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Abstract: Plants belonging to the Rosa genus are known for their high content of bioactive molecules
and broad spectrum of healing and cosmetic activities. Rosa platyacantha Schrenk is a wild-type
species abundant in the mountainous regions of Kazakhstan. The phytochemical composition as
well as the bioactivity of R. platyacantha extracts have not been fully investigated to date. In this
study, various parts of R. platyacantha plant, collected in Almaty region, Kazakhstan, were used
to prepare five hydroalcoholic extracts (R1–R5). The extracts were compared for the content of
phytochemicals and selected biological activities, which are important for the potential cosmetic
application of R. platyacantha. Extract R3, prepared from flower buds, showed the most significant
antioxidant and tyrosinase inhibitory potential, decreasing the monophenolase and diphenolase
activities of tyrosinase. Extract R3 showed also collagenase inhibitory activity and cytotoxicity
against human melanoma cells A375, being less cytotoxic for noncancerous skin keratinocytes
HaCaT. Analysis of fractions E and F, obtained from R3 extracts, revealed that quercetin, kaempferol,
rutin, and their derivatives are more likely responsible for the tyrosinase inhibitory properties of
R. platyacantha extracts.

Keywords: Rosa platyacantha; HPLC/ESI-QTOF-MS; antioxidant; tyrosinase; elastase; collagenase
melanoma; in vitro cytotoxicity

1. Introduction

Species belonging to genus Rosa are among one the most popular ornamental and
cutter plants on the planet. Genus Rosa is composed of over 200 species; however, only
around 10–15 species were used to propagate modern cultivars, making the remaining
wild-type species less studied [1]. Extracts and compounds isolated from various Rosa
species are widely used as traditional medicines [2,3] and explored against a variety of
diseases such as skin disorders [4], hepatotoxicity [5], renal disturbances [6], diarrhea [7],
arthritis [8], diabetes [9], hyperlipidaemia [10], and cancer [11]. Alcoholic extracts from
different Rosa species have shown also some antiviral activity with no cytotoxic effects [12].
The anticancer effect of Rosa is explained by the rich content of antioxidants. It was
shown that neutral and acidic phenols are the main components of the extract which has
antiproliferative and apoptotic effect on the cancer cells [13]. Rosa extracts also could have
an opposite effect and increase the cell survival; for example, extracts of R. canina contain
the isoflavone phytoestrogens, which increase the survival of estrogen-dependent cancer
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cell lines such as breast cancer cells (MCF-7) in vitro [14]. Extracts from other Rosa sp.,
such as R. rugosa, contain also other active compounds affecting the epigenetics of cancer
cells, inhibiting the activity of histone acetyltransferase and inducing apoptosis of prostate
cancer cell lines [15].

Rosa species are also a particularly rich source of active ingredients for the cosmetic
industry. R. alba, R. borboniana, R. canina, R. centifolia, R. damascena, R. davurica, R. floribunda,
R. gallica, R. hybrida, R. moschata, R. multiflora, R. rubiginosa, R. rugosa, and R. spinosissima
are among the species currently used in cosmetic products, possessing scientifically proven
skin care activities [16]. For example, ethanolic extract from R. multiflora flowers prevents
ultraviolet (UV)-induced biochemical damages, leading to photoaging by decreasing reac-
tive oxygen species (ROS), interleukin (IL)-6, IL-8, and matrix metalloproteinase (MMP)-1
levels [17]. R. canina hip powder, containing seeds and shells, was recently shown to
increase cell longevity, improve skin wrinkles, moisture, and elasticity [4]. Petal extract
of R. gallica decreased the expression of solar UV-induced MMP-1, which is a hallmark of
wrinkle formation [18]. Extracts and compounds isolated from R. canina, R. gallica, and R.
rugosa have been extensively studied to assess their efficacy as potential skin-lightening
ingredients [19–21]. It was found that polyphenols abundant in Rosa sp. extracts, espe-
cially quercetin, kaempferol, and ellagic acid possess in vitro inhibitory activity toward
tyrosinase, which is an enzyme responsible for melanin synthesis [21].

The phytochemical composition of Rosa genus varies between different and the same
species and depends on geographic locations, ecology, soil composition, and other environ-
mental factors, especially for the concentration of vitamin C and phenolic compounds [22].
Recent studies by Dani et al. showed that the phytochemical composition of Rosa sp.
depends also on the floral development and senescence [23]. The most studied parts of
Rosa plants are rose hips, which are known as a rich source of natural antioxidants, e.g.,
PUFA (polyunsaturated fatty acids) such as linoleic acid, but also flavonoids, triterpenoids,
and phytosterols [24]. Galactolipids, which are also found in rose hips, have shown some
anti-inflammatory and antitumor activities [25]. Flower buds of R. rugosa were shown
recently to contain acidic polysaccharides with antioxidant and anti-aging properties [26]
as well as neuroactive depside glucosides, flavonoids, and tannins [27]. Flavonoids, in-
cluding kaempferol and quercetin derivatives, were also found in R. damascena flower
buds [28]. The leaves of various Rosa species were shown to contain significant amounts of
polyphenols, comprising from to 5.7 ± 0.08% to 15.2 ± 0.21% of dried weight [29]. In R.
canina, the polyphenolic content is higher in the leaves than in the fruits [30].

In the current research, we have studied the phytochemical composition and selected
cosmetic activities of Rosa platyacantha Schrenk growing in the mountains of Trans-Ili
Alatau, Northern Tian Shan Mountain (Almaty, Kazakhstan). This Rosa species has not
been characterized in the scientific literature to date. In addition, it is evident that plants
growing in unfavorable environmental conditions, such as the mountains of Almaty region,
are generally rich in phytochemical compounds with a broad spectrum of biological activ-
ities, including antioxidant, anti-inflammatory, and UV-protecting properties [21,31–33].
The extracts from such plants are a potentially interesting source of active ingredients for
cosmetic products protecting the skin from the harmful impact of environmental factors,
such as air pollution and UV radiation. For that reason, in this study, R. platyacantha extracts
prepared from various parts of the plant were investigated for their antioxidant potential,
elastase, collagenase, and tyrosinase inhibitory properties, and anti-melanoma activity
in vitro. The extract from flower buds, with the most significant tyrosinase inhibitory prop-
erties, was fractionated in order to identify the compounds responsible for the tyrosinase
inhibition.

2. Results and Discussion
2.1. Phytochemical Content and Antioxidant Extracts from Various Parts of R. platyacantha

Hydroalcoholic extracts, prepared from the flowers, leaves, buds, leaves with stems,
and flowers without petals of R. platyacantha (R1–R5, respectively), were first compared
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for total phenolics and flavonoids content. Extracts R2-R5 were characterized by the
similar content of phenolics (14.53–13.30 mg GAE/g dried weight, dw), whereas extract
R1 contained a significantly lower amount of these compounds (8.61 mg GAE/g dw).
The content of flavonoids was comparable between extracts and varied from 2.03 to
2.49 µg/g dw (Table 1).

Table 1. Comparison of the total phenolics and flavonoids content and antiradical activity of R1–R5 extracts from various
parts of R. platyacantha; each value represents mean ± SD (n = 3).

R1 R2 R3 R4 R5 Vitamin C

Total phenolic
(mg GAE/g dw) 8.61 ± 0.18 14.53 ± 0.18 13.30 ± 0.16 14.05 ± 0.28 13.68 ± 0.27 -

Flavonoids
(mg QE/g dw) 2.42 ± 0.05 2.45 ± 0.03 2.42 ± 0.05 2.49 ± 0.09 2.03 ± 0.06 -

DPPH Scavenging
(IC50, µg/mL) 2.77 ± 0.05 1.68 ± 0.25 1.50 ± 0.19 1.59 ± 0.14 1.10 ± 0.34 0.96 ± 0.05

ABTS Scavenging
(IC50, µg/mL) 16.16 ± 1.26 7.16 ± 0.22 10.83 ± 0.85 9.89 ± 0.83 9.21 ± 0.54 0.97 ± 0.06

Phenolic compounds, especially flavonoids, are considered the most active group of
natural compounds with broad spectrum of health, food, and cosmetic applications [34]. As
shown by several researchers, phenolic compounds and flavonoids are potent antioxidants;
therefore, they may serve as effective scavengers of reactive oxygen species (ROS) [35].
Although low amounts of ROS are important for intracellular signaling, elevated ROS
levels may cause DNA, lipid, and protein damage and thus lead to the development of
premature skin aging, pigmentation disorders, or skin cancer [36,37].

The antioxidant potential of R1–R5 extracts was first compared using DPPH and ABTS
radical scavenging assays. In both methods, the highest and lowest antioxidant activity
was detected in R. platyacantha extracts with the highest and lowest phenolics content,
respectively (Table 1).

The ability of R1–R5 extracts to protect the cells from the harmful effect of ROS
was also analyzed in vitro using spontaneously immortalized human keratinocyte cell
line HaCaT [38]. In this assay, the cells were stressed with H2O2 in the presence or
absence of R1–R5 extracts at 25 and 10 µg/mL, and the intracellular ROS generation
was monitored using the fluorogenic dye H2DCFDA. After the diffusion into the cell,
H2DCFDA is deacetylated by cellular esterases and subsequently oxidized by ROS into
2′,7′-dichlorofluorescein (DCF) [39]. As shown in Figure 1, stimulation of HaCaT cells with
H2O2 increased the DCF fluorescence intensity around four times, indicating increased
intracellular ROS production. Pre-treatment of the cells with R1–R5 extracts reduced the
intracellular ROS levels by 2.5 times in comparison with the cells without pre-treatment.
Observed reduction of the intracellular oxidative stress was comparable with that of a
known ROS scavenger NAC [40].
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Figure 1. The effect of R1–R5 R. platyacantha extracts on the intracellular ROS levels in HaCaT ker-
atinocytes treated for 60 min with 1 mM H2O2; nt—no pre-treatment, NAC—2 mM N-acetylcysteine;
values on graph represent mean ± SD (n = 3), *** p < 0.001, * p < 0.05 in comparison with “nt + H2O2”
sample.

2.2. Chromatographic Analysis of R. platyacantha Extracts

The extracts R1–R5 were subjected for HPLC/ESI-QTOF-MS analysis, and the identi-
fied compounds are presented in Table 2. Based on the surface areas of the peaks corre-
sponding to identified compounds (Figure S1), the relative content of phytochemicals was
classified as high (+++), moderate (++), or low (+), as indicated in Table 2.

Table 2. Compounds found in R. platyacantha R1–R5 extracts after HPLC/ESI-QTOF-MS analysis in negative ion mode; the
relative content of identified compounds was indicated as high (+++), moderate (++), or low (+) based on the peak’s surface
area in corresponding chromatograms (Figure S1).

No Retention
Time Name Formula Molecular

Ion [M − H]‘
Fragmentation

Ions R1 R2 R3 R4 R5

1 1.920 Quinic acid C7H12O6 191.0581 173.0438; 127.0426;
109.0287 +++ +++ ++ +++ +++

2 2.507 Citric acid C6H8O7 191.0362 173.0119; 111.0086 + + + + +

3 2.955 Gallic acid
glucoside isomer C13H16O10 331.0683 271.0432; 169.0143;

125.0230 + + - + +

4 3.396 Homoisocitric
acid C7H10O7 205.0373 173.0207; 155.0111;

111.0145 + - - - -

5 4.092 Gallic acid C7H6O5 169.0147 125.0258; 107.0141 + + ++ + ++

6 4.530 Theogallin C14H16O10 343.0685 191,0497; 127.0389 + +++ + +++ +

7 6.495 Gallic acid
glucoside isomer C13H16O10 331.0659 169.0139; 125.0222 + + + + +

8 7.826 Gallic acid
derivative C23H19O18 581.0449 313.0490; 169.0104 + - + - +
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Table 2. Cont.

No Retention
Time Name Formula Molecular

Ion [M − H]‘
Fragmentation

Ions R1 R2 R3 R4 R5

9 9.877 Methoxygallic
glucoside isomer C14H18O10 345.0820 183.0275; 124.0151 + - + - -

10 10.127 Chlorogenic acid C16H18O9 353.0867 191.0373; 135.0308;
109.0238 - + - ++ ++

11 11.639 Methoxygallic
acid isomer C8H10O6 183.0453 168.0215; 124.0238 ++ + +++ ++ +++

12 13.378 Ellagic acid
derivative C34H26O22 783.0488 300.9905; 275.0111;

249.0302 + - + - +

13 16.619 Ellagitanin
derivative C30H24O25 785.0836 300.9934; 275.0111;

249.0375; 169.0107 + + + - -

14 17.214 Ellagitannin
derivative C34H26O22 785.0836

300.9981; 275.0185;
249.0428; 162.0121;

125.0163
+ - - - -

15 17.255 Cryptochlorogenic
acid C16H18O9 353.0496 191.0380; 179.0113;

173.0244; 135.0268 + + - + -

16 17.559 Strictinin C27H22O18 633.0723
300.9669; 247.9903;
249.0121; 168.9972;

125.0082
- + + + +

17 19.218 Brevifolin
carboxylic acid C13H8O8 291.0133 247.0116; 205.0041 ++ ++ + +++ +

18 20.860 Brevifolin C12H7O6 247.0235
201.0169; 190.0258;
173.0207; 145.0278;

135.0421
+ + + + +

19 21.130 Methyl brevifolin-
carboxylate C14H10O8 305.0290

273.0069; 245.0075;
217.0119; 189.0166;
161.0237; 145.0269;
133.0273; 117.0349

+++ ++ ++ +++ ++

20 23.021
Quercetin

galloylglucoside
isomer

C28H24O16 615.1014

463.0872; 300.0281;
271.0297; 255.0269;
169.0140; 151.0020;
124.0151; 107.0091

+ + + + +

21 23.281
Quercetin

galloylglucoside
isomer

C28H24O16 615.1014

463.0900; 300.0276;
271.0283; 255.0223;
169.0140; 150.9999;

124.0139

+ - - - +

22 23.951 Ellagic acid
glucoside C20H16O13 463.0584

300.9994; 226.9924;
200.0078; 173.0221;
145.0286; 117.0374

- - ++ + ++

23 23.997 Quercetin 3-O
glucoside C21H20O12 463.0896

300.0254; 271.0243;
255.0273; 179.0005;
151.0029; 135.0105;

108.0183

+ + + - -

24 24.351 Ellagic acid C14H6O8 301.0003
283.9966; 245.0068;
201.0123; 173.0243;
145.0273; 117.0332

+ - - - -
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Table 2. Cont.

No Retention
Time Name Formula Molecular

Ion [M − H]‘
Fragmentation

Ions R1 R2 R3 R4 R5

25 25.490 Quercetin
glucuronide C21H18O13 477.0700

301.0350; 255.0315;
178.9994; 151.0048;

107.0153
+++ + + + +

26 26.172 Digalloylglucoside C22H12O13 483.0237

301.0079; 285.0134;
270.9967; 228.0068;
173.0232; 144.0312;

117.0321

+ - + - +

27 26.326 Quercetin
7-O-glucoside C21H20O12 463.0896

300.0280; 257.0421;
179.0005; 151.0045;

107.0183
+ - + - +

28 28.380
Quercetin

galloylglucoside
isomer

C28H24O16 615.1014
301.0386; 255.0328;
179.0003; 169.0139;
151.0065; 125.0231

+++ + + + +

29 29.197 Rutin C27H30O16 609.1278

463.0905; 300.0289;
271.0273; 255.0265;
179.0031; 151.0050;

107.0139

++ - - - +

30 31.014 Kaempferol
rutinoside C27H30O15 593.1105

285.0352; 255.0270;
227.0305; 150.9958;
145.0285; 119.0489

+ - + + -

31 34.432 Kaempferol C15H10O6 285.0388 229.0512; 150.9980;
107.0111 + - - - -

Chromatographic analysis of the extracts obtained from different parts of R. platya-
cantha showed that the most characteristic components are quinic acid (1), methoxygallic
acid isomer (11), and methyl brevifolincarboxylate (19). Methoxygallic acid isomer was the
most abundant compound in R3 and R5 extracts. The content of quinic acid and methyl
brevifolincarboxylate was comparable between extracts R1, R2, R4, and R5 and relatively
lower in extract R3.

While quinic acid, ellagic acid, and their derivatives are compounds commonly identi-
fied in various Rosa sp. extracts [41–43], to our knowledge, this is the first report indicating
the presence of brevifolin derivatives in a species from Rosa genus.

There are very few reports in the literature on the chemical composition of R. platyacan-
tha [44,45]. Both publications reported the presence of hydrolysable tannins (gallotannins
and ellagitannins) in fruits of R. platyacantha. Ellagic and gallic acids were identified in
the methanol extract obtained from this plant material [44,45]. The results of the current
research confirm the presence of both acids and their derivatives also in extracts obtained
from other parts of the R. platyacantha. For the first time, the occurrence of brevifolin deriva-
tives were confirmed. The latter compounds are known to occur in pomegranate, sweet
oranges, and Zanthoxylum species [46]. It is also interesting to note that the pharmacological
profile of brevifolin is reported similar to ellagic acid [47]. From the chemical point of view,
ellagitannins may also undergo oxidation to compounds containing a dehydrohexahy-
droxydiphenoyl group, which is also accompanied by the presence of brevifolin carboxylic
acid [48]. This compound was also detected in all extracts obtained from R. platyacantha.

Among other characteristic components worth mentioning is the presence of gallic acid
derivatives as well as flavonoids belonging to flavonols, especially quercetin derivatives.
These compounds are known from the scientific literature as effective antioxidants and
were previously detected in the extracts from other Rosa species [41–43,49]. The abundance
of quinic acid, quercetin, and gallic acid as well as their derivatives in R. platyacantha
extracts explains their significant antioxidant activity [50].
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2.3. Anti-Collagenase and Anti-Elastase Activity of R. platyacantha Extracts

The upregulated activity of collagenase and elastase plays a pivotal role in wrinkling
of the skin via the impairment of collagen and elastic fibers configuration and the sub-
sequent loss of skin elasticity. Increased activity of collagenase and elastase is caused by
both intrinsic (chronologic) and extrinsic aging (UV radiation) factors [51,52]. In general,
the extracts from R. platyacantha were more effective collagenase than elastase inhibitors
(Figure 2). All tested extracts showed significant collagenase inhibition at 100 µg/mL, with
extract R3 being the most active (38% collagenase inhibition). Extracts R1, R2, and R3
significantly decreased the activity of collagenase also at 50 µg/mL (18–34% inhibition).
The activity of elastase was significantly decreased only by R1 and R2 extracts at 100 µg/mL
(11–13% inhibition) and extract R4 at 50 µg/mL (16% inhibition).

Figure 2. Elastase (a) and collagenase (b) inhibitory activity of R1–R5 extracts from various parts of R. platyacantha, 1,10-
phenantroline (1,10-Phe) was used as inhibitor control; values on graphs represent means ± SD (n = 3), *** p < 0.001,
** p < 0.01, * p < 0.05.

Several natural inhibitors of collagenase and elastase were identified to date in plant
extracts, including Rosa species. R. rugosa extract was shown to inhibit collagenase activ-
ity [53] and R. damascena extract from petals inhibits elastase [54]. The extracts from R.
hybrida and R. centifolia showed inhibitory potential toward both collagenase and elastase
activities [55,56].

2.4. Anti-Tyrosinase Activity of R. platyacantha Extracts

Using plant extracts for the treatment of skin pigmentation disorders gained popularity
in recent years [57]. Tyrosinase (EC. 1.14.18.1), a key enzyme of melanogeneis is the most
popular target for skin lightening cosmetic ingredients. Tyrosinase catalyzes the rate-
limiting conversion of L-tyrosine to L-dihydroxyphenylalanine (L-DOPA) (monophenolase
activity) and subsequently to dopaquinone (diphenolase activity) [58].

R. platyacantha extracts inhibited monophenolase and diphenolase activity of tyrosi-
nase in a dose-dependent manner, with R3 extract being the most active. At 100 µg/mL,
R3 extract inhibits 90% of monophenolase (Figure 3a) and 38% of diphenolase (Figure 3b)
activity of tyrosinase. Extracts R2 and R4 decreased diphenolase activity by 20% (Figure 3b)
but had no impact of monophenolase activity of tyrosinase (Figure 3a).
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Figure 3. Inhibition of monophenolase (a) and diphenolase (b) activity of tyrosinase by R1–R5 extracts from various parts
of R. platyacantha; KA- kojic acid, values on graphs represent mean ± SD (n = 3), *** p < 0.001, ** p < 0.01, * p < 0.05.

2.5. Anti-Melanoma Activity of R. platyacantha Extracts In Vitro

Several phenolic compounds identified in R. platyacantha extract, including ellagic and
gallic acids [59,60], kaempferol [61], and quercetin [62] were previously shown to induce
apoptosis in melanoma cell lines in vitro. Therefore, extracts rich in these compounds
might be used in melanoma chemoprevention, suppressing the initiation, promotion, and
progression of cancer cells. The addition of chemopreventing agents in cosmetics may
increase their effectiveness due to the repeated application directly on the skin surface [63].

R1–R5 extracts were analyzed for their cytotoxicity in vitro against human (A375,
SH-4) and murine (B16-F10) melanoma cell lines and noncancerous human keratinocytes
HaCaT (Table 3). Except for the R1 extract, all analyzed extracts were cytotoxic for the
melanoma cell lines. The most significant cytotoxicity was observed for R3 and R5 extracts
against the A375 cell line (IC50 = 97.31 and 72.90 µg/mL, respectively). The cytotoxic effect
of these extracts against noncancerous HaCaT cells was 1.9–2.4 times lower (IC50 = 187.30
and 174.20 µg/mL, respectively). To our knowledge, this is the first report showing the
anti-melanoma activity of Rosa spp. extracts. The extracts from R. canina were previously
proven cytotoxic for colon, cervix, hepatocellular and non-small cell lung carcinoma and
leukemia cell lines [13,14]. R. rugosa decreased the proliferation of prostate cancer cells [15].
R. roxburghii was shown to induced intrinsic apoptosis in esophageal squamous carcinoma,
gastric carcinoma, and pulmonary carcinoma cell lines [64].

Table 3. Cytotoxicity of R1–R5 extracts from various parts of R. platyacantha (IC50 in µg/mL).

R1 R2 R3 R4 R5

HaCaT >500 180.60 241.40 304.30 293.90
A365 >500 120.40 97.31 199.50 72.90
SH4 >500 149.70 169.00 129.90 142.00

B16F10 >500 226.10 187.30 136.80 174.20

2.6. Fractionation of R3 Extract and Chromatographic Analysis of the Fractions

Among the compared biological activities, extract R3 was characterized by the most
significant antioxidant and anti-melanoma properties as well as an exceptional ability to
inhibit both mono- and diphenolase activities of tyrosinase. For that reason, extract R3 was
separated into nine fractions (A–I) in order to identify active compounds responsible for
the observed antioxidant, anti-melanoma, and tyrosinase inhibitory activities. Fractions
A and B were excluded from further analysis, as they contained trace amounts of organic
compounds and were not dissolving in DMSO. Fractions C–I were first analyzed for their
phytochemical composition. The results are presented in Table 4. Based on the peak’s
surface areas in corresponding chromatograms (Figure S2), the relative content of each
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compound was estimated as high (+++), moderate (++), and low (+) and indicated in
Table 4. The most abundant compounds in all fractions were gallic acid and its derivatives
(methoxygallic acid isomer and methoxygallic acid glucoside isomer). Fractions E–I con-
tained also quercetin and brevifolin derivatives, whereas these compounds were absent in
fractions C and D.

Table 4. Comparison of the chemical composition of the fractions C-I obtained from extract R3 after HPLC/ESI-QTOF-MS
analysis in negative ion mode; the relative content of identified compounds was indicated as high (+++), moderate (++),
and low (+) based on the surface areas of the peaks in corresponding chromatograms (Figure S2).

No Retention
Time Name Formula C D E F G H I

1 1.920 Quinic acid C7H12O6 - - - - + + +

2 2.507 Citric acid C6H8O7 - - - - - - -

3 2.955 Gallic acid glucoside isomer C13H16O10 - - - + + - -

4 3.396 Homoisocitric acid C7H10O7 - - - - + - -

5 4.092 Gallic acid C7H6O5 - +++ ++ + + + +

6 4.530 Theogallin C14H16O10 - - - - + + +

7 6.495 Gallic acid glucoside isomer C13H16O10 - - + + - - -

8 7.826 Gallic acid derivative C23H19O18 - - - + - - -

9 9.877 Methoxygallic acid glucoside isomer C14H18O10 - - ++ + - - -

10 10.127 Chlorogenic acid C16H18O9 - - - + - - -

11 11.639 Methoxygallic acid isomer C8H10O6 +++ +++ ++ - + + +

12 13.378 Ellagic acid derivative C34H26O22 - - + + - - -

13 16.619 Ellagitanin derivative C30H24O25 - - + - - - -

14 17.214 Ellagitannin derivative C34H26O22 - - - + - + -

15 17.255 Cryptochlorogenic C16H18O9 - - - - - - -

16 17.559 Strictinin C27H22O18 - - - + - - -

17 19.218 Brevifolin carboxylic acid C13H8O8 - - - + + + +

18 20.860 Brevifolin C12H7O6 - - + - + + +

19 21.130 Methyl brevifolincarboxylate C14H10O8 - - + + + + +

20 23.021 Quercetin galloylglucoside isomer C28H24O16 - - + - - - -

21 23.281 Quercetin galloylglucoside isomer C28H24O16 - - + - - - -

22 23.951 Ellagic acid glucoside C20H16O13 - - - - - - -

23 23.997 Quercetin 3-O glucoside C21H20O12 - - + + + + +

24 24.351 Ellagic acid C14H6O8 - - - - - - -

25 25.490 Quercetin glucuronide C21H18O13 - - - + + + +

26 26.172 Digalloylglucoside C22H12O13 - - + - - - -

27 26.326 Quercetin 7-O-glucoside C21H20O12 - - - - - - -

28 28.380 Quercetin galloylglucoside isomer C28H24O16 - - + + + - +

29 29.197 Rutin C27H30O16 - - + + - - -

30 31.014 Kaempferol rutinoside C27H30O15 - - + + - - -

31 34.432 Kaempferol C15H10O6 - - - - - - -
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2.7. Antioxidant and Anti-Melanoma Activities of Fractions C-I Separated from R3 Extract

The antiradical potential of fractions C–I was compared using DPPH and ABTS
scavenging assays, revealing that the most active antiradical compounds were present in
fraction E. Fraction C was the least active (Table 5).

Table 5. DPPH and ABTS scavenging activity of C-I fractions of flower buds extract (R3) of R. platyacantha (IC50, µg/mL ±
SD); each value represents mean ± SD (n = 3).

C D E F G H I

DPPH
Scavenging 11.99 ± 0.96 2.60 ± 0.10 2.17 ± 0.04 6.86 ± 0.50 3.87 ± 0.26 5.89 ± 0.60 5.14 ± 0.57

ABTS
Scavenging 2 510.00 ± 449.81 4.77 ± 0.10 4.30 ± 0.55 13.87 ± 0.05 8.52 ± 0.27 11.14 ± 0.91 10.39 ± 0.19

The comparison of in vitro cytotoxicity of fractions C-I against HaCaT keratinocytes
and A375 melanoma cells showed that the compounds present in fractions F-I are not
cytotoxic for both tested cell lines. The most significant cytotoxic effect against melanoma
cells was detected in fraction D (IC50 = 70.30 µg/mL). This fraction was also the most
cytotoxic for noncancerous HaCaT cells, but the calculated IC50 value (137.60 µg/mL)
was about two times higher than for A375 melanoma cells (Table 6). The two compounds
identified in fraction D were gallic acid and methoxygallic acid isomer. The relative content
of gallic acid was the highest among all analyzed fractions. Gallic acid was previously
shown to induce apoptosis in A375.S2 melanoma cells through the upregulation of the
proapoptotic proteins such as Bax, downregulation of antiapoptotic proteins such as Bcl-2,
and activation of caspase-9 and caspase-3 [60].

Table 6. Cytotoxicity of C-I fractions of closed flower extract (R3) of R. platyacantha (IC50, µg/mL).

C D E F G H I

HaCaT 251.50 137.60 190.70 >500 >500 >500 >500
A375 170.60 70.30 205.80 >500 >500 >500 >500

2.8. Identification of Tyrosinase Inhibitors from E and F Fractions Separated from R3 Extract

In the tyrosinase inhibitory studies, fractions E and F showed the most significant inhi-
bition of monophenolase and diphenolase activities. Fraction E reduced the monophenolase
activity of tyrosinase by >90% and was more effective than kojic acid at the corresponding
concentrations (Figure 4).

Figure 4. Inhibition of monophenolase (a) and diphenolase (b) activity of tyrosinase by C-I fractions of closed flower extract
(R3) of R. platyacantha KA- kojic acid, values on graphs represent mean ± SD (n = 3), *** p < 0.001.



Molecules 2021, 26, 2578 11 of 19

Chromatographic analysis showed that fraction E, characterized by the highest tyrosi-
nase inhibitory activity, contains mostly gallic acid and its derivatives. The content of these
compounds in the second most active fraction F was much lower, suggesting that gallic
acid and its derivatives are not responsible for the observed tyrosinase inhibitory proper-
ties. Other compounds present in E and F fractions included derivatives of kaempferol,
quercetin, and rutin. In order to identify the compound responsible for the tyrosinase
inhibitory potential of fractions E and F and extract R3, pure reference compounds were
analyzed in the same assay. As shown in Figure 5, quercetin, rutin, and kaempferol were ef-
fective inhibitors of the monophenolase activity of tyrosinase, which was comparable with
the widely used tyrosinase inhibitor—kojic acid. The diphenolase activity of tyrosinase
was decreased by quercetin (78% inhibition at 50 µg/mL) and kaempferol (30% inhibition
at 50 µg/mL). The mono- and diphenolase activities of tyrosinase were not affected by
gallic acid. Based on obtained data, it might be concluded that quercetin, kaempferol,
rutin, and their derivatives are responsible for the tyrosinase inhibitory properties of R.
platyacantha flower buds extract. Quercetin has been already described in a B16 murine
melanoma model as an effective tyrosinase inhibitor from R. canina. The inhibition of
melanogenesis by quercetin was due to the inhibition of both tyrosinase activity and of the
protein expression [49].

Figure 5. Inhibition of monophenolase (a) and diphenolase (b) activity of tyrosinase by main constituents identified in
fraction E from extract R3, values on graphs represent mean ± SD (n = 3), *** p < 0.001.

3. Materials and Methods
3.1. Chemicals and Reagents

A375 (ATCC CRL-1619) human malignant melanoma, SH-4 (ATCC CRL-7724) human
melanoma, and B16-F10 (ATCC CRL-6475) murine melanoma cell lines were purchased
from LGC Standards (Łomianki, Poland). Immortalized human keratinocytes HaCaT
were purchased from CLS Cell Lines Service GmbH (Eppelheim, Germany). Fetal bovine
serum (FBS) was obtained from Pan-Biotech (Aidenbach, Germany). Dulbecco’s modi-
fied Eagle’s medium (DMEM)/high glucose, with and without phenol red, Dulbecco’s
phosphate buffered saline (DPBS), mushroom tyrosinase from Agaricus bisporus, L-tyrosine,
3,4-dihydroxy-L-phenylalanine (L-DOPA), 2,2-Diphenyl-1-picrylhydrazyl (DPPH), 2′,7′-
dichlorofluorescin diacetate (H2DCFDA), N-acetylcysteine (NAC), N-Succinyl-Ala-Ala-Ala-
p-nitroanilide (SANA), kojic acid (≥99.0%), chlorogenic acid (≥95%), ellagic acid (≥95%),
gallic acid (97.5–102.5%), kaempferol (≥97.0%), quercetin (≥95.0%), rutin (≥94.0%), 1,10-
phenantroline (≥99.0%), and neutral red solution (3.3 g/L) were purchased from Merck
(Darmstadt, Germany). Water (H2O), formic acid (HCOOH), and acetonitrile (CH3CN) for
HPLC analysis were purchased from J.T. Baker (Witko, Łódź, Poland).
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3.2. Plant Material

Rosa platyacantha Schrenk plant was collected on 23 of May 2019 in the mountains of
Trans-Ili Alatau, Northern Tian Shan mountain region (Almaty, Kazakhstan). Identification
of the plant was made by the Institute of Botany and Phytointroduction located in Almaty,
Kazakhstan. Collected plant material was dried in room temperature with relative humidity
50 ± 5% in a ventilated premises for a duration of 5 days. A voucher specimen of the plant
is being kept in Almaty, in the Institute of Botany and Phytointroduction of the Committee
for Science of the Ministry of Education and Science of Republic of Kazakhstan.

3.3. Extraction Procedure and Fractionation

For the purpose of this study, five extracts from various parts of R. platyacantha were
prepared, as described in Table 7.

Table 7. Extracts prepared from various parts of Rosa platyacantha Schrenk.

Extract Symbol R1 R2 R3 R4 R5

R. platyacantha part Flowers Leaves Closed flowers (buds) Leaves with stems Flowers without petals

First, 30 g of dried plant material was mixed with 400 mL of 70% methanol and put
for 30 min to an ultrasonic bath (Bandelin SONOREX Digital 10P) at 30 ◦C. Then, the
extract was filtered, and a fresh portion of solvent was added (300 mL). After 30 min of
ultrasound extraction, the plant material was left for overnight maceration; then, the extract
was filtered, a new portion of solvent was added, and ultrasound-assisted extraction was
performed. Filtrates from each extraction step were collected, and solvent was removed by
rotary evaporator under reduced pressure.

Five mg of extract obtained from R. platyacantha closed flowers (R3) was absorbed on
small portion of silica gel (230–400 mesh). Dry Column Vacuum Chromatography (DCVC)
was used for the fractionation of this extract. Adsorbed extract was loaded in a dry column
filled with silica gel (230–400 mesh) and eluted with 200 mL of n-hexane-EtOAc (7:3, v/v),
n-hexane-EtOAc (1:1, v/v), n-hexane-EtOAc (3:7, v/v), EtOAc, EtOAc-MeOH (7:3, v/v),
EtOAc-MeOH (1:1, v/v), EtOAc-MeOH (3:7, v/v), MeOH, and MeOH-water (9:1, v/v)
successively. Collected fractions were monitored by TLC using n-hexane-EtOAc (1:1, v/v)
and EtOAc-MeOH (1:1, v/v) as mobile phases. This procedure give nine fractions (A–I).

3.4. Total Phenolics and Flavonoids Content

The content of total phenolic compounds was determined as described by Fukumoto
and Mazza [65] with slight modifications. First, 150 µL of extracts (1 mg/mL) was mixed
with 750 µL of Folin–Ciocalteu reagent (1:10 v/v, in water) and incubated for 5 min at room
temperature. The samples were mixed with 600 µL 7.5% (m/v) Na2CO3 and incubated for
30 min at room temperature (RT) in darkness. The absorbance was measured at λ = 740
nm using a DR 600 Spectrophotometer (Hach Lange, Wrocław, Poland). The calibration
curve (y = 0.4046x − 0.429; R2 = 0.9978) was prepared using 0–100 µg/mL gallic acid. The
content of total phenolics was calculated as gallic acid equivalents (GAE) in mg per g of
dried extract weight (dw).

The content of flavonoids was analyzed according to the method described by Matejić
et al. [66] with some modifications. First, 150 µL of analyzed extracts (1 mg/mL) were
mixed with 650 µL reaction mixture (61.5 mL 80% C2H5OH + 1.5 mL 10% Al(NO3)3·9H2O
+ 1.5 mL 1 M CH3COOK). Following 40 min incubation at RT, in darkness, the absorbance
of the samples was measured at λ = 415 nm. The calibration curve (y = 0.313x − 0.3127,
R2 = 0.9988) was prepared using 0–100 µg/mL quercetin. The content of flavonoids is
expressed as quercetin equivalents (QuE) per gram of dried extract weight (dw).
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3.5. Chromatographic Analysis

The purified samples were analyzed qualitatively by an HPLC/ESI-QTOF-MS system
in negative ion mode with the use of a 6530B Accurate-mass-QTOF-MS (Agilent Technolo-
gies, Inc., Santa Clara, CA, USA) mass spectrometer with an ESI-Jet Stream ion source.
The Agilent 1260 chromatograph was equipped with a DAD detector, autosampler, binary
gradient pump, and column oven. The column used as stationary phase was Gemini®

3 µm NX-C18 110 Å, LC Column 100× 2 mm. Gradient of solvents: water with 0.1% formic
acid (solvent A) and acetonitrile with 0.1% formic acid (solvent B) were used as the mobile
phases. The following gradient procedure was adopted: 0–45 min, 0–60% of B; 45–46 min,
60–90% B; 46–50 min 90% (B), the post time was 10 min. The total time of analysis was
60 min, with a stable flow rate at 0.200 mL/min. Injection volume for extracts was 10 µL.
ESI-QToF-MS analysis was performed according to the following parameters of the ion
source: Dual spray jet stream ESI, positive and negative ion mode, gas (N2) flow rate:
12 L/min., nebulizer pressure: 35 psig, vaporizer temp.: 300 ◦C; m/z range 100–1000 mass
units, with acquisition Mode Auto MS/MS, collision-induced dissociation (CID): 10 and
40 V with MS scan rate 1 spectrum per s, 2 spectra per cycle, skimmer: 65 V, fragmentor:
140 V and octopole RF Peak: 750 V. Identification of compounds was based on Metlin
database (https://metlin.scripps.ed) (accessed on 27 January 2021) and compared with
literature data.

3.6. DPPH Radical Scavenging Assay

The antiradical activity of R. platyacantha extracts and fractions was established using
a DPPH radical scavenging assay, according to the modified protocol described by Matejic
et al. [66]. First, 100 µL of extracts or fractions (0.0005–1 mg/mL) was mixed with 100 µL
of DPPH in working solution (25 mM in 99.9% methanol; A540 ≈ 1). Then, 100 µL of the
solvent (methanol) mixed with 100 µL DPPH was used as a control sample. After 20 min
incubation at RT in darkness, the absorbance of the samples was measured at λ = 540 nm
using a FilterMax F5 microplate reader (Molecular Devices, San Jose, CA, USA). Obtained
values of measurements were corrected by the absorbance values of the samples without
DPPH. The percentage of DPPH radical scavenging was calculated based on the following
equation:

% of DPPH˙ scavenging = [1 − (Abs(S)/Abs(C))] × 100% (1)

where Abs(S)—the corrected absorbance of the sample, Abs(C)—the corrected absorbance
of the control sample.

Obtained results were used to calculated IC50 values defined as the concentration of
dried extract/fraction that is required to scavenge 50% of the DPPH radical activity.

3.7. ABTS Radical Scavenging Assay

The antioxidant activity of R. platyacantha extracts was compared using ABTS radical
scavenging assay [67] with modifications. ABTS working solution was prepared by dis-
solving 7 mM ABTS in 2.45 mM K2S2O8 in distilled H2O (A405 ≈ 1). Then, 15 µL of extracts
diluted in DMSO in the concentration range from 0.0005 to 1 mg/ mL was mixed with
135 µL ABTS working solution. Then, 15 µL DMSO mixed with 135 µL ABTS served as
a control sample. Following 15 min incubation at RT in darkness, the absorbance of the
samples was measured at λ = 405 nm using a microplate reader (FilterMax F5 Molecular
Devices, USA). The obtained values were corrected by the absorbance value of the sample
without ABTS. The percentage of ABTS radical neutralization was calculated based on the
following equation:

% of ABTS scavenging = [1 − (Abs(S)/Abs(C))] × 100 (2)

where Abs(S)—the corrected absorbance of the extract, Abs(C)—the corrected absorbance
of the control sample (ABTS + solvent).

https://metlin.scripps.ed
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The IC50 value was defined as the concentration of dried extract in µg/mL that is
required to scavenge 50% of ABTS radical activity.

3.8. Tyrosinase Inhibitory Assay

The inhibition of the monophenolase and diphenolase activities of mushroom tyrosi-
nase by R. platyacantha extracts and fractions was analyzed as previously described by
Wang et al. and Uchida et al., respectively [68,69]. For the monophenolase inhibitory assay,
80 µL of phosphate buffer (100 mM, pH = 6.8) was mixed with 20 µL of the analyzed
sample or kojic acid as an inhibitory control (final concentrations: 100 µg/mL, 50 µg/mL
and 25 µg/mL). Then, 20 µL mushroom tyrosinase working solution (500 U/mL) was
added per sample followed by 10 min pre-incubation at RT. Following the addition of
80 µL, 2 mM L-tyrosine the samples were incubated for 20 min at RT in darkness.

The diphenolase inhibitory assay was performed by mixing 120 µL of phosphate
buffer (100 mM, pH = 6.8) with 20 µL of diluted samples or kojic acid as an inhibitory
control (final concentrations: 100, 50, and 25 µg/mL) and 20 µL mushroom tyrosinase
solution (500 U/mL). The reaction mixture was incubated for 10 min at RT. Following the
addition of 40 µL 4 mM L-DOPA, the samples were incubated for a further 20 min at RT in
darkness.

In both assays, the formation of dopachrome in the presence or absence of analyzed
samples was measured spectrophotometrically at λ = 450 nm using a FilterMax F5 mi-
croplate reader (Molecular Devices, San Jose, CA, USA). The values were corrected by the
absorbance of the extracts without tyrosinase, L-tyrosine, and L-DOPA. A control sample
(100% tyrosinase activity) contained phosphate buffer, tyrosinase, an equal volume of
the solvent, and the appropriate dose of each substrate. The activity of tyrosinase was
calculated based on the equation:

% of tyrosinase activity = [Abs(S)/Abs(C)] × 100% (3)

where Abs(S)—the absorbance of the sample (extract + tyrosinase + substrate), Abs(C)—the
absorbance of the control sample (solvent + tyrosinase + substrate).

3.9. Elastase Inhibitory Assay

The inhibition of elastase by R. platyacantha extracts was established using the protocol
described by Horng and co-workers [70]. First, 100 µL Tris-HCl (0.2 M, pH 6.8), containing
0.15 M NaCl and 0.01 M CaCl2 was mixed with 15 µL of sample (100 µg/mL and 50 µg/mL),
0.1 M 1,10-phenantroline (metalloprotease inhibitor) or DMSO (solvent control), and 25 µL
elastase working solution (50 µg/mL, 2 U/mL, in 0.1 Tris-HCl, pH 6.8). Following 10 min
incubation at room temperature, 20 µL of 2.9 mM SANA was added to each sample, mixed,
and incubated for 30 min at 37 ◦C. The absorbance of the samples at λ = 405 nm was
measured using a FilterMax F5 microplate reader (Molecular Devices, San Jose, CA, USA).
The obtained values were corrected by the absorbance of the diluted extracts without
elastase and SANA. The activity of elastase was calculated based on the equation:

% of elastase activity = [Abs(S)/Abs(C)] × 100% (4)

where Abs(S)—the absorbance of the sample (extract + elastase + SANA) and Abs(C)—the
absorbance of the control sample (solvent + elastase + SANA).

3.10. Collagenase Inhibitory Assay

The collagenase inhibitory potential of the extracts obtained from various parts of
R. platyacantha at 100 µg/mL and 50 µg/mL was analyzed using Collagenase Activity
Colorimetric Test (Sigma Aldrich, St. Louis, MO, USA). Here, 0.01 M 1,10-phenantroline
was used as inhibitory control. The analysis and the calculation of collagenase activity
(U/mL) was performed according to the manufacturer’s instructions. Then, obtained
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values were used to calculate the collagenase activity in comparison with the control
sample (100% collagenase activity), using the following equation:

% of collagenase activity = [Act(S)/Act(C)] × 100% (5)

where Act(S)—collagenase activity of the analyzed sample and Act(C)—collagenase activity
of the control sample.

3.11. In Vitro Cytotoxicity Assay

The cytotoxicity of R. platyacantha extracts and fractions was investigated using Neutral
Red Uptake Test [71]. A375, SH-4 human melanoma, B16-F10 murine melanoma, and
HaCaT human keratinocyte cell lines were maintained in DMEM supplemented with 10%
FBS at 37 ◦C in a humidified atmosphere with 5% CO2. For the experimental purpose,
3 × 103 cells were plated per well onto a 96-well plate and grown overnight. Then, the
cells were treated with various concentrations of R. platyacantha extracts (12.5–400 µg/mL)
or an equal volume of DMSO as solvent control. Following 48 h of culture, the cells were
incubated for 3 h with 33 µg/mL neutral red solution in DMEM containing 1% FBS, rinsed
with DPBS and lysed using acidified ethanol solution (50% v/v ethanol, 1% v/v acetic
acid). The absorbance of the released neutral red was measured at λ = 540 nm using
FilterMax F5 microplate reader (Molecular Devices, San Jose, CA, USA) and corrected
by the absorbance at λ = 620 nm. The mean measured value for the lysate from control
cells was set as 100% cellular viability and used to calculate the percentage of viable cells
following extracts treatment. Obtained values were used to calculated IC50, which was
defined as the concentration of dried extract/fraction decreasing the viability of each cell
line by 50%.

3.12. Detection of Intracellular ROS using H2DCFDA

The influence of R1–R5 R. platyacantha extracts on the intracellular ROS levels in
H2O2-treated HaCaT keratinocytes was measured using 2′,7′-dichlorofluorescin diacetate
(H2DCFDA) assay described by Wu and Yotnda [72] with some modifications. First,
1 × 104 HaCaT keratinocytes were plated per well onto black-walled, 96-well plates and
cultured overnight in DMEM supplemented with 10% FBS. The cells were loaded with
5 µM H2DCFDA diluted in serum-free, phenol red-free DMEM at 37 ◦C and 5% CO2
for 30 min, in darkness. Diluted R1–R5 extracts (final concentrations 25 µg/mL and
10 µg/mL) or a known ROS-scavenger N-acetyl-L-cysteine (NAC, 2 mM) were pre-mixed
in serum-free, phenol red-free DMEM with 1 mM H2O2 and applied to H2DCFDA-loaded
cells. Equal volume of the serum-free, phenol-red free DMEM was applied to the control
cells. Then, the cells were incubated at 37 ◦C and 5% CO2 in darkness. The fluorescence
intensity of the forming 2′,7′-dichlorofluorescein (DCF) was measured following 60 min of
incubation using a FilterMax F5 microplate reader (Molecular Devices, San Jose, CA, USA)
at maximum excitation and emission spectra of 485 and 535 nm, respectively. Obtained
values were corrected by the fluorescence of the appropriately diluted R1–R5 extracts, NAC
or serum-free, phenol red-free DMEM (background fluorescence).

3.13. Statistical Analysis

All experiments were conducted in at least three replicates. Obtained data were
analyzed using GraphPad Prism 7.0 Software (GraphPad Software, San Diego, CA, USA).
The statistical significance between results was analyzed using one-way analysis of variance
(ANOVA) followed by Tukey’s test. All data are showed as mean ± SD.

4. Conclusions

The study is the first complex characterization of the chemical profile and selected
biological properties of extracts obtained from various parts of R. platyacantha grown in the
Almaty region in Kazakhstan. The phytochemical studies confirm the presence of gallic
and ellagic acids and their derivatives as the most characteristic components of this Rosa
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species. For the first time, the occurrence of brevifolin derivatives was confirmed in genus
Rosa, while the presence of flavonoids was confirmed in the investigated R. platyacantha.

The presented results also indicate that the extract prepared from closed flowers
(buds) (R3) of R platyacantha is the richest source of phytocompounds with significant
antioxidant potential, as confirmed by standard DPPH and ABTS radical scavenging assays
as well as in vitro studies on HaCaT keratinocytes. The R3 extract was also effective against
human melanoma cells, showing considerably lower cytotoxicity toward noncancerous
skin cells. Moreover, closed flowers extract was effectively inhibiting the monophenolase
and diphenolase activities of tyrosinase, suggesting its significant skin-lightening potential.
Active compounds of the extracts that might be responsible for the observed activities
include especially quercetin and its derivatives, e.g., rutin. Gallic acid, ellagic acid, and
kaempferol are also active ingredients.

Based on the biological activity profile, flower buds extract from R. platyacantha should
be considered as an effective active ingredient of skin lightening, anti-aging, and protecting
cosmetics. Further studies involving human skin cell lines and 3D tissue models should be
performed in order to provide additional data on the safety and cosmetic effectiveness of
the R. platyacantha extracts.

Supplementary Materials: The following are available online, Figure S1: The TIC chromatogram
recorded in the negative ionization modes for the R. platyacantha extracts R1–R5., Figure S2: The
TIC chromatogram recorded in the negative ionization modes for the fractions obtained from R.
platyacantha extract R3.
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A. Phenolic Composition and Biological Properties of Wild and Commercial Dog Rose Fruits and Leaves. Molecules 2020, 25, 5272.
[CrossRef]

http://doi.org/10.1186/s12906-019-2540-6
http://doi.org/10.1016/j.phrs.2016.10.029
http://doi.org/10.1080/19390211.2017.1369205
http://doi.org/10.1016/j.bmcl.2007.03.051
http://doi.org/10.1016/j.jpha.2017.12.005
http://doi.org/10.1016/j.jep.2020.113319
http://doi.org/10.1371/journal.pone.0159136
http://doi.org/10.1007/s11130-013-0394-5
http://doi.org/10.1016/j.jep.2008.05.006
https://ec.europa.eu/growth/sectors/cosmetics/cosing_en
http://doi.org/10.1089/jmf.2019.4610
http://doi.org/10.1007/s10068-019-00596-7
http://doi.org/10.1271/bbb.100702
http://doi.org/10.1089/jmf.2020.4705
http://doi.org/10.1186/s12906-018-2374-7
http://doi.org/10.1186/1752-153X-7-73
http://www.ncbi.nlm.nih.gov/pubmed/23618509
http://doi.org/10.1007/s00442-020-04710-z
http://www.ncbi.nlm.nih.gov/pubmed/32712874
http://doi.org/10.3390/ijms18061137
http://doi.org/10.1039/C8FO00206A
http://www.ncbi.nlm.nih.gov/pubmed/29561006
http://doi.org/10.1021/acs.jafc.9b01228
http://www.ncbi.nlm.nih.gov/pubmed/31244195
http://doi.org/10.1021/jf903515f
http://www.ncbi.nlm.nih.gov/pubmed/20038104
http://doi.org/10.1515/znc-2007-1-206
http://doi.org/10.3390/molecules25225272


Molecules 2021, 26, 2578 18 of 19

31. Sermukhamedova, O.; Sakipova, Z.; Ternynko, I.; Gemedzhieva, N. Representatives of motherwort genus (Leonurus SPP.):
Aspects of pharmacognostic features and relevance of new species application. Acta Poloniae Pharm.Drug Res. 2017, 74, 31–40.

32. Kartbaeva, E.B.; Donald, G.R.; Sakipova, Z.B.; Ibragimova, L.N.; Bekbolatova, E.N.; Ternynko, I.I.; Fernandes, P.D.; Boylan, F.
Antinociceptive activity of cistanche salsa stolons, growing in the republic of Kazakhstan. Rev. Bras. Farmacogn. 2017, 27, 587–591.
[CrossRef]

33. Di Ferdinando, M.; Brunettia, C.; Agatib, G.; Tattini, M. Multiple functions of polyphenols in plants inhabiting unfavorable
Mediterranean areas. Environ. Exp. Bot. 2014, 103, 107–116. [CrossRef]

34. Zillich, O.V.; Schweiggert-Weisz, U.; Eisner, P.; Kerscher, M. Polyphenols as active ingredients for cosmetic products. Int. J. Cosmet.
Sci. 2015, 37, 455–464. [CrossRef]

35. Pietta, P.G. Flavonoids as antioxidants. J. Nat. Prod. 2000, 63, 1035–1042. [CrossRef]
36. Wittgen, H.G.; van Kempen, L.C. Reactive Oxygen Species in Melanoma and Its Therapeutic Implications. Melanoma Res. 2007,

17, 400–409. [CrossRef]
37. Poljšak, B.; Dahamane, R. Free radicals and extrinsic skin aging. Dermatol. Res. Pract. 2012, 2012, 135206. [CrossRef]
38. Boukamp, P.; Petrussevska, R.T.; Breitkreutz, D.; Hornung, J.; Markham, A.; Fusenig, N.E. Normal keratinization in a sponta-

neously immortalized aneuploid human keratinocyte cell line. J. Cell Biol. 1988, 106, 761–771. [CrossRef]
39. Gomes, A.; Fernandes, E.; Lima, J.L.F.C. Fluorescence probes used fordetection of reactive oxygen species. J. Biochem. Biophys.

2005, 65, 45–80. [CrossRef]
40. Aldini, G.; Altomare, A.; Baron, G.; Vistoli, G.; Carini, M.; Borsani, L.; Sergio, F. N-Acetylcysteine as an antioxidant and disulphide

breaking agent: The reasons why. Free Radic. Res. 2018, 52, 751–762. [CrossRef]
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