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ABSTRACT

Genome-wide association study (GWAS) is a pow-
erful approach that has revolutionized the field of
quantitative genetics. Two-dimensional GWAS that
accounts for epistatic genetic effects needs to con-
sider the effects of marker pairs, thus quadratic ge-
netic variants, compared to one-dimensional GWAS
that accounts for individual genetic variants. Cal-
culating genome-wide kinship matrices in GWAS
that account for relationships among individuals
represented by ultra-high dimensional genetic vari-
ants is computationally challenging. Fortunately, kin-
ship matrix calculation involves pure matrix opera-
tions and the algorithms can be parallelized, particu-
lar on graphics processing unit (GPU)-empowered
high-performance computing (HPC) architectures.
We have devised a new method and two pipelines:
KMC1D and KMC2D for kinship matrix calculation
with high-dimensional genetic variants, respectively,
facilitating 1D and 2D GWAS analyses. We first di-
vide the ultra-high-dimensional markers and marker
pairs into successive blocks. We then calculate the
kinship matrix for each block and merge together
the block-wise kinship matrices to form the genome-
wide kinship matrix. All the matrix operations have
been parallelized using GPU kernels on our NVIDIA
GPU-accelerated server platform. The performance
analyses show that the calculation speed of KMC1D
and KMC2D can be accelerated by 100–400 times
over the conventional CPU-based computing.

INTRODUCTION

Due to the great success in identifying causal single-
nucleotide polymorphisms (SNPs) conferring complex
traits or diseases (1), the genome-wide association study
(GWAS) has revolutionized quantitative genetics (2). The
data and results generated by GWAS have led to remark-
able discoveries, including the development of evolutionary
biology, annotation of gene functions, understanding of dis-
ease mechanisms, and translation toward new clinic diagno-
sis and therapeutics (3). In the original GWAS, individuals
were assumed to be independent and GWAS populations
were assumed to be homogeneous (4,5). However, individ-
uals within a GWAS population are always related to a cer-
tain degree, and the population may be heterogeneous due
to a mixture of multiple genetically distinct subgroups (6).
Population structure and cryptic relatedness between indi-
viduals are widespread confounding factors and will cause
spurious associations. If not properly controlled, these con-
founding factors will generate misleading results, which is
very deleterious during the GWAS analysis (7). Therefore,
a fine association mapping analysis requires careful selec-
tion of individuals to exclude obvious subgroups and needs
to account for the relatedness among individuals (8). At
present, the unified K+Q linear mixed model (LMM) has
emerged as a popular method for simultaneously account-
ing for population structure and cryptic relatedness (4,9).
To solve the LMM problem, a kinship matrix, which is
used to describe the similarities between pairs of individ-
uals, must be mathematically defined (10,11). There are two
distinct and related definitions of kinship matrix. One is the
matrix holding the coancestry coefficients between pairs of
individuals that can be calculated based on pedigree infor-
mation. This is an identical-by-descent (IBD) based kinship
matrix (12). The other is based on marker genotypes instead
of the pedigree information and is known as an identical-
by-state (IBS) based kinship matrix (13–15). It has been re-
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ported that the marker-based kinship matrix represents the
realized genetic relationships between individuals and thus
is more accurate than the pedigree-based kinship matrix (8).

The widely used K+Q LMM considers only the additive
genetic effects, which may only account for a fraction of the
heritability (16). An important factor that accounts for the
missing heritability is the comprehensive genetic architec-
ture of the trait, i.e. epistatic effects defined as gene-by-gene
interactions (GxG) and gene-by-environment interactions
(GxE) (8,17,18). To accurately dissect the phenotypic vari-
ance and address the G × G and G × E interaction effects,
Xu et al. proposed several novel LMMs that incorporate
multiple polygenic covariance structures (19), and several
related tools have been developed (20,21). Again, to solve
the polygenic LMMs, we need to define and calculate kin-
ship matrices for polygenic epistatic effects.

Advances in high-throughput sequencing technology
make it possible to generate ultra-high-dense SNP maps
(e.g. 10 million scale) (22). The high density markers allow
us to calculate accurate kinship matrices for high-resolution
GWAS (23). Statistic power is defined as the probability to
reject a null hypothesis (H0), while the alternative hypoth-
esis (HA) is true. The GWAS statistical power is primarily
determined by the sample size: the larger the sample size,
the higher the power (24).

Kinship matrix calculation primarily involves matrix
multiplication, which is complex (19). If n is the sample size
and m is the number of markers, the main effect kinship
matrix calculation mathematically follows a complexity of
O(mn2). This means that there is a huge computational bur-
den to calculate the main effect kinship matrix when both
the sample size and the number of markers are large. In the
epistasis analysis, it is the marker pairs instead of mark-
ers that are involved for kinship matrix calculation. There-
fore, the polygenic kinship matrix mathematically follows a
complexity of (m2n2) (20,21). This means that we need to
overcome a huge computational burden in polygenic kin-
ship matrix calculation for a 2D GWAS analysis, even with
a moderate number of markers.

During the past decade, Graphics Processing Units
(GPUs), typically containing thousands of hardware pro-
cessor cores, have rapidly evolved to become a standard
high-performance accelerators for large-scale data comput-
ing (25). Because of its parallelization featured as data-
driven architecture, and capability to compute large-scale
data, the GPU-empowered high-performance computing
(HPC) platform is particularly suitable for large-scale ma-
trix operations, including addition, multiplication and con-
volution (26).

We studied the mathematical principle and the complex-
ity of computing the marker-inferred main effect kinship
matrix and marker-pair-inferred epistatic effect kinship ma-
trix. We found that the complexity to calculate a kinship
matrix is linear on the number of markers or marker pairs.
Such linearity allows us to partition the large-scale geno-
typic data into blocks, so a sub-kinship matrix can be com-
puted from each block and eventually obtain the final form
of a kinship matrix by integrating all the sub-kinship ma-
trices. Based on this fundamental analysis, we have success-
fully developed two web-based GPU-empowered pipelines:

KMC1D for main effect kinship matrix calculation and
KMC2D for epistatic effect kinship matrix calculation.
Both operate at up to a hundred times the speed of the gold
standard counterpart (the CPU-based sequential calcula-
tion).

Specifically, users only need to provide the required geno-
type marker matrix data files. The KMC1D/KMC2D will
upload the files, parse the parameters, partition the whole
markers or marker pairs into blocks, and call the GPU ker-
nels for parallel computing and integrating all of the sub-
kinship matrices into a full kinship matrix. For KMC1D,
the genotype data may contain millions of markers and
thousands of individuals so that the storage may quickly
reach hundreds of GBs. Uploading such a big file can be dif-
ficult. To solve this problem, we took advantage of HTML5
and developed a multi-threading resumable file uploading
module to upload very large genotype data.

MATERIALS AND METHODS

LMM, kinship matrices, 1D and 2D GWAS

The genetic effects of markers and the phenotypic values
of quantitative traits can be connected through a kind of
LMM. The software engineering an LMM usually can pro-
duce a specific GWAS analysis package. The additive effect
and dominance effect can be conducted through 1D GWAS
(9,10), and the canonical LMM model is

y = Xβ +
m∑

i = 1

Ẑi ai +
m∑

i = 1

Ŵi di + e (1)

where y is an n × 1 vector of phenotypic values with n being
the sample size; Xβ represents some systematic nongenetic
effects (year effect, location effect and so on); Z and W are
m × n genotype matrices with m being the marker size; Ẑi
is an n × 1 vector of additive effect indicator variables for
all individuals at marker i , and the ai is the additive genetic
effect of marker i ; Ŵi is a n × 1 vector of dominance effect
indicator variables for all individuals at marker i , and the di
is the dominance genetic effect of marker i ; and e is an n × 1
vector of residual errors. If the two alleles of a diploid indi-
vidual at one specific locus are represented as A1 and A2, the
additive effect indicator variable for individual j at marker
i can be defined as Zji = 1 for A1 A1, Zji = 0 for A1 A2 and
Zji = −1 for A2 A2; the dominance effect indicator variance
can be defined as Wji = 1 for A1 A2 and Wji = 0 for A1 A1

or A2 A2. Assume that ai ∼ N(0, σ 2
a ) and di ∼ N(0, σ 2

d ) for
all i = 1, · · · , m, where σ 2

a and σ 2
d are the polygenic ad-

ditive variance and the polygenic dominance variance. The
expectation of the model is E( y) = Xβ and the variance of
the model is

Var ( y) = Ka σ 2
a + Kdσ

2
d + Iσ 2 (2)

where Ka and Kd are n × n marker inferred kinship ma-
trices for the additive and dominance effects, respectively.
Formulas to calculate the main effect kinship matrices are
presented later.
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To conduct the epistatic effect GWAS, Xu (19) proposed
the following polygenic model:

y = Xβ +
m∑

i=1

Ẑi ai +
m∑

i=1

Ŵi di +
m−1∑
i=1

m∑
j=i+1

(
Ẑi #Ẑ j

)
(aa)i j

+
m−1∑
i=1

m∑
j=i+1

(
Ẑi #Ŵ j

)
(ad)i j

+
m−1∑
i=1

m∑
j=i+1

(
Ŵi #Ẑ j

)
(da)i j

+
m−1∑
i=1

m∑
j=i+1

(
Ŵi #Ŵ j

)
(dd)i j + e (3)

The model contains two types of main effects (ad-
ditive and dominance), and four types of epistatic ef-
fects (additive-additive, additive-dominance, dominance-
additive and dominance-dominance). These effects are de-
noted by ai , di , (aa)i j , (ad)i j , (da)i j and (dd)i j . In addition,
Ẑi #Ŵ j represents element-wise two n × 1 vectors’ multi-
plication, which will generate another n × 1 vector. The ex-
pectation of the model is E( y) = Xβ and the variance of
the above epistatic model is

Var ( y) = Ka σ 2
a + Kdσ

2
d + Kaaσ

2
aa + Kadσ

2
ad

+Kdaσ
2
da + Kddσ

2
dd + Iσ 2 (4)

where Ka and Kd are the two main effect kinship matri-
ces while Kaa, Kad , Kda and Kdd are the four epistatic ef-
fect kinship matrices. Based on the polygenic LMM, we
have successfully developed a pipeline, PEPIS (20), for the
polygenic epistatic effect analysis, which essentially includes
main effect 1D GWAS and epistatic effect 2D GWAS.

The GWAS using the canonical LMM or the polygenic
LMM requires these kinship matrices, which allow us to dis-
sect a complex phenotype into several meaningful genetic
components and guide the genome-wide marker association
mapping. The additive and dominance genotype indicator
matrices are denoted by Z and W. The main effect kinship
matrices are defined by⎧⎪⎨

⎪⎩
K∗

a = Zt Z
Ca = mean

(
diag

(
K∗

a

))
Ka =

(
1/

Ca

)
K∗

a

(5)

⎧⎪⎨
⎪⎩

K∗
d = Wt W

Cd = mean
(
diag

(
K∗

d

))
Kd =

(
1/

Cd

)
K∗

d

(6)

To develop the four types of epistatic effect kinship matri-
ces, we need to generate four types of element-wise marker
pairs according to Equations (7–10):

Uaa = [
Ẑ1#Ẑ2; Ẑ1#Ẑ3; . . . ; Ẑ1#Ẑm;

Ẑ2#Ẑ3; . . . ; Ẑ2#Ẑm; . . . ; ̂Zm−1#Ẑm

]
(7)

Uad = [
Ẑ1#Ŵ2; Ẑ1#Ŵ3; . . . ; Ẑ1#Ŵm;

Ẑ2#Ŵ3; . . . ; Ẑ2#Ŵm; . . . ; ̂Zm−1#Ŵm

]
(8)

Uda = [
Ŵ1#Ẑ2; Ŵ1#Ẑ3; . . . ; Ŵ1#Ẑm;

Ŵ2#Ẑ3; . . . ; Ŵ2#Ẑm; . . . ; ̂Wm−1#Ẑm

]
(9)

Udd = [
Ŵ1#Ẑ2; Ŵ1#Ŵ3; . . . ; Ŵ1#Ŵm;

Ŵ2#Ŵ3; . . . ; Ŵ2#Ŵm; . . . ; ̂Wm−1#Ŵm

]
(10)

From these pair-wise genotype indicator variables, the
epistatic effect kinship matrices can be calculated by⎧⎪⎨

⎪⎩
K∗

aa = Ut
aa Uaa

Caa = mean
(
diag

(
K∗

aa

))
Kaa =

(
1/

Caa

)
K∗

aa

(11)

⎧⎪⎨
⎪⎩

K∗
ad = Ut

ad Uad
Cad = mean

(
diag

(
K∗

ad

))
Kad =

(
1/

Cad

)
K∗

ad

(12)

⎧⎪⎨
⎪⎩

K∗
da = Ut

da Uda
Cda = mean

(
diag

(
K∗

da

))
Kda =

(
1/

Cda

)
K∗

da

(13)

⎧⎪⎨
⎪⎩

K∗
dd = Ut

dd Udd
Cdd = mean

(
diag

(
K∗

dd

))
Kdd =

(
1/

Cdd

)
K∗

dd

(14)

From the above formulas, we can estimate the computa-
tional complexities for computing these kinship matrices.
Let m be the number of markers and n be the sample size.
The number of multiplications for a main effect kinship ma-
trix is of order O(mn2). The number of multiplications for
an epistatic kinship matrix is of order O(m2n2). Therefore,
we can compute a main effect kinship matrix from millions
of markers with tens of thousands of individuals. However,
we can only handle about tens of thousands of markers and
individuals for an epistatic effect kinship matrix. As a result,
some strategies to speed up the kinship matrix calculation
are badly needed.

Calculate main effect kinship matrix by partitioning high-
dimensional markers into blocks

After SNP and genetic variant calling (27,28), the genotype
at one specific locus is represented by AA, Aa and aa for
one homozygote, the heterozygote and the other homozy-
gote, respectively. The three genotypes are then numerically
coded by −1, 0, 1 or 0, 1, 2 for the additive effect and 0,
1, 0 for the dominance effect. From Equations (5) and (6),
we can easily calculate the two main effect kinship matrices,
e.g. Ka and Kd . With the high-throughput sequencing tech-
nology, we can easily generate millions of SNP data. The
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large volume of data is hard to handle using traditional ma-
trix multiplications. Luckily, we can take advantage of the
linearity of matrix theory and partition the whole genotype
data into many blocks. Kinship matrix is calculated for each
block, then the block specific kinship matrices are added to
generate the final kinship matrix.

Let G be a m × n matrix for the additive or dominance
genotype effect, where m is the number of markers and n
is the sample size. If we partition G into L blocks, and
each block Gk has n individuals and mk markers so that

m =
L∑

k=1
mk. The partitioned matrix can be written as G =

[G1; G2; . . . , Gk; . . . ; GL], according to matrix block theory,
it is easy to prove that

K∗ = Gt G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

G1

G2

. . .

Gk

. . .

GL

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

[G1; G2; . . . , Gk; . . . ; GL] =
L∑

k=1

Gt
kGk (15)

Figure 1A illustrates the principle to generate the
coded additive and dominance genotypic effect and cal-
culate the main kinship matrix through partitioning the
additive/dominance marker into blocks.

Generate all of the combinational genotype marker pairs and
calculate epistatic effect kinship matrix by partitioning the
marker pairs into blocks

In the polygenic LMMs, two main effects: ai , di , and four
epistatic effects: (aa)i j , (ad)i j , (da)i j and (dd)i j , are defined.
Main effects correspond to the marker’s direct effect, while
epistatic effects correspond to the combinational marker’s
pairs. Similar to the main effect kinship matrix calcula-
tion, we can use the corresponding marker pairs to calcu-
late the four epistatic effect kinship matrices. Given m mark-
ers, there are C2

m = m(m − 1)/2 marker pairs. Therefore, the
number of marker pairs can be huge for a large m. For exam-
ple, it can reach hundreds of millions for a typical number
of markers, say m = 20000.

Again, we can partition the huge number of marker pairs
into small blocks and calculate the sub-kinship matrix one
by one and then merge them into a whole kinship matrix.
Figure 1B illustrates the mathematical principle to gener-
ate all of the epistatic genotypic marker pairs and calculate
the epistatic kinship matrix through partitioning the marker
pairs into blocks.

Design and implementation

To calculate the main effect kinship matrices for high-
dimensional markers and the epistatic effect kinship ma-
trices for a typical number of markers and sample size, we
take advantage of the linearity of matrix operation to parti-
tion the markers or marker pairs into blocks. Furthermore,
the matrix operations for kinship matrix calculation include
matrix transposition, matrix–matrix multiplication, matrix
addition and matrix normalization, all of which can be par-
allelized on the GPU-based HPC platform.

Overall pipeline architecture

We examined the biological fundamentals to calculate the
main and epistatic effect kinship matrices, and particularly
investigated the mathematical linearity of matrix block op-
eration and used it to partition the high-dimensional mark-
ers or marker pairs into blocks for efficient kinship matrix
calculation. Based on these, we developed two parallel com-
puting pipelines: KMC1D for the main effect kinship ma-
trix calculation and KMC2D for the epistatic effect kinship
matrix calculation.

The GPU parallel scheme is essentially a data-driven par-
allelism, which requires the developer to take the respon-
sibility for organizing the low-level algorithm design, data
structure wrapping and data streaming between CPU and
GPU. Such a GPU-employed parallel architecture includes
(i) the host codes sequentially running in the CPU part and
(ii) the device kernel codes parallel running on the GPU
part. The GPU part mainly coordinates the parallel kernel
function modules, while the host part is responsible for data
loading and GPU kernel launching.

KMC1D for main effect kinship matrix calculation can
handle very large genotypic data in the CSV (Comma Sepa-
rated Values) format. Therefore, it is not optimal to load the
whole data into the memory. Instead, the KMC1D pipeline
loads the marker data one block at a time. Once the up-
loaded marker block is full, KMC1D will launch the GPU
kernel to calculate a sub-kinship matrix in a parallel man-
ner. However, pipeline KMC2D is at a very different sce-
nario to perform the epistatic effect kinship matrix calcula-
tion. The KMC2D pipeline deals with marker pairs, which
can be huge even for a moderate number of markers. There-
fore, we let KMC2D read the two types of marker matrices
(Z and W) into memory and generate elementwise marker
pairs one block at a time. Once a marker pair block is full,
KMC2D will launch the GPU kernel to parallel calculate
a sub-kinship matrix. Figure 2 illustrates the parallel archi-
tecture of GPU-empowered kinship matrix calculation.

Host part design for CPU involved serial process

As discussed above, we sequentially designed the host part
by partitioning the huge genotype marker or marker pair
data into blocks and feeding each block to the GPU kernel
for parallel computing. We particularly considered two sce-
narios to handle (i) the large-scale genotype markers that
are directly loaded from external files in KMC1D and (ii)
the marker pairs that are combinatorically calculated from
two types of related genotype effect matrix in KMC2D. We
allocated the global memory variables: Zb, Kb, Ksum to
represent the block of marker or marker pairs, intermedi-
ate kinship matrix based on a block of markers or marker
pairs and the final integrated sum kinship matrix, respec-
tively. All of this global memory resides in device DRAM
for transfers between the host and device as well as for data
transfer to and from kernels. To objectively compare the
performance of CPU employed parallel computing against
the golden CPU serial computing, we designed three run
models coded as 0, 1 or 2 to allow the whole pipeline to be
run at GPU parallel, CPU golden serial, and read file and
loop through mode, respectively. The CPU golden serial run
mode provides a basic calculation capability, and the read
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Figure 1. Mathematical principle to calculate the high-dimensional kinship matrices. (A) Principle to generate the coded additive and dominant genotypic
effect and calculate the main kinship matrix through partitioning the additive/dominance marker into blocks. (B) Principle to generate all of the epistatic
genotypic marker pairs and calculate the epistatic kinship matrix through partitioning the marker pairs into blocks.

file and loop through mode provides the basic platform cost.
In the later section, we will discuss how to use the running
time of three modes to calculate the acceleration up ratio
of GPU empowered parallel scheme against the traditional
CPU serial scheme.

Device kernel design for GPU involved parallel calculation

In the GPU empowered HPC platform, the crucial work
is to design the kernel function modules and allocate the
specific data for each GPU thread, which physically cor-
responds to one GPU core. In CUDA system, all of the
GPU threads can be organized into 1D, 2D or 3D struc-
ture. CUDA gives each a unique thread ID, which can be
linearly calculated by the CUDA system built-in variables,
such as threadIdx.*, blockIdx.* and gridIdx.*. As discussed
earlier, procedures to calculate the kinship matrix can be re-
fined as transpose of a matrix, multiplication and addition
of two matrices, and normalization of a matrix. Therefore,
we coded four kernels for the four matrix-level mathemati-
cal matrix operations.

The addition of two matrices and normalization of a ma-
trix can be easily implemented as matrix-entry-based indi-
vidual addition or division operation, which can be assigned
to a specific GPU thread. Therefore, 1D GPU thread archi-
tecture is a good fit to above two kinds of matrix operations.

Each GPU thread is distinguished by a unique CUDA built-
in variable threadIdx.x and responsible for a corresponding
matrix-entry based operation.

The transpose of a matrix and the matrix–matrix multi-
plication are a little bit complex, because they involve the
2D vertical–horizontal structure of a matrix. The matrix–
matrix multiplication has always been chosen as a bench-
mark of scoring the GPU parallel architecture performance
(29). A more efficient strategy is to adopt a tiled structure by
defining a warp that allows a collection of GPU threads to
access the shared memory and run concurrently (26,29). In
technology, GPU threads access the shared memory at least
one scale faster than the device’s global memory. There are
many studies that discuss the performance of the deployed
kernels for matrix–matrix multiplication. During our imple-
mentation, 2D GPU thread architecture can be deployed
and the CUDA built-in variables threadIdx.x, blockIdx.x,
threadIdx.y, blockIdx.y are used to indicate the horizontal
and vertical indices, which, in this study, correspond to the
individual (genotype data matrix column) and the marker
(genotype data matrix row) respectively. In the tiled ver-
sion, the tile dimension size TILE DIM is a parameter that
can be customized and constrained by the GPU device. Our
Tesla K80 GPU server allows the maximum warp size as
32. To simplify and achieve the optimal memory-access per-
formance, we hard-configured the TILE DIM as 32 for the
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Figure 2. Parallel structure of GPU empowered kinship matrix calculating.

kernel of transpose of matrix and the multiplication of two
matrices.

The kernel source codes (Supplementary File S1) for four
kinds of matrix operation are written in C++ and could be
compiled in NVCC.

HTML5-based resumable transmitting for uploading large
genotype data files

KMC1D is responsible for calculating the main effect kin-
ship matrix from the original genotype data file. The geno-
type data file can reach to several hundred GBs with tens of
millions genotype markers and tens of thousands individu-
als.

Uploading such a large text file from remote client-side
to the KMC1D’s web server can be very difficult. The geno-
type data, being as pure text file, can be compressed in loss-
less format such as .zip, .bzip and .gzip, which have been
widely used in GNU tools. However, the lossless compres-
sion only can acquire limited and unfixed compression ratio
depending on the information content.

To further solve big file uploading issue, we used the
HTML5 API File.slice function to develop a specific multi-
threading resumable file uploading module for uploading
the huge genotype data file. In the client-side, the large geno-

type data file is cut into slices, which are parallel transmitted
to the server with its start and end positions at the multi-
thread model. In the server side, the file slices are parallel
received and merged into one file. The genotype data for
uploading and transmitting can be uncompressed text file
or its compressed format. Our tests indicate that KMC1D
can efficiently upload a file larger than 200 GB, which can
be difficult to handle through traditional methods.

RESULTS

KMC1D and KMC2D are two GPU empowered pipelines
designed for high-performance computing of the high-
dimensional kinship matrices for main effect and epistatic
effect, respectively. We submitted our simulated genotype
dataset with variable numbers of genotypic markers and in-
dividuals to the two pipelines, recorded the run time at each
scenario, and compared the performances of GPU parallel
model against golden CPU serial model. Our GPU parallel
computing performance analysis results show that KMC1D
can achieve about ∼100 times of calculating acceleration,
and KMC2D can achieve ∼ 400 times of calculating accel-
eration when compared with the golden CPU serial running
mode.
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Implementation environment

The KMC1D and KMC2D pipelines were developed in
C/C++ and deployed on a Linux CUDA (Compute Uni-
fied Device Architecture) server, which is equipped with
a NVIDIA Tesla K80 GPU accelerator. Table 1 gives the
details of the implementation environment about the host
CPU and device GPU.

Submission of representative genotype file or files to KMC1D
and KMC2D

KMC1D requires a genotype matrix file as input, while
the KMC2D requires two genotype matrix data files as in-
put. Once the required genotype data file/files are provided,
KMC1D and KMC2D will start the data pre-process,
launch the GPU cores for parallel computing and return
the final integrated kinship matrix.

To efficiently utilize KMC1D and KMC2D, we devel-
oped user-friendly web interfaces to provide online services.
In the backend, several Linux shell scripts were developed
as wrappers to streamline the whole pipeline. The users only
need to specify the required genotype file/files, configure
one parameter to partition the high-dimensional markers or
marker pairs into blocks, and click the Submit or Upload &
Submit button. KMC1D and KMC2D will return the ana-
lyzed result once the calculation is finished. Figure 3 shows
the web user interfaces for submitting genotype data and
downloading analysis results. Users also can download the
source codes and compile them into executables, and run
them through command lines on their own GPU-equipped
Linux servers.

Performance and discussion

To evaluate the performances achieved through our GPU
empowered parallel model against the golden CPU serial
running model, we used real IMF2 Rice genotypic data
(Supplementary File S2) with the dimension of 1619 × 278
and generated a series of simulated data through extendedly
repeating the markers (rows) and individuals (columns).
Table 2 lists the dimension details of the simulated data
for the benchmark performance analysis of KMC1D and
KMC2D. We ran the same data at three modes as GPU par-
allel computing, golden CPU serial computing, and data file
read or loop through only, recorded the three running time,
then calculated the acceleration ratios according to the for-
mula 16 below. Here, the acceleration ratios represent the
objective performance of our GPU empowered pipeline.

Acceleration Ratio

= (CPUSerial − Read Loop Through)
(G PUPara − Read Loop Through)

(16)

Case study for KMC1D

To evaluate the performance of KMC1D that can be af-
fected by the number of SNP markers and individuals, we
classified the simulated genotype data files with a fixed indi-
vidual number and variable marker numbers to group Test

1 and vice versa for group Test 2. We ran each genotype data
at three models and recorded all running times. Finally, we
used formula 16 to calculate the acceleration ratios. Figure
4 gives the performance plots.

In Figure 4, we demonstrated that our GPU empowered
pipeline KMC1D acquired 10–100 acceleration ratios. Fig-
ure 4 also shows that (i) the running time at CPU serial
mode has a simple linear and square relationships with the
variable marker number m and individual number n, respec-
tively, which verified that the complexity of main effect kin-
ship matrix follow as O(mn2); (ii) the close entanglement
of the performance curves between GPU parallel mode and
read and loop through model indicates that the main burden
of KMC1D is from the genotype data pre-processing, such
as file reading; (iii) as the individual number or marker num-
ber increases, the acceleration rates increase quickly and
then slowly to reach plateau, which can be explained by the
reason that the more and more GPU cores were gradually
deployed for calculation until saturated.

We also submitted a very large genotype matrix with the
dimension of 10000000 × 5000 and the file size of ∼119 GB
to KMC1D for performance test. It took about 5 h for
KMC1D to complete the calculation. We specifically sep-
arated and recorded the times for data file uploading and
running time on the same large genotype data file at read
and loop through mode. It reported 50 min for data up-
loading, and about 4 h for read and loop through the data
matrix. This evidence again shows us that the main burden
of KMC1D is from the file uploading and data file reading.

Case study for KMC2D

Similarly, the simulated genotype data for KMC2D are clas-
sified as with a group with a same individual number (n =
1390) but varying marker numbers, and another group with
a fixed marker number (m = 16190) but varying individual
numbers. For each genotype data, we ran it at three modes
as GPU parallel computing, golden CPU serial, and data
file read and loop through only, then recorded the running
times. Again, we use formula 16 to calculate the acceleration
ratios. Figure 5 illustrates the performance plots.

From Figure 5, we demonstrated that our GPU empow-
ered pipeline KMC2D achieved acceleration rates at sev-
eral hundred times. Our analyses also suggested that (i) the
running time of CPU serial model or GPU parallel model
had a square relationship with the variable marker num-
ber m and individual number n, which validated that the
complexity of main effect kinship matrix followed O(m2n2);
(ii) the running time of file read and loop through only
model had a square and linear relationship with the vari-
able marker number m and individual number n, respec-
tively, because the number of marker pairs was equal to
C2

m = (m − 1) m/2; (iii) before the GPU cores were fully uti-
lized, the acceleration ratio continued to rise with the in-
crease of marker number or individual number, but after
that, it reached a plateau. For the genotype file with 16 190
marker, there will be (16190 − 1) × 16190/2 =∼ 131 mil-
lion marker pairs, considering the 1390 individuals, which
is far beyond the capability of any existing GWAS plat-
form. It only took KMC2D about 30 min to complete the
epistatic kinship matrix calculation, while it would take sev-
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Figure 3. User Interface for submission of genotype data and downloading the kinship matrix. (A) KMC1D user interface for uploading the very large
genotype data. (B) KMC1D user interface for downloading the calculated main effect kinship matrix. (C) KMC2D user interface for uploading the two
genotype data. (D) KMC2D user interface for downloading the calculated epistatic effect kinship matrix.

BA

DC

Figure 4. Performance of KMC1D with variable marker number and a fixed individual number (Test 1) or vice versa (Test 2). Test 1 (A and B) is set for a
fixed individual number at 1390. (A) Relationship of running times with variable marker number. (B) Relationship of acceleration ratios with the variable
marker number. Test 2 (C and D) is set for a fixed marker number at 161 900. (C) Relationship of running times with variable individual number. (D)
Relationship of acceleration ratios with the variable individual number.
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Table 1. The implementation environment for host CPU and device GPU

Language Platform
CUDA
Devices Driver Version Run Version CUDA Cores

Device GPU
Clock Host CPU Clock

C/C++ Linux Tesla K80 9.0 9.0 2496 824MHz 1.74G

Table 2. Dimension of the simulated data for KMC1D and KMC2D

KMC1D KMC2D

Test 1. Fix #Individual = 1390 Test 1. Fix #Individual = 1390
#Marker 16 190 80 950 161 900 809 500 #Marker 1619 3238 8095 16 190

Test 2. Fix #Marker = 161 900 Test 2. Fix #Marker = 16 190
#Individual 278 556 1390 2780 #Individual 278 556 834 1390

BA C

E F

D

G H

Figure 5. Performance of KMC2D with variable marker number and a fixed individual number (Test 1) or vice versa (Test 2). Test 1 (A–D) is set for a
fixed individual number at 1390. (A–C) Relationship of running time with variable marker number at CPU Serial mode, GPU Parallel mode, and Loop
Through mode respectively. (D) Relationship of acceleration ratios with the variable marker number. Test 2 (E–H) is set for a fixed marker number at 16 190.
(E–G) Relationship of running times with variable individual number at CPU Serial mode, GPU Parallel mode, and Loop Through mode, respectively.
(H) Relationship of acceleration ratios with the variable individual number.

eral weeks at the CPU serial mode to complete the same
calculation.

Study on the parameter of partition block size

The block size for partitioning the markers or marker pairs
into blocks is the only parameter we need to configure. The
block size essentially determines the allocated RAM needed
in the host CPU, which, in general, follows a linear rela-
tionship. On the other hand, the block size is also related
to the 2D threads architecture in GPU device part, and the
larger block size demands the more GPU cores that are de-
ployed. Therefore, the partition block size is a very impor-
tant parameter, which greatly affects the two pipelines’ per-
formance. We tested the same genotype data by partition-
ing the markers or marker pairs into different block sizes,

and separately submitted them to KMC1D or KMC2D for
main or epistatic effect kinship matrix calculations. Sup-
plementary Tables S1 and S2 provided the dimension de-
tails for the test data and the performance results at differ-
ent block sizes. Based on these performance tests, we found
that when the block sizes were set >2000, it only minimally
affected the computing performance. This can be under-
stood by the 1D/2D GPU parallel computing architecture.
All the available GPU cores/threads can be arranged as
a 2D architecture, which span over to one direction (e.g.
threadIdx.x, blockIdx.x) for the individuals, and the other
direction (e.g. threadIdx.y, blockIdx.y) for the marker or
marker pairs. When the block parameters for marker or
marker pair were set above 2000, the GPU threads in the
marker or marker pair direction would be fully utilized. Ad-
ditionally, the marker or marker pairs are partitioned into
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blocks, therefore, KMC1D or KMC2D only need to allo-
cate a memory block from hundreds of KBs to several hun-
dred MBs, which greatly decrease the required RAM size.

CONCLUSION

Kinship matrix is widely used to efficiently measure the re-
latedness among individuals, and the kinship matrix calcu-
lation is the first and most important step when conduct-
ing a traditional 1D GWAS analysis. Polygenic LMMs and
epistatic effect analysis can reveal the phenotypic variance,
which has been shown to explain the missing heritability. To
solve the polygenic LMMs and conduct an epistatic effect
2D GWAS analysis, we must generate the combinational
marker pairs, then calculate the epistatic effect kinship ma-
trices. However, the typical main effect kinship matrix cal-
culation can be a challenge, if there are tens of millions of
genotype markers and tens of thousands of individuals; the
epistatic effect kinship matrix can be more challenging even
for typical genotype data consisting of several thousands of
markers and hundreds to thousands of individuals.

To overcome these challenges, we systematically investi-
gated the mathematical principle to calculate the main and
epistatic effect kinship matrices. We then adopted a strategy
to partition the marker or marker pairs into blocks, calcu-
late each sub-kinship matrix and merge them into one using
the linearity property of matrix operation. Based on these
strategies, we further refined the kinship matrix calculation
into several basic matrix operations including transpose of a
matrix, matrix–matrix multiplication, matrix addition and
matrix normalization. All of these matrix operations are
time-consuming but can be parallel computed using hun-
dreds to thousands of GPU device cores.

We successfully developed two GPU empowered
pipelines, KMC1D and KMC2D, which were deployed
on our Linux server quipped with a Tesla K80 GPU
accelerator, for main effect and epistatic effect kinship
matrix calculation. The matrix operations have been coded
into GPU kernels. All of the source codes, including
the host CPU part and device GPU part, are written in
CUDA C/C++ and compiled by NVCC. Our GPU parallel
computing performance test results show that KMC1D
can achieve about ∼100 times of calculating acceleration,
and KMC2D can achieve ∼400 times of calculating
acceleration when compared with the golden CPU serial
running mode. We also implemented a multi-threading
and resumable data-transferring module, utilizing HTML5
API File.slice function, for uploading large-size data files.

DATA AVAILABILITY

Both KMC1D and KMC2D are developed in C++ and
compiled with NVCC++ in Linux environment. The C++
and CUDA source codes, the details about the procedures
to compile the source codes into executables and the in-
structions about using command lines to run the executa-
bles on the public repository GitHub at https://github.com/
noble-research-institute/KMC1D and https://github.com/
noble-research-institute/KMC2D, respectively. There is no
restriction for end-users to download, modify, compile and
use the two packages in their own GPU environments.

The KMC1D and KMC2D web programs are publicly
available at https://bioinfo.noble.org/KMC1D/ and https://
bioinfo.noble.org/KMC2D/, respectively.

SUPPLEMENTARY DATA

Supplementary Data are available at NARGAB Online.
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