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Abstract: This paper proposes a new method for calculating the monomer reactivity ratios for
binary copolymerization based on the terminal model. The original optimization method involves
a numerical integration algorithm and an optimization algorithm based on k-nearest neighbour
non-parametric regression. The calculation method has been tested on simulated and experimental
data sets, at low (<10%), medium (10–35%) and high conversions (>40%), yielding reactivity ratios in
a good agreement with the usual methods such as intersection, Fineman–Ross, reverse Fineman–Ross,
Kelen–Tüdös, extended Kelen–Tüdös and the error in variable method. The experimental data sets
used in this comparative analysis are copolymerization of 2-(N-phthalimido) ethyl acrylate with
1-vinyl-2-pyrolidone for low conversion, copolymerization of isoprene with glycidyl methacrylate for
medium conversion and copolymerization of N-isopropylacrylamide with N,N-dimethylacrylamide
for high conversion. Also, the possibility to estimate experimental errors from a single experimental
data set formed by n experimental data is shown.

Keywords: k-NN regression; reactivity ratios; optimization; copolymerization; error estimation;
propagation rate; monomers

1. Introduction

Technological development brings with it the need to create new polymers with
predefined physico-chemical properties. It is well known that the physico-chemical proper-
ties of polymers are given by their microstructure, and the microstructure is determined
by the reaction kinetics. By the nature of the monomers used in the copolymerization
reaction and by a controlled kinetics, specific microstructures can be obtained such as:
polymers with amorphous or crystalline areas, polymers with large molecular masses,
branching polymers, crosslinked polymers or more other microstructure types. All these
microstructure types have great influence on the mechanical and chemical behavior of
the resulting polymers. The possibilities to obtain any kind of mechanical or chemical
properties of copolymers are practically unlimited, but there exists only one limitation to
our imagination. The mechanism of binary copolymerization in which it is considered that
only the last structural unit attached to the polymer chain influences the growth mode of
the polymer is described by the following kinetic relations [1]:

Pn −M∗1 + M1
k11→ Pn+1 −M∗1

Pn −M∗1 + M2
k12→ Pn+1 −M∗2
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Pn −M∗2 + M1
k21→ Pn+1 −M∗1

Pn −M∗2 + M2
k22→ Pn+1 −M∗2

where Pn—growing polymer chain, M1
*, M2

*—the active center on monomers, k11, k12, k21,
k22—propagation rate constants.

The transformation of the above kinetic equations into a mathematical model that con-
nects the kinetic evolution, and the microstructure of the formed copolymer is obtained using
the mathematical equations of a first order kinetics, described by the following equations:

− dM1

dt
= k11[M∗1 ][M1] + k21[M∗2 ][M1] (1)

− dM2

dt
= k22[M∗2 ][M2] + k12[M∗1 ][M2] (2)

where −dM1/dt, −dM2/dt—rate of monomers consumption, [M1], [M2]—molar concen-
tration of monomers in feed, [M1

*], [M2
*]—molar concentration of polymer chain growth

active centers.
It is obvious that both the reaction mechanism and the kinetic Equations (1) and (2)

are not entirely correct because they do not consider the initiation reaction, the termination
reaction, and the transfer reaction of the active center. However, to be able to generate
a mathematical model in which parameters that cannot be measured do not appear, it is
mandatory to impose the stationary state condition described by relation (3):

k12[M∗1 ][M2] = k21[M∗2 ][M1] (3)

Considering the above, several authors [2–5] have proposed various mathematical
solutions that describe the connection between the microstructure of the copolymer and
the kinetics of the reaction. Thus, Alfrey Jr. and Goldfinger [2] propose the following
relation (4):

d[M2]

d[M1]
≈ m2

m1
=

[M2]

[M1]
·r1

1
r2
[M2] + [M1]

r1[M2] + [M1]
(4)

Mayo and Lewis [3] propose relation (5):

d[M1]

d[M2]
≈ m1

m2
=

[M1]

[M2]
· r1[M1] + [M2]

[M1] + r2[M2]
(5)

and Wall [4] and Skeist [5] propose the following form:

d[M1]

d[M1] + d[M2]
≈ m1 =

r1
[
M2

1
]
+ [M1][M2]

r1
[
M2

1
]
+ 2[M1][M2] + r2

[
M2

2
] (6)

where,

r1 =
k12

k11
and r2 =

k21

k22
(7)

r1, r2—reactivity ratios of monomers.
After all, it is easy to see that the Equations (4)–(6) are nested equations, and the most

common form is that described by Equation (5). This mathematical model is a differential
one that makes the connection between the reaction kinetics and the instantaneous com-
position of the copolymer and can be used for experimental data which have conversion
below 10%.

For experimental data with conversions greater than 10% it is necessary to use the
integral form of the differential equation, the equation makes the connection between
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the reaction kinetics and the global composition of the copolymer. The integral equation
proposed by Mayo and Lewis [3] has the form:

log
[M2][
M0

2
] = r2

1− r2
· log

[M1]·
[
M0

2
]

[M2]·
[
M0

1
] − 1− r1r2

(1− r2)(1− r1)
· log

(r1 − 1) [M1]
[M2]
− (r2 + 1)

(r1 − 1) [
M0

1]
[M0

2]
− (r2 + 1)

, (8)

where [M1
0], [M2

0]—initial molar concentration of monomers in feed, [M1], [M2]—molar
concentration of monomers in feed at given conversion.

Integrating the equation proposed by Wall [4] and Skeist [5], Meyer and Lowry [6]
obtain the following mathematical solution:

[M1] + [M2][
M0

2
]
+
[
M0

2
] = M

M0 = X =

(
f1

f 0
1

)α(
f2

f 0
2

)β(
f 0
1 − δ

f1 − δ

)γ

(9)

where
f1 = [M1]

[M1]+[M2]
= 1− f2;

α = r2
1−r2

; β = r1
1−r1

; γ = 1−r1r2
(1−r1)(1−r2)

; δ = 1−r2
2−r1−r2

,
(10)

X—conversion.
As can be seen, Equations (8) and (9) also are nested equations.
Into a r1, r2 coordinate system, the Equations (3) and (9) proposed by Mayo and

Lewis [3] describe a line for each experimental point of an experimental data set. Taking
account of this Equation (5) can be rewritten as:

r2 =

(
M1

M2

)2
·m2

m1
·r1 +

M1

M2
·
(

m2

m1
− 1
)

(11)

and Equation (9) has the following form:

r2 =

log [M0
2]

[M2]
− 1

p log
1−p [

M1]
[M2]

1−p
[M0

1]
[M0

2]

log [M0
1]

[M1]
+ log

1−p [
M1]
[M2]

1−p
[M0

1]
[M0

2]

(12)

where
p =

1− r1

1− r2
(13)

By intersecting two lines thus obtained, are obtained the reactivity ratios as a solution
that satisfy the parameters of the two experimental points considered. If we have n
experimental points, we obtain m solutions of the experimental data set. The number of
solutions m of an experimental data set is obtained with the relation:

m = C2
n =

n(n− 1)
2

(14)

Unfortunately, Mayo and Lewis [3] in their paper do not offer a solution for finding
the best solution of reactivity ratios for the situation where n > 2. Since the publication
of the intersection method [3] a few authors [7–10] have proposed various solutions to
find the best value of the reactivity ratios from (2, m) matrix of solutions. An interesting
solution for finding the best pair of values r1, r2 from the matrix of solutions obtained by
the intersection method is proposed by Abdollahi et al. [10] (ANA). These authors consider
that the optimal values of reactivity ratios r1

0, r2
0 are that which has the smallest distance
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from all calculated lines using the Equation (5) for all experimental points. To determine
the optimal values r1

0, r2
0 the authors rewrite Equation (5) in the following form:

r1

[
M2

1

]
(m1 − 1) + r2

[
M2

2

]
+ [M1][M2](2m1 − 1) = 0 (15)

The sum of the squares of the distance from the optimal point r1
0, r2

0 at each line is
calculated with the relation:

∑ d2
i =

〈{
ro

1
[
M2

1
]
(m1 − 1) + ro

2
[
M2

2
]
+ [M1][M2](2m1 − 1)

}
i

〉2{
ro

1
[
M2

1
]
(m1 − 1)

}2
i +

[
M2

2
]2

i

= f (ro
1, ro

2) (16)

where i—denote the number of the experimental point from experimental data set.
To calculate the minimum distance from the optimal point r1

0, r2
0 to each line, the

partial derivatives to r1
0 and r2

0 of the function f (r1
0, r2

0) respectively, are both of them set
to zero. The partial derivatives equations are described by:

∂ f
∂ro

1
= ro

1 ∑
2
[
ro

1 M2
1(m1 − 1)

]2
i[

ro
1 M2

1(m1 − 1)
]2

i +
[
M2

2
]2

i

+ r0
2 ∑

2
[
ro

1 M2
1(m1 − 1)

]
i
[
M2

2
]

i[
ro

1 M2
1(m1 − 1)

]2
i +

[
M2

2
]2

i

+∑
2
[
ro

1 M2
1(m1 − 1)

]
i[M1 M2(2m1 − 1)]i[

ro
1 M2

1(m1 − 1)
]2

i +
[
M2

2
]2

i

= 0 (17)

∂ f
∂ro

2
= ro

1 ∑
2
[
ro

1M2
1(m1 − 1)

]
i

[
M2

2
]

i[
ro

1M2
1(m1 − 1)

]2
i +

[
M2

2
]2

i

+ ro
2 ∑

2
[
M2

2
]2

i[
ro

1M2
1(m1 − 1)

]2
i +

[
M2

2
]2

i

+∑
2
[
M2

2
]

i[M1M2(2m1 − 1)]i[
ro

1M2
1(m1 − 1)

]2
i +

[
M2

2
]2

i

= 0. (18)

Solving the Equations (17) and (18) can obtain the optimal values of reactivity ratios
r1

0, r2
0.

The algorithm described above is a k nearest neighbour (k-NN) regression algorithm
where k = n, where the differential copolymerization equation is used. The algorithm called
k nearest neighbour [11] (k-NN) is a non-parametric regression algorithm that is permitted
to obtain an optimal point based on calculation of the Euclidian distance between k points
located in neighbourhood, where k is an integer chosen value between 2 and total number
of points of data set.

An approach in determining the reactivity ratios is either the linearization of the
Mayo-Lewis differential Equation (5) or the linearization of the integral Equation (9). The
method proposed by Fineman and Ross [12] is chronologically the first method that uses
the linearization of the Mayo–Lewis differential Equation (5). The mathematical equations
that describe the method proposed by Fineman and Ross are:

F
f
( f − 1) = r1

F2

f
− r2; (19)

f − 1
F

= −r2
f

F2 + r1, (20)

where,

f =
m1

m2
≈ dM1

dM2
and F =

M1

M2
. (21)

Equation (19) is known as the Fineman–Ross method (FR) and Equation (20) as the
reverse Fineman–Ross method (r-FR).

The disadvantage of the uneven distribution of points along the line passing be-
tween the calculated points, which is observed in the Fineman–Ross method, was re-
moved by Kelen–Tudos [13,14] (KT) by using a correction factor α which is calculated with
the relation:

α =
√

Fmin·Fmax, (22)

where

F =
x2

y
; (23)
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x =
M1

M2
and y =

dM1

dM2
≈ m1

m2
. (24)

Considering this aspect presented above, the Mayo-Lewis Equation (5) is rewritten in
the form:

G
α + F

=
(

r1 +
r2

α

) F
α + F

− r2

α
(25)

where
G = x

y− 1
y

. (26)

In the coordinate system G/(α + F), F/(α + F) the points calculated by means of the
Equation (25) have a uniform and collinear distribution.

The KT linear method has been extended to be used to determine reactivity ratios for
experimental data obtained at high conversions [15] (e-KT). In this case Equation (25) is
rewritten as follows:

z(y− 1)
αz2 + y

=
(

r1 +
r2

α

) y
αz2 + y

− r2

α
, (27)

where

z =
log M1

M10

log M2
M20

=
log
[
1− y

x0
log
(

1− Pn
α+x0
α+y

)]
log
(

1− Pn
α+x0
α+y

) ; (28)

α =
µ1

µ2
; (29)

x0 =
M10

M20
and y =

m1

m2
, (30)

where the 0 index refer to the initial concentration of monomer i, α has the same math-
ematical form as presented above, Pn weight percent conversion, µ—molecular weight
of monomers.

For all the linear methods presented above we can write a generalized equation of the
following form:

ζ = aη + b, (31)

where ζ-dependent variable, η-independent variable, a—slope, b—intercept. The line
parameters for the methods presented above are centralized in Table 1.

Table 1. The line parameters for the linear methods presented above.

Method ζ η a b

FR F
f ( f − 1) F2

f r1 −r2

r-FR f−1
F

f
F2 −r2 r1

KT G
α+F

F
α+F

(
r1 +

r2
α

)
− r2

α

e-KT z(y−1)
αz2+y

y
αz2+y

(
r1 +

r2
α

)
− r2

α

Determination of the slope (a) and the intercept (b) (31) for a line can be obtained using
the ordinary least squares methods (OLS) described by following relations:

a =
n·∑(ηi·ζi)−∑ ηi·∑ ζi

n·∑ η2
i − (∑ ηi)

2 , (32)

b = −∑ η2
i ·∑ ζi −∑ ηi·∑(ηi·ζi)

n·∑ η2
i − (∑ ηi)

2 . (33)

Using OLS to obtain the best slope and intercept values, the parameters ζ and η must
respect the Gauss–Markov assumptions, which are:
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(a) The independent variable η must not be correlated with the dependent variable
ζ. This is the fundamental hypothesis of OLS. By linearization of the Mayo–Lewis
Equation (5) the obtained parameters ζ and η have a degree of correlation, this fact
leads to obtaining erroneous or inconsistent values for a and b parameters

(b) The non-linearity between ζ and η parameters, and if the errors are not random gives
wrong estimation of a and b parameters.

(c) The estimation of the a and b parameters values is less accurate if the covariance of
the errors of η is not constant. The covariance of errors of the parameter η represents
a measure of the uncertainty of the model.

(d) The intercept value (b) is biased if the expected error in terms of the independent
variable η is not zero

(e) All calculated values for the η parameter obtained by using the linear forms of the
Mayo–Lewis Equation (5) must be collinear, otherwise the values of a and b parameters
obtained by using the OLS method will be have big errors.

Therefore, obtaining reactivity ratios by linearizing the Mayo–Lewis Equation (5) is
limiting because it is difficult to fully respect Gauss–Markov’s assumptions.

Considering the above, Tidwell and Mortimer [16] approached the solution of the
Mayo–Lewis Equation (5) through a nonlinear view. Tidwell and Mortimer (TM) derived
the Mayo–Lewis equation written in the form proposed by Wall [4] and Skeist [5] (6)
obtaining the following relation:

mj
2i
= Gj

i +
(

r0
1 + rj

1

)∂Gj
i

∂r1
+
(

r0
2 + rj

2

)∂Gj
i

∂r2
+ εi , (34)

where:

Gj =
rj

2 f 2
2 + f1 f2

rj
2 f 2

2 + 2 f1 f2 + rj
1 f 2

1

, (35)

i is the number of the experimental run, j is number of the estimation set and r0
1, r0

2 are the

expectation values of rj
1 and rj

2 respectively.
By making the difference (d) between the measured value of the composition of the

copolymer (mj
2i

) and the calculated composition of the copolymer (Gj), the following
equation is obtained:

di = mj
2i
−Gj

i = β1
∂Gj

i
∂r1

+ β2
∂Gj

i
∂r2

+ εi , (36)

then estimates, β̂1, β̂2 of the smallest squares of β1 and β2 provide the necessary corrections
so that the new values of rj

1 and rj
2 given by:

rj+1
1 = rj

1 + β1 , (37)

rj+1
2 = rj

2 + β2 . (38)

The method proposed by Tidwell and Mortimer uses the Gauss–Newton optimization
algorithm by minimizing ∑(di)

2 for the search for the best pair of reactivity ratios.
It is well known that any experimental measurement contains errors, and for this

reason a number of authors [17–26] have used the principle of minimizing these errors to
obtain the true value of composition of the feed and the copolymer, and finally to obtain
the best values of reactivity ratios.

This concept, called error in variable method (EVM), was originally developed by
German [17] considering the error in only one variable. Later van der Meer et al. [18]
extended the concept to analysis the errors in both variables, after which various approaches
appeared in the calculation methodology [19–26]. For the comparative analysis of the
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methods for calculating the reactivity ratios, the EVM variant proposed by Chee and
Ng [26] was chosen, because it uses the integral equation proposed by Mayo and Lewis
(12) and does not require to know the experimental error.

The variant of EVM proposed by Chee and Ng (EVM-CN) minimizes the objective
function given by the relationship:

S = ∑ W(r2 − re
2)

2 (39)

where
W =

1

Var
(

r2 − rpe
2

) =
1

Var( f )
(40)

Var( f ) =
(

∂ f
∂x

)2
Var(x) +

(
∂ f
∂y

)2
Var(y) +

(
∂ f

∂Pn

)2
Var(Pn) + 2

(
∂ f
∂x

)(
∂ f
∂y

)
Cov(x, y)

+2
(

∂ f
∂y

)(
∂ f

∂Pn

)
Cov(y, Pn) + 2

(
∂ f
∂x

)(
∂ f

∂Pn

)
Cov(x, Pn)

(41)

x =
M10

1−M10
y =

m1

1−m1
(42)

Var(x) = (1 + x)4σ2
M (43)

Var(y) = (1 + y)4σ2
M (44)

Var(Pn) = Pn

{(
σP
Pw

)2
+ (1− α)2

[(
x

1 + αx

)2( σM
M10

)2
+

(
y

1 + αy

)2( σm

M1

)2
]}

(45)

Cov(x, y) = 0 (46)

Cov(y, Pn) =

(
∂Pn

∂y

)
Var(y) (47)

Cov(x, Pn) =

(
∂Pn

∂x

)
Var(x) (48)

re
2—the value of r2 estimated with Equation (12), Pn—weight percent conversion, σ—

standard deviation of M10, m1—molar fraction of monomer 1 in copolymer.
Although the methods for calculating reactivity ratios using the EVM technique are

integral methods, they do not include conversion measurement errors in their analysis.
The non-parametric regression algorithm k-NN is widely used in medicine and phar-

maceutics [27–31], machine learning [32–35], the facial recognition algorithm programs [36],
traffic flow prediction [37] and many other fields.

The new integral method proposed below is an adaptation of the non-parametric
k-NN regression algorithm to the calculation of reactivity ratios from terminal model of
binary copolymerization.

2. Materials and Methods

In the work of Mayo and Lewis [3] the following expression draws attention, “The
experimental error, measured by the size of the area bounded by the three lines, is halved
by a change of only 0.10% in the carbon analysis (0.5% in the styrene content) of the
copolymer”.

In the coordination system r1, r2 through the intersection of three lines results a
triangle whose vertices are described by the coordinates of the points Pi (r1, r2), Pj (r1, r2)
and Pq (r1, r2). The determination of the values of the coordinates of the points Pi (r1, r2),
Pj (r1, r2) and Pq (r1, r2) is undertaken by solving the following system of equations:

ri
2 = airi

1 + bi

rj
2 = ajr

j
1 + bj

rq
2 = aqrq

1 + bq

, (49)



Polymers 2021, 13, 3811 8 of 25

where:

a(i,i,q) =

[
f (i,j,q)1

f (i,j,q)2

]2

·m2

m1
and b(i,j,q) =

f (i,j,q)1

f (i,j,q)2

·
(

m2

m1
− 1
)

, (50)

i, j, q—indices referring to the number of the experimental point from data set.
By solving the system of Equation (49) for “n” experimental points a number of “m”

of triangles can be generated, according with the relation (51):

m = C3
n =

n·(n− 1)·(n− 2)
6

(51)

The calculation of the experimental errors starting from the statement of Mayo and
Lewis [3] is undertaken by solving the following system of Equation (52):

S1 = ε1
1 + ε1

2 + ε1
3 + ε1

4 + · · ·+ ε1
n

S2 = ε2
1 + ε2

2 + ε2
3 + ε2

4 + · · ·+ ε2
n

...
Si = εi

1 + εi
2 + εi

3 + εi
4 + · · ·+ εi

n
...

Sm = εm
1 + εm

2 + εm
3 + εm

4 + · · ·+ εm
n

(52)

where Si—the size of area of the triangle, i = 1 . . . m; εi
j, εi

q, εi
s—the errors of the experiments

that leads to the formation of the triangle i.
The surface of the formed triangle, where are knowing the values of its peaks Pi (r1, r2),

Pj (r1, r2) and Pq (r1, r2) is calculated with the following relation (53):

Si = ri
1rj

2 + rq
1ri

2 + rj
1rq

2 − rq
1rj

2 − ri
1rq

2 − rj
1ri

2 (53)

The solutions of the system of Equations (52) are obtained by solving the matrix
Equation (54):

1 1 1 0 0 · · · 0 0 0
1 1 0 1 0 · · · 0 0 0
...
1 1 0 0 0 · · · 0 0 1
...
0 1 1 1 0 · · · 0 0 0
0 1 1 0 1 · · · 0 0 0
0 1 1 0 0 0 0 1
...
0 0 0 0 0 · · · 1 1 1



·



ε1
ε2
...
εi
...
ε j

ε j+1
ε j+2

...
εm



=



S1
S2
...

Si
...

Sj
Sj+1
Sj+2

...
Sm



(54)

Based on these observations presented above, it was considered that the determination
of reactivity ratios could be achieved by an error regression analysis using the k-NN
algorithm where k = 3. The method of calculating the reactivity ratios using the k-NN
regression algorithm has the following steps:

1. Calculate all possible sets of P3
t (r1, r2) points that can be generated from the experi-

mental data set.
2. For each set of points, P3

t (r1, r2) will calculate the weight center, Pcen (r̂j
1, r̂j

2), using
the relations:

r̂j
1 =

1
3
·

3

∑
i=1

ri,j
1 (55)
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r̂j
2 =

1
3
·

3

∑
i=1

ri,j
2 (56)

where r̂j
1, r̂j

2—the coordinates of the weight center of a set of points P3
t (r1, r2), r1

i,j,
r2

i,j—the coordinates of the vertices of the triangle in the data set P3
t(r1, r2), i—index of

the vertices point i = 1,2,3 and j—number of set of points P3
t(r1, r2), jmax = (n−1)(n−2)

2
where n—number of experimental data sets.

3. For each Pcen(r̂j
1, r̂j

2) point, calculate the composition of the substrate using the in-
tegration method [24,25] until the experimental conversion of each point from the
experimental data set is touched.

4. Using the experimental data of copolymer composition and calculated copolymer

composition with r̂j
1, r̂j

2, calculate the value of the objective function, the Fischer
criterion (Fc) [38], using the relation (57)

Fccen
j =

√√√√∑j=1 ∑i=1,2

(
mj(e)

i −mj(c)
i

)2

n(p− n + 1)
(57)

where Fccen
j is the value of the Fisher criterion for the reactivity ratios from the center

of each triangle, n is the number of monomers used in copolymerization and p is the
number of the experimental data set. Thus, mi

j(e) is the molar fraction of monomer “i”
from copolymer for “j” experimental data set, mi

j(c) is the molar fraction of monomer
“i” calculated based on a mathematical model for the experiment “j”.

5. The Pcen(r̂j
1, r̂j

2) points are ordered in ascending order according to the value of Fccen
j

at which point is selected the first n points Pcen(r̂j
1, r̂j

2) which have the lowest Fccen
j

values. These selected points will generate a new set of points P3
t (r1, r2). This step

is intended to eliminate the reactivity ratios which have great errors and to reduce
computation time.

6. The error of the optimization process is evaluated with the following relation:

err =

∣∣∣∣∣1− Fcs
1

Fcs−1
1

∣∣∣∣∣ (58)

where Fcs
1 —the best value of Fischer criterion at step s of the optimization process,

Fcs−1
1 —the best value of Fischer criterion at step s − 1 of the optimization process. If

the error (err) is not less than 1 × 10−4, then with the last generated set of points P3
t

(r1, r2) return to step 2, else the search process will be stopped.

The reactivity ratios which have the lowest value of the Fischer criterion from the last
search step will become the final solution of the optimization process.

In order to verify the quality of the new method compared to the methods presented
above, an analysis plan was drawn up on simulated data in which the chosen reactivity
ratios must meet the conditions: r1 × r2 ≈ 0, r1 × r2 ∈ [0.5,1], r1 × r2 > 1. Table 2 shows the
data of a comparison of the quality analysis plan for a new method with the most used
methods in reactivity ratios determination, presented above.

Table 2. The conditions of the analysis plan for methods quality.

Nr. Crt r1 r2 r1 × r2

Conversion (Pn)
wt. %

LC MC HC

1 0.02 0.40 0.008
1–10 10–35 40–652 0.72 0.92 0.662

3 0.65 2.12 1.378
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The reactivity ratios were chosen randomly in such a way as to meet the conditions
imposed above. The feed composition and the conversions were obtained by a normalized
randomly software. The copolymer composition was obtained by numerical integration
until the specific conversion of each point was reached. Moreover, the methods presented
above were also verified on real experimental data for copolymerization of:

a. 2-(N-phthalimido) ethyl acrylate (NPEA) with 1-vinyl-2-pyrolidone (NVP), initiated
by AIBN in DMF at 70 ◦C [39];

b. Isoprene (Is) with glycidyl methacrylate (GMA), initiated by AIBN in bulk at 70 ◦C [40];
c. N-isopropylacrylamide (NIPAM) with N,N-dimethylacrylamide (DMA), initiated by

AIBN in DMF at 70 ◦C [41].

The simulated input data, which were used in the comparative qualitative analysis of
the methods for calculating the reactivity ratios presented above are shown in Tables 3–11.
The estimated errors shown in the tables below are obtained by solving Equation (39) for
given data.

The software used to determine the reactivity ratios with the methods described above
was coded in Python 3.

Table 3. The input data for low conversion and r1 = 0.02 and r2 = 0.40 (LC1).

M1 m1 Pn Estimated Error × 10−5

0.074 0.138 9.13 21.50
0.177 9.10 14.30

0.207 0.282 7.54 12.90
0.305 0.345 2.91 8.14
0.401 0.388 5.80 0.74
0.530 0.431 8.68 1.65
0.638 0.459 6.22 1.21
0.770 0.489 4.04 1.08
0.878 0.523 5.09 1.00

Table 4. The input data for low conversion and r1 = 0.72 and r2 = 0.92 (LC2).

M1 m1 Pn Estimated Error’ × 10−7

0.043 0.045 7.46 7.074
0.133 0.136 6.49 −2.747
0.256 0.253 4.75 −0.971
0.329 0.320 7.52 36.576
0.451 0.429 3.86 8.855
0.561 0.529 5.85 0.536
0.654 0.614 4.39 61.212
0.757 0.716 6.71 12.783
0.833 0.797 7.40 14.802

Table 5. The input data for low conversion and r1 = 0.65 and r2 = 2.12 (LC3).

M1 m1 Pn Estimated Error’ × 10−5

0.1043 0.0546 8.94 68.701
0.1094 0.0573 7.99 50.012
0.2766 0.1631 6.15 27.355
0.3423 0.2099 2.02 111.033
0.4104 0.2668 4.02 3.127
0.5816 0.4341 5.46 −2.283
0.6652 0.5329 9.19 22.137
0.7586 0.6513 9.70 2.920
0.8059 0.7144 7.87 −3.359
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Table 6. The input data for medium conversion and r1 = 0.02 and r2 = 0.40 (MC1).

M1 m1 Pn Estimated Error’ × 10−4

0.035 0.067 18.87 6.579
0.122 0.190 27.46 7.081
0.286 0.331 24.62 4.696
0.360 0.371 21.56 2.030
0.453 0.408 17.35 −1.037
0.521 0.432 30.38 −0.702
0.684 0.477 33.80 0.195
0.771 0.499 30.14 1.637
0.815 0.507 19.53 4.194

Table 7. The input data for medium conversion and r1 = 0.72 and r2 = 0.92 (MC2).

M1 m1 Pn Estimated Error’ × 10−5

0.083 0.087 18.56 −2.411
0.138 0.141 31.79 −0.757
0.219 0.219 14.25 −3.582
0.319 0.311 22.78 −3.185
0.486 0.462 15.82 1.923
0.527 0.500 25.20 11.072
0.602 0.568 12.79 9.490
0.707 0.668 16.15 12.025
0.835 0.803 32.65 20.686

Table 8. The input data for medium conversion and r1 = 0.65 and r2 = 2.12 (MC3).

M1 m1 Pn Estimated Error’ × 10−4

0.100 0.053 15.27 13.412
0.116 0.062 12.08 10.647
0.244 0.142 10.60 9.301
0.368 0.239 16.20 4.131
0.452 0.320 25.94 74.227
0.514 0.371 15.99 20.254
0.605 0.473 22.51 1.672
0.744 0.635 14.09 7.726
0.856 0.792 23.80 −6.405

Table 9. The input data for high conversion and r1 = 0.02 and r2 = 0.40 (HC1).

M1 m1 Pn Estimated Error’ × 10−4

0.083 0.127 49.22 84.801
0.101 0.153 45.44 51.577
0.224 0.283 42.8 27.435
0.339 0.359 49.21 4.095
0.434 0.404 45.33 −4.905
0.537 0.441 53.71 −6.280
0.665 0.476 46.72 −4.394
0.714 0.487 41.68 0.849
0.847 0.548 51.18 −3.644
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Table 10. The input data for high conversion and r1 = 0.72 and r2 = 0.92 (HC2).

M1 m1 Pn Estimated Error’ × 10−5

0.101 0.104 49.83 −0.17
0.119 0.122 46.46 −1.41
0.220 0.220 45.61 −2.71
0.320 0.314 40.55 −1.87
0.427 0.413 56.19 1.72
0.569 0.544 59.21 20.37
0.642 0.610 44.32 11.99
0.713 0.680 50.56 5.91
0.824 0.793 40.98 15.25

Table 11. The input data for high conversion and r1 = 0.65 and r2 = 2.12 (HC3).

M1 m1 Pn Estimated Error’ × 10−3

0.071 0.042 50.59 −5.713
0.118 0.072 52.09 −5.619
0.293 0.201 54.60 −1.700
0.380 0.267 43.39 −1.761
0.472 0.349 40.31 32.770
0.502 0.392 57.10 38.335
0.612 0.495 40.62 −1.865
0.785 0.708 48.32 −1.852
0.808 0.744 58.73 −0.612

3. Results

The reactivity ratios obtained in this analysis, as well as the Fisher criterion values,
using the input from Tables 3–11, are presented in Tables 12–20. In these tables, the
reactivity ratios obtained by the methods used in this analysis are ascending, ordered
according to the value of the Fisher criterion (Fc), and the bias represents the value of the
difference from the calculated value of the reactivity ratios and the imposed target value.

Table 12. Reactivity ratios obtained in the imposed conditions of LC1.

Method r1 r2 Fc × 1000
Bias

r1 r2

e-KT 0.0203 0.4014 0.2204 −0.0003 −0.0014
k-NN 0.0217 0.3997 0.8038 −0.0017 0.0003

EVM-CN 0.0194 0.4055 0.9495 0.0007 −0.0055
FR 0.0222 0.4072 1.3358 −0.0022 −0.0072
TM 0.0229 0.4084 1.6429 −0.0029 −0.0084
KT 0.0255 0.4131 2.8526 −0.0055 −0.0131

ANA 0.0271 0.4127 3.4300 −0.0071 −0.0127
r-FR 0.0480 0.4226 12.4679 −0.0280 −0.0226

Table 13. Reactivity ratios obtained in the imposed conditions of LC2.

Method r1 r2 Fc × 1000
Bias

r1 r2

e-KT 0.7196 0.9203 0.0650 0.0004 −0.0003
k-NN 0.7243 0.9209 0.3595 −0.0043 −0.0009
TM 0.7268 0.9225 0.5268 −0.0068 −0.0025

ANA 0.7271 0.9227 0.5431 −0.0071 −0.0027
KT 0.7273 0.9229 0.5583 −0.0073 −0.0029
FR 0.7278 0.9237 0.5806 −0.0078 −0.0037

r-FR 0.7287 0.9235 0.8035 −0.0087 −0.0035
EVM-CN 0.7101 0.9187 0.9031 0.0099 0.0013



Polymers 2021, 13, 3811 13 of 25

Table 14. Reactivity ratios obtained in the imposed conditions of LC3.

Method r1 r2 Fc × 1000
Bias

r1 r2

e-KT 0.6446 2.1078 0.3420 0.0054 0.0122
k-NN 0.6420 2.0820 0.9015 0.0080 0.0380
r-FR 0.6462 2.0564 2.3640 0.0039 0.0636
ANA 0.6566 2.0697 2.5141 −0.0066 0.0503

KT 0.6590 2.0699 2.7393 −0.0090 0.0501
TM 0.6710 2.1014 2.8394 −0.0210 0.0186
FR 0.6656 2.0811 2.9866 −0.0156 0.0389

EVM-CN 0.6087 2.2652 9.3730 0.0413 −0.1452

Table 15. Reactivity ratios obtained in the imposed conditions of MC1.

Method r1 r2 Fc × 1000
Bias

r1 r2

e-KT 0.0196 0.4023 0.3956 0.0004 −0.0023
EVM-CN 0.0215 0.4095 1.1558 −0.0015 −0.0095

FR 0.0310 0.4152 4.1969 −0.0110 −0.0152
k-NN 0.0314 0.3976 4.6885 −0.0114 0.0024
TM 0.0324 0.4202 4.8062 −0.0124 −0.0202

ANA 0.0470 0.4378 9.8920 −0.0270 −0.0378
KT 0.0513 0.4473 11.3844 −0.0313 −0.0473

r-FR 0.0813 0.4608 22.7203 −0.0613 −0.0608

Table 16. Reactivity ratios obtained in the imposed conditions of MC2.

Method r1 r2 Fc × 1000
Bias

r1 r2

k-NN 0.7258 0.9254 0.3599 −0.0058 −0.0054
e-KT 0.7136 0.9181 0.4728 0.0064 0.0019

EVM-CN 0.7231 0.9298 0.5635 −0.0031 −0.0098
TM 0.7438 0.9289 1.6691 −0.0238 −0.0089

ANA 0.7446 0.9286 1.7487 −0.0246 −0.0086
KT 0.7451 0.9287 1.7898 −0.0251 −0.0086

r-FR 0.7434 0.9278 2.0845 −0.0234 −0.0078
FR 0.7523 0.9372 2.0870 −0.0323 −0.0172

Table 17. Reactivity ratios obtained in the imposed conditions of MC3.

Method r1 r2 Fc × 1000
Bias

r1 r2

EVM-CN 0.6513 2.1301 0.2756 −0.0013 −0.0101
e-KT 0.6356 2.0962 0.8539 0.0145 0.0238
k-NN 0.6601 2.0404 3.7553 −0.0101 0.0796

FR 0.6869 2.0146 7.0124 −0.0369 0.1054
KT 0.6930 2.0244 7.1906 −0.0430 0.0956

ANA 0.6971 2.0279 7.4231 −0.0471 0.0921
TM 0.6804 1.9862 7.4980 −0.0304 0.1338
r-FR 0.6927 2.0254 7.7087 −0.0427 0.0946
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Table 18. Reactivity ratios obtained in the imposed conditions of HC1.

Method r1 r2 Fc × 1000
Bias

r1 r2

k-NN 0.0407 0.3881 10.4452 −0.0207 0.0119
FR 0.0567 0.4630 15.9725 −0.0367 −0.0630
TM 0.0578 0.4676 16.3916 −0.0378 −0.0676
KT 0.0722 0.4858 21.0164 −0.0522 −0.0858

ANA 0.0772 0.4811 22.3837 −0.0572 −0.0811
r-FR 0.1602 0.5277 47.3857 −0.1402 −0.1277
e-KT 0.0001 0.0001 146.3598 0.0199 0.3999

EVM-CN 0.0001 0.0001 146.3598 0.0199 0.3999

Table 19. Reactivity ratios obtained in the imposed conditions of HC2.

Method r1 r2 Fc × 1000
Bias

r1 r2

e-KT 0.6973 0.9152 1.5737 0.0227 0.0048
EVM-CN 0.6925 0.9037 1.6354 0.0275 0.0163

k-NN 0.7650 0.9300 3.0243 −0.0450 −0.0100
FR 0.7644 0.9262 3.1204 −0.0444 −0.0062
KT 0.7732 0.9361 3.4138 −0.0532 −0.0161

ANA 0.7732 0.9350 3.4487 −0.0532 −0.0150
TM 0.7721 0.9320 3.4720 −0.0521 −0.0120
r-FR 0.7794 0.9396 4.4174 −0.0594 −0.0196

Table 20. Reactivity ratios obtained in the imposed conditions of HC3.

Method r1 r2 Fc × 1000
Bias

r1 r2

EVM-CN 0.6045 2.1281 4.0967 0.0455 −0.0081
e-KT 0.5701 2.0704 5.7943 0.0799 0.0496
k-NN 0.7284 2.0565 7.9745 −0.0784 0.0635
TM 0.7202 1.7780 16.3783 −0.0702 0.3420

ANA 0.7101 1.7543 16.5100 −0.0601 0.3657
KT 0.7123 1.7556 16.6245 −0.0623 0.3645
FR 0.7268 1.7792 16.8110 −0.0768 0.3408

r-FR 0.7170 1.7584 17.3594 −0.0670 0.3616

To highlight the way in which the integral method k-NN looks for the best point,
Figures 1–9 present the points Pcen (r1, r2) obtained for each search step, where the best
point represent the final solution of k-NN method.
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For a complete analysis of the quality of the k-NN method and the other methods
used in this comparative analysis, the 95% confidence domains (JCR) were plotted for all
nine imposed conditions. Relation (59) was used to trace these JCRs:

S(θ)− S
(
θ̂
)
≤ ps2F(p, n− p, α) (59)

where,
S
(
θ̂
)
=
[
yi − f (xi, θ̂

]T[yi − f (xi, θ̂
]

(60)

Equation (59) was defined by Mathew and Duever as the “exact shape” of JCR [42]. In
Figures 10–18, the JCRs that do not appear in the graph are so large that they would make
the small ones no longer visible. In the following figures, the target value represent the
chosen reactivity ratios for each simulated experiment.
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The k-NN method for determining the reactivity ratios proposed in this paper as
well as the other methods used in this comparative analysis were also tested on real
experimental data. The results obtained are presented in Tables 21–23 and Figures 19–24.

Table 21. The reactivity ratios obtained for copolymerization of NPEA-NVP [39].

Method r1 r2 Fc × 1000 Reference

k-NN 0.7892 1.0818 11.9489 this work
TM 0.8021 1.0844 11.9945 this work

ANA 0.7560 1.0205 12.3116 this work
e-KT 0.7420 1.0101 12.4438 this work
FR 0.7500 0.9900 12.8969 [39]

r-FR 0.6874 0.9484 14.0570 this work
KT 0.7200 0.9400 14.0804 [39]

EVM-CN 0.8919 1.0104 19.0656 this work

Table 22. The reactivity ratios obtained for copolymerization of Is-GMA [40].

Method r1 r2 Fc × 1000 Reference

k-NN 0.1130 0.2228 17.2372 this work
KT 0.1210 0.2240 17.5698 [40]
TM 0.1190 0.2480 17.9278 [40]
FR 0.1150 0.2060 17.9350 [40]

e-KT 0.1240 0.1980 19.2480 [40]
ANA 0.1468 0.2272 20.4971 this work
r-FR 0.2380 0.3160 36.7301 [40]

EVM-CN 0.0001 0.0001 102.9142 this work
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Table 23. The reactivity ratios obtained for copolymerization of NIPAM-NVP [41].

Method r1 r2 Fc × 1000 Reference

e-KT 0.8380 1.1050 2.8946 [41]
k-NN 0.8618 1.0754 3.8764 this work

EVM-CN 0.8608 1.1899 5.0659 this work
TM 0.8862 1.0726 5.3121 this work
r-FR 0.8563 1.0314 5.6978 this work
ANA 0.8837 1.0610 5.7219 this work

KT 0.8888 1.0613 6.0057 this work
FR 0.9227 1.1055 6.0544 this work
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4. Discussion

The visualization of the search steps of the k-NN method shows us that the elimination
of the pairs of irrelevant reactivity ratios using as criterion of elimination the value of Fc

not only increases the calculation speed but also improves the quality of the result. The
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improvement in the quality of the result is given by the fact that the numerator of the
function Fc is in fact a residual variation due to errors (61).

∑
(

mj(e)
1 −mj(c)

1

)2
= ∑ ε2

j (61)

The results from Tables 13–21 show that the integral k-NN method is in good agree-
ment with the other integral methods for determining reactivity ratios and obviously better
than the differential methods used in this comparative analysis.

On the other hand, if we corroborate the data from Tables 13–21 with the JCRs pre-
sented in Figures 10–18, it is observed that:

- The e-KT method has the lowest values of Fc in the case of the conditions imposed by
LC1, LC2, LC3, MC1 and HC2 but at the same time the target value imposed for LC1,
MC1 and MC3 is outside the JCR determined for this method. Taking into account
that JCR represents the set of reactivity ratios that are solutions of the method with
95% confidence and the target value is not part of these solutions, the e-KT method
cannot be considered the best method in the situations presented above.

- The EVM-CN method is the best method for the MC3 and HC3 conditions.
- The reactivity ratios obtained by the EVM-CN method for the imposed conditions

LC2, and LC3 are outside the JCR of the best method for these cases.
- Under the conditions imposed by HC1, the e-KT and EVM-CN methods did not give

good results because the calculation method uses logarithms whose argument takes
negative values for large conversions and appropriate reactivity ratios of 0.

The true value of the k-NN method is demonstrated by the results obtained on real
experimental data which proves that it is a solid method and can be used successfully at
any conversion of less than 55%.

5. Conclusions

The integral method for determining the reactivity ratios based on the k-NN regression
algorithm proposed in this paper is a simple method based on the intersection method.
The k-NN method provides results comparable to any other integral method. The k-NN
method is stable for any combination of reactivity ratios and can be used successfully up to
55% conversions. The notable disadvantage of this method is that it requires a minimum of
six experimental points to be effective. Also, in the search process, a way to estimate the
experimental errors using a single data set was determined. We believe that future works
could establish models with the three conversion parts.
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