300 0.9999 1 4 3.33

Agnuside Y = 0.2439x − 0.0213 29–7300 0.9999 2 7 1.96
VA Y = 0.1547x − 0.0016 7.5–1900 0.9999 1 3 4.54

Vanillin Y = 0.4982x − 0.0033 10–2500 0.9999 1.5 5.5 4.76
Luteolin Y = 0.2433x + 0.0084 10–500 0.9997 2 7 3.57
DHTMF Y = 0.1561x + 0.0095 20–2500 0.9992 5.5 16 2.57
Casticin Y = 0.5268x − 0.0073 16–4000 0.9999 1 2.5 2.79

3.2.2. Limits of Detection and Quantification

The limits of detection (LOD) were recognized as the concentrations of related compounds in
which the signal-to-noise (S/N) obtained 3. The limits of quantification (LOQ) were regarded as
the concentrations of related compounds when S/N was equal to 10. The LODs and LOQs of eight
compounds ranged from 0.5 to 5.5 and 1.5 to 16 µg/g, respectively (Table 1).

3.2.3. Reproducibility

The data of repeatability was obtained from six independent samples processed by the optimized
MSPD method. The RSDs of eight compounds were not more than 4.76% (Table 1). These data
indicated that the reproducibility of the optimized method performed well.

3.2.4. Precision, Stability and Recovery

The precision of method was assessed by intra-day (within one day) and inter-day (within
continuous three days) precision. They were expressed as RSDs from six replicates of mixed standard
solutions at three levels of concentrations. The RSDs of precision (intra-day and inter-day) for eight
analytes were below 4.2%, while the accuracies of them ranged from 95.0% to 105%, respectively.
(Table 2).
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Table 2. The results of precision and stability.

Compounds Concentration (µg/mL)
Intra-Day Inter-Day Stability

RSD (%) Accuracy (%) RSD (%) Accuracy (%) RSD (%) Accuracy (%)

PCA 2 2.0 97.4 1.2 97.4 1.4 96.4
4 4.2 102.6 2.5 102.6 3.0 101.8

12 0.0 104.8 0.5 104.9 0.3 104.7
PHBA 8.5 1.1 99.2 1.7 99.2 1.8 96.8

17 2.5 103.8 2.8 103.8 2.6 99.7
51 0.5 100.8 0.9 101.1 0.6 100.9

Agnuside 20 1.8 100.2 2.2 100.2 1.6 97.3
40 2.8 102.4 3.3 102.4 3.5 100.0

120 0.7 103.8 0.7 104.0 0.7 104.1
VA 1.5 1.0 98.1 1.6 98.1 2.0 98.0

3 0.4 103.2 0.7 103.2 0.9 103.8
9 0.1 104.7 0.2 104.6 0.2 104.6

Vanillin 0.5 1.4 95.8 1.3 95.8 1.4 96.3
1 0.3 100.4 0.7 100.4 0.5 101.1
3 0.1 104.9 0.5 104.2 0.6 104.3

Luteolin 0.5 1.3 103.7 1.0 103.7 1.3 104.0
1 0.4 96.0 0.8 96.0 0.9 95.0
3 0.2 99.4 0.7 98.6 0.6 98.8

DHTMF 1 1.0 100.0 1.8 100.0 1.9 97.7
2 0.3 98.2 0.4 98.2 0.5 98.0
6 0.3 95.7 0.7 96.6 0.8 96.5

Casticin 7.5 0.7 99.1 1.9 99.1 1.4 96.2
15 2.7 100.7 2.0 100.7 2.3 99.3
45 0.7 101.7 1.1 102.9 1.0 102.5

The stability of method was evaluated at room temperature over 24 h. The accuracies of eight
analytes with three level concentrations were determined. The accuracies of eight analytes ranged
from 95.0% to 105% with the RSDs less than 3.5%, which implied that the stability of eight compounds
performed well at room temperature for 24 h. (Table 2)

The recoveries for spiked samples were applied to assessing the accuracy of the optimized MSPD
method. 10 mg blank VF samples (or 10 mg blank VF samples and certain amounts of mixed standard
solution) were added into the weighed adsorbents and then processed by the optimized MSPD method,
which were regarded as the unspiked samples (or spiked samples). The contents of eight compounds
were calculated by the related calibration curves. As showed in Table 3, the average accuracies of eight
analytes were within the range of 95.0%–105% (RSDs ≤ 4.13%).

Table 3. The results of recovery test (n = 6).

Compounds Unspiked (µg) Spike (µg) Spiked (µg) Average Recovery (%) RSD (%)

PCA 1.49 1.36 2.78 95.0 1.46
PHBA 5.70 5.40 10.87 95.8 0.94

Agnuside 18.75 14.16 33.06 100 4.13
VA 1.41 1.00 2.44 103 0.98

Vanillin 0.60 0.30 0.91 103 1.57
Luteolin 0.75 0.25 1.00 101 3.22
DHTMF 1.39 0.76 2.19 105 1.10
Casticin 5.40 5.00 10.27 97.5 0.16
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3.3. Application

B/Z-MMSPD method was used to determine the eight target compounds in VF from seven different
provinces in China. As exhibited in Table 4, the contents of PCA, PHBA, agnuside, VA, vanillin, luteolin,
DHTMF and casticin in VF were in the range of 3.51–21.63, 13.81–64.06, 29.33–184.92, 4.66–12.52,
1.84–5.88, 3.52–8.70, 2.72–24.80 and 8.52–100.77 mg/100g, respectively. However, the contents of VA
and DHTMF in VF from Sichuan, vanillin and luteolin in VF from Shandong and DHTMF in VF from
Guangdong were below the LOQ. In addition, it was evidently observed that the content of casticin in
VF from Guangxi was obviously higher than that in VF from others.

Table 4. Contents of the 8 compounds of VF from 7 batches. Average contents (mg/100g) with their
standard deviations, n = 3 replicates.

Production
Region PCA PHBA Agnuside VA Vanillin Luteolin DHTMF Casticin

No.1 (Guangxi) 7.67 ± 0.35 35.13 ± 1.38 98.93 ± 2.25 7.06 ± 0.12 2.77 ± 0.11 8.70 ± 0.03 24.80 ± 1.02 100.77 ± 4.19
No. 2

(Guangdong) 3.51 ± 0.05 13.81 ± 0.21 47.94 ± 2.33 6.91 ± 0.12 1.84 ± 0.01 3.79 ± 0.18 - 30.67 ± 0.55

No. 3 (Hubei) 10.00 ± 0.11 25.12 ± 0.42 73.94 ± 1.75 6.85 ± 0.82 5.83 ± 0.16 5.50 ± 0.26 13.56 ± 0.24 61.36 ± 0.74
No. 4 (Sichuan) 21.63 ± 0.50 53.16 ± 1.00 29.33 ± 1.41 - 5.88 ± 0.12 3.52 ± 0.16 - 29.40 ± 0.51

No. 5 (Shandong) 7.12 ± 0.12 22.34 ± 0.63 34.21 ± 0.50 8.93 ± 0.29 - - 2.72 ± 0.09 8.52 ± 0.18
No. 6 (Hebei) 6.99 ± 0.24 27.76 ± 1.22 62.66 ± 1.57 4.66 ± 0.04 2.28 ± 0.11 4.60 ± 0.18 12.04 ± 0.29 48.68 ± 2.40
No. 7 (Anhui) 16.49 ± 0.37 64.06 ± 1.79 184.92 ± 6.92 12.52 ± 0.18 4.28 ± 0.17 7.32 ± 0.14 14.78 ± 0.51 55.88 ± 1.71

No. 7 (Anhui) * 10.11 ± 0.25 56.45 ± 0.41 145.72 ± 4.27 10.86 ± 0.30 4.47 ± 0.03 6.22 ± 0.13 13.01 ± 0.13 47.93 ± 0.48
No. 7 (Anhui) ** 16.38 ± 0.52 71.01 ± 1.22 201.71 ± 3.18 15.04 ± 0.29 4.65 ± 0.12 9.88 ± 0.16 14.05 ± 0.46 53.60 ± 0.94

* The certain VF sample was extracted by UAE. ** The certain VF sample was extracted by HRE.

In order to evaluate the extraction efficiency of B/Z-MMSPD method, No.7 sample was used to
compare the difference between B/Z-MMSPD method and traditional heating reflux extraction method
based on Pharmacopeia of China 2015. As showed in Table 4, the contents of PCA, DHTMF and
casticin by B/Z-MMSPD method were higher than those by heating reflux extraction method, while
no significant difference was found between the contents of most compounds by these two methods.
Furthermore, the developed MSPD method had the advantages of simpler operation, less consumption
of sample and solvent, shorter time and higher extraction efficiency than UAE. Therefore, B/Z-MMSPD
method was feasible for the extraction of the VF samples for analysis.

3.4. Comparison with Other Methods

Several extraction and analysis methods were summarized in Table 5. In terms of extraction
methods, B/Z-MMSPD method only required a small amount of samples, organic solvent and extraction
time when other methods needed 2–500 g samples, 35–1500 mL organic solvent and 50–1440 min
extraction time. For analysis methods, the developed HPLC-DAD method was applied to analyzing
eight target compounds within 52 min, while LC-MS method was used for determining seven target
analytes within 55 min and demanded more complex parameters optimized. Although the other
HPLC methods need short detection time, they were employed to analyze merely one or two of PCA,
agnuside, luteolin and casticin. In a word, B/Z-MMSPD method coupled with HPLC-DAD is an
uncomplicated, quick, efficient and green method for extracting and analyzing the eight target analytes
in VF and its congeneric plants.
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Table 5. Comparison of the MSPD method with other methods in the determination of compounds in Fructus Viticis sample.

No. Plant Extracted Compounds Sample Amounts (g) Type of Solvent Solvent Volume
(mL)

Extraction
Method

Extraction
Time (min)

Detection
Method

Detection
Time (min) Reference

1 Vitex negundo and
Vitex trifolia

p-hydroxybenzoic acid and
agnuside 50 Methanol 1500 Maceration 1440 HPLC-PDA 18 [24]

2 Vitex negundo Linn. Luteolin 5 Methanol 50 Reflux 120 HPLC 10 [25]

3 Vitex agnus-castus L.
Vitex trifolia

Aucubin, homorientin, orientin,
agnuside, isovitexin,

luteolin-7-O-glucoside and
casticin

500 Petroleum ether, chloroform
and 70%ethanol - Maceration - LC-MS 55 [38]

4 Vitex trifolia Casticin 2 Petroleum ether and methanol 50 Soxhlet 540 HPLC 14 [30]

5 Vitex trifolia Luteolin 2.5 MeOH 35 UAE 50 HPLC 20 [27]

6
PCA, PHBA, agnuside, VA,

vanillin, luteolin, DHTMF and
casticin

0.02
A mixture absolute

water/tetrahydrofuran/methanol
(3:3:4, v/v/v)

0.75 MSPD 1.25 HPLC-DAD 52 This work
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4. Conclusions

A simple, quick, efficient and eco-friendly Beta/ZSM-22 Zeolites-based-Mixed MSPD method
coupled with HPLC-DAD was established for extraction and quantification of eight compounds
in VF. Beta and ZSM-22 were mixed as the sorbent for MSPD technique. Water, tetrahydrofuran
and methanol were blended with certain ratio as the eluent for MSPD method. It was proven that
B/Z-MMSPD method coupled with HPLC-DAD could be applied to extraction and determination of
target compounds in VF and its homologous herbal medicines. Mixed adsorbents could be a good
option when single sorbent could not extract the main constituents with different polarities in herbal
medicine. Multiphase-mixed eluent could be optimized by experimental design software. It was
concluded that the proposed Beta/ZSM-22 Zeolites-Based-Mixed Matrix Solid-Phase Dispersion with
HPLC-DAD method is an alternative sample preparation and quality evaluation method for herbal
medicines containing constituents with different polarities.
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