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Abstract 

Background: Clinical decision support (CDS) tools built using adult data do not typically perform well for children. 
We explored how best to leverage adult data to improve the performance of such tools. This study assesses whether it 
is better to build CDS tools for children using data from children alone or to use combined data from both adults and 
children.

Methods: Retrospective cohort using data from 2017 to 2020. Participants include all individuals (adults and chil-
dren) receiving an elective surgery at a large academic medical center that provides adult and pediatric services. We 
predicted need for mechanical ventilation or admission to the intensive care unit (ICU). Predictor variables included 
demographic, clinical, and service utilization factors known prior to surgery. We compared predictive models built 
using machine learning to regression-based methods that used a pediatric or combined adult-pediatric cohort. We 
compared model performance based on Area Under the Receiver Operator Characteristic.

Results: While we found that adults and children have different risk factors, machine learning methods are able to 
appropriately model the underlying heterogeneity of each population and produce equally accurate predictive mod-
els whether using data only from pediatric patients or combined data from both children and adults. Results from 
regression-based methods were improved by the use of pediatric-specific data.

Conclusions: CDS tools for children can successfully use combined data from adults and children if the model 
accounts for underlying heterogeneity, as in machine learning models.
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Background
Clinical decision support (CDS) tools are increasingly 
being used to assist providers during routine clini-
cal care and for treatment decisions. While tools that 

are developed for specialized environments or specific 
populations often have better performance [1], there is 
a logistical cost to implementing and maintaining mul-
tiple models. The development of population-specific 
CDS tools requires significant additional effort for devel-
opment, implementation, training, and maintenance. 
Moreover, development of subgroup-specific CDS tools 
may not be analytically feasible due to the relatively small 
size of the data sets that would be used for development. 
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Therefore, there is a critical need to determine whether 
it is better to have multiple tools developed for specific 
patient populations, or more generalized tools that per-
form well—though perhaps not optimally—across multi-
ple populations and environments.

Pediatric patients are an important subgroup for which 
it may be necessary to develop specialized CDS tools. It is 
well recognized that children have different physiological 
profiles, risk factors, and event rates for different clini-
cal outcomes and adverse events [2–7]. Moreover, there 
are well documented differences in patterns of healthcare 
utilization and outcomes between adult and pediatric 
populations. Because many hospitals serve both pediatric 
and adult patients, it is necessary to determine whether 
CDS tools should be built specifically for different age 
groups versus for all patients. To date, the CDS tools that 
have been developed using adult data and then applied to 
children have not performed well [8–12]. Moreover, vari-
ous pediatric-specific CDS tools or risk indices have been 
developed to reasonable levels of success, particularly 
when using modern predictive techniques incorporating 
machine learning [13–17].

At the beginning of the COVID-19 pandemic, we were 
tasked with developing a CDS tool for hospital resource 
utilization after planned elective surgeries, including 
anticipated length of stay, discharge to a skilled nursing 
facility, intensive care unit (ICU) admission, require-
ment for mechanical ventilation) [18]. Since the start of 
the pandemic surgical leadership has used the CDS tool 
in conjunction with knowledge of the local COVID-19 
infection rates to determine whether to continue with or 
postpone an elective surgical case if the tertiary care hos-
pital were to become resource-constrained. The data are 
pulled directly from our Epic-based system into a data-
mart. An R-script generates the requisite predictions, 
which are then visualized within a Tableau dashboard. In 
order to deploy the CDS quickly, we designed our tool to 
operate across all age groups and implemented it within a 
Tableau dashboard that has been in use since June 2020. 
Since implementing the CDS, we have had the opportu-
nity to examine the applicability of the tool within the 
pediatric patient population. Herein, we directly compare 
the performance of two sets of CDS tools designed to 
predict post-surgical resource utilization: one trained on 
a mixed adult-pediatric data set, the other trained solely 
on pediatric data set. Additionally, we examine whether 
a machine-learning algorithm that is equipped to model 
heterogeneity (i.e., interactions of different characteris-
tics) is better suited to operate across patient populations 
than a model that cannot model these interactions. Over-
all, our results show that while children have different 
risk factors than adults, machine-learning approaches are 

well suited to modeling these heterogeneities in a mixed 
sample.

Methods
Data
Study setting
This study was conducted using data from the electronic 
health records (EHR) system at Duke University Health 
System, which consists of three hospitals – a large ter-
tiary care hospital and two community hospitals. Pedi-
atric surgeries are almost exclusively performed at the 
tertiary care center. Our institution has used an inte-
grated EPIC system since 2014, which covers the three 
hospitals in our system as well as a network of over 100 
primary care and outpatient specialty clinics.

Cohort
We abstracted patient and encounter data for all elec-
tive surgeries from January 1, 2017, to March 1, 2020 
(i.e., prior to the COVID-19 pandemic). There is no for-
mal specification within our EHR for elective surgery. 
Instead, we included procedures coded with the admis-
sion source “Surgery Admit Inpatient.” This code corre-
sponds to instances where the patient is admitted directly 
to the hospital for surgery rather than via, for example, 
via the emergency department. Additionally, we excluded 
procedures taking place on a Saturday or Sunday and 
any procedures that were not marked as completed. We 
defined a pediatric patient as any patient less than or 
equal to 18 years old on the date of their surgery. Patients 
were considered adults if they were 19  years of age or 
older at the time of surgery. We developed two cohorts 
for the purposes of model development. The “combined” 
cohort included all patients, regardless of age. The “pedi-
atric” cohort excluded patients 19 years of age or older.

Predictor variables
We abstracted patient-level predictor variables known 
prior to the time of surgery, including patient demo-
graphics, service utilization history, medications 
prescribed in the past year, comorbidities, and surgery-
specific factors. We abstracted pre-surgical CPT codes 
and grouped them by specialty. We retained all codes 
that had at least 25 total instances, resulting in 284 
unique procedure groupings. A total of 53 unique pre-
dictor variables (with multiple levels each) were con-
sidered (Additional file  1: Tables  1 and 2). For binary 
variables such as comorbidities and medications, this 
list was winnowed such that each model used pre-
dictors present in at least 0.5% of cases. These binary 
predictors were calculated separately for the com-
bined and pediatric cohorts. The model based on the 
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combined cohort used 48 predictor variables, while the 
model based on the pediatric cohort used 34 predictor 
variables.

Outcome variable definition
In the initial development of the CDS tool, we were 
tasked with predicting four outcomes related to hos-
pital resource utilization: overall length of stay, admis-
sion to the intensive care unit (ICU), requirement for 
mechanical ventilation, and discharge to a skilled nurs-
ing facility.

Predictive model algorithms
A predictive model may not transport well from one 
patient group to another if each group has different 
underlying risk factors for the outcomes of interest. 
Analytically, this would mean that there is an interac-
tion between a demographic characteristic (i.e., age) 
and a risk factor (e.g., weight). To assess this hypoth-
esis, we considered three modeling approaches. In our 
initial work we used the Random Forests (RF) algorithm 
[19]. RF is a machine-learning algorithm that con-
sists of an aggregation of decision trees; one feature of 
decision trees is that they are well suited for modeling 
interactions. The second approach was LASSO logistic 
regression. LASSO is an extension of logistic regression 
that performs an implicit variable selection to gener-
ate more stable predictions [20]. Like typical regression 
models, LASSO does not explicitly model interactions. 
Our final model was also a LASSO model to which we 

explicitly added an interaction term between age and 
each predictor.

Analysis workflow
Our overall workflow is shown in Fig.  1. We randomly 
divided the full dataset into training (two-thirds) and 
testing (one-third) sets. From the training set, we cre-
ated two analytic training cohorts: a combined dataset 
of adults and children and a subset of children alone. For 
the testing set, we only used children to assess how the 
different models perform in a pediatric population. We 
fit the models on the training data using cross-validation 
to choose optimal tuning parameters and applied the 
best model to the independent test data. Overall, we fit 
a total of 12 models that combined two outcomes, two 
cohorts (combined and pediatric), and three modeling 
approaches. To assess performance during the COVID 
period, we abstracted data on pediatric encounters 
March 2020 to January 2022.

Model metrics
For each of the 12 models we calculated global perfor-
mance metrics, including the area under the receiver 
operator characteristic (AUROC) and the calibration 
slope. We used a bootstrap to calculate 95% confidence 
intervals and a permutation test to assess differences 
between the model AUROCs. To gain insights into the 
differences between the combined and pediatric models, 
we used the RF model fit to identify the top important 
variables within each model.

Fig. 1 Workflow for training and validating the predictive moddels
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Decision rule analysis
We assessed the impact each model would have on a 
generated decision rule. As in our initial CDS tool, we 
transformed the predicted probabilities into discrete 
categorizations of low, medium and high risk. The lower 
cutoff was calibrated in all models to correspond to a 
sensitivity of 95%, such that 95% of the positive training 
data fell into the medium- or high-risk categories and 5% 
into the low-risk category. This focus on sensitivity was 
intended to overestimate rather than underestimate risk 
in assigning categories. The upper cutoff was set to maxi-
mize the utility of the high-risk category, thereby creating 
a model with a large positive predictive value (PPV = true 
positives/predicted positives) while still encompassing a 
significant portion of the data. Because of the large dif-
ference in baseline probability between ICU admission 
and requirement for mechanical ventilation, this thresh-
old was set separately for each outcome. We determined 
that an 80% PPV was optimal for models predicting ICU 
admission and a 50% PPV was optimal for models pre-
dicting requirement for mechanical ventilation.

All analyses were performed in R version 3.6.3. The 
ranger and glmnet packages were used for the RF and 
LASSO models, respectively [21, 22]. This work was 
declared exempt by the DUHS IRB.

Results
Cohort description
We abstracted data on a total of 42,209 elective surger-
ies, of which 39,547 (94%) were for patients 19  years of 
age and older and 2,662 (6%) patients 18 years of age or 
younger. Table  1 presents patient information strati-
fied on age. As expected, there were meaningful differ-
ences (SMD > 0.10) for almost all patient characteristics, 
highlighting the differences between adult and pediatric 
patients. Table  2 shows surgery characteristics strati-
fied on age, similarly showing meaningful differences in 
resource utilization, severity, and procedure type.

Predictive model performance
We built 6 models for each of the two clinical out-
comes of interest – ICU admission and requirement for 
mechanical ventilation. After building models based on 
their respective training sets (n = 27,182 for combined 
adult and pediatric patients; n = 1,815 for pediatric 
patients only), we evaluated all models against the pediat-
ric testing set (n = 894; results shown in Table 3). The best 
prediction model for ICU admission had an AUROC of 
0.945 (95% CI: 0.928, 0.960) in the test data while the best 
model for requirement for mechanical ventilation had an 

AUROC of 0.862 (95% CI: 0.919, 0.902). ROC plots are 
shown in Additional file 1: Fig. 1a and b. There were sig-
nificant differences in performance between the different 
models when using the combined adult/pediatric data. In 
predicting ICU admission and requirement for mechani-
cal ventilation, the RF models performed better over-
all than the LASSO models (ICU admission: p < 0.001; 
requirement for mechanical ventilation: p < 0.023). Per-
formance was not significantly different between the RF 
models using combined adult/pediatric data and pedi-
atric data alone (ICU admission: p = 0.886; requirement 
for mechanical ventilation: p = 0.112). Conversely, the 
performance of the pediatric LASSO models was signifi-
cantly better than LASSO models developed with com-
bined adult/pediatric data (ICU admission: p < 0.002; 
requirement for mechanical ventilation: p < 0.028). Incor-
poration of explicit age-based interactions in the LASSO 
model attenuated differences between models developed 
with combined adult/pediatric data and pediatric data 
alone, and there was only a significant difference in per-
formance for models predicting ICU admission (ICU 
admission p < 0.004; requirement for mechanical venti-
lation p = 0.077). Testing the model on 1428 pediatric 
encounters during the COVID period yielded very simi-
lar performance (Additional file 1: Table 3).

Decision rule performance
We assessed the accuracy of decision rules for each 
model using the pediatric test data (Fig.  2). We set the 
desired sensitivity of the low threshold at 95%. We set 
the PPV of ICU admission and requirement for mechani-
cal ventilation at 80% and 50%, respectively. While the 
RF models showed no difference in global performance 
(based on AUROC), there were slight differences in the 
performance of a decision rule (Table 3). Importantly, the 
models developed using only pediatric data were closer 
to the desired decision rule metrics than models devel-
oped using combined adult/pediatric data for prediction 
of both ICU admission and requirement for mechanical 
ventilation. Of note, the models trained on combined 
adult/pediatric data were more sensitive than the models 
trained on pediatric data alone for both ICU admission 
(0.979 vs. 0.935) and requirement for mechanical ventila-
tion (0.976 vs. 0.941).

Variable importance
While RF does not generate beta coefficients, this 
machine learning approach can identify “important” 
predictors, or predictors that play a role in achieving the 
prediction accuracy of the model. Table 4 shows the top 
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Table 1 Characteristics of the patient cohort

Patient characteristics Pediatric patients (< = 18 years of age) 
N = 2792

Adult patients (> = 19 years of age) 
N = 39,417

Standardized 
difference

Age (Mean, SD) 8.26 (6.25) 61.0 (14.1) 4.822*

Sex (N, %)

 Male 1433 (51.3%) 18,452 (46.8%) 0.090

 Female 1359 (48.7%) 20,965 (53.2%)

Race (N, %)

 Non-Hispanic white 1555 (55.7%) 29,219 (74.1%) 0.501*

 Non-Hispanic black 615 (22.0%) 7662 (19.4%)

 Hispanic 265 (9.5%) 728 (1.8%)

 Other 357 (12.8%) 1808 (4.6%)

Height (Mean, SD) 48.1 (15.8) 66.9 (4.15) 1.626*

Weight (Mean, SD) 1260 (1010) 3110 (809) 2.021*

BMI (N, %)

 Underweight 1417 (50.8%) 366 (0.9%) 1.973*

 Normal 981 (35.1%) 8377 (21.3%)

 Overweight 176 (6.3%) 12,639 (32.1%)

 Obese 188 (6.7%) 18,013 (45.7%)

 None 30 (1.1%) 22 (0.1%)

Previous healthcare utilization (Mean, SD)

 Hospital encounters 0.602 (1.49) 0.276 (0.749) 0.277*

 Ambulatory encounters 13.9 (15.8) 17.2 (18.8) 0.192*

 Emergency department encounters 0.219 (1.92) 0.204 (0.970) 0.009

Comorbidities (Top 15: N, %)

 Cardiovascular disease 870 (31.2%) 23,713 (60.2%) 0.609*

 Psychiatric disease 614 (22.0%) 19,117 (48.5%) 0.578*

 Hypertension 152 (5.4%) 17,722 (45.0%) 1.022*

 Diabetes 20 (0.7%) 2973 (17.7%) 0.614*

 Atherosclerotic CVD 2 (0.1%) 5133 (13.0%) 0.542*

 Coronary artery disease 1 (0.0%) 4589 (11.6%) 0.511*

 COPD 13 (0.5%) 2764 (7.0%) 0.350*

 AFIB 0 (0.0%) 2405 (6.1%) 0.360*

 Congestive heart failure 16 (0.6%) 1551 (3.9%) 0.228*

 Peripheral vascular disease 12 (0.4%) 1511 (3.8%) 0.237*

 Diabetic renal 3 (0.1%) 1375 (3.5%) 0.257*

 CVA/TIA 56 (2.0%) 963 (2.4%) 0.030

 Liver disease 9 (0.3%) 938 (2.4%) 0.179*

 Pulmonary hypertension 54 (1.9%) 692 (1.8%) 0.013

 End-stage renal disease 13 (0.5%) 496 (1.3%) 0.086

Concurrent medications (Top 15: N, %)

 Statins 3 (0.1%) 14,408 (36.6%) 1.068*

 Antiplatelet 139 (5.0%) 13,383 (34.0%) 0.786*

 Opioid 128 (4.6%) 11,768 (29.9%) 0.710*

 Diuretics 175 (6.3%) 11,116 (28.2%) 0.607*

 Hypertension medication 126 (4.5%) 10,394 (26.4%) 0.635*

 Beta blocker 46 (1.6%) 9757 (24.8%) 0.726*

 Anti-arrhythmic 39 (1.4%) 8577 (21.8%) 0.671*

 ACE inhibitor 65 (2.3%) 7935 (20.1%) 0.588*

 Calcium channel blocker 47 (1.7%) 7822 (19.8%) 0.613*

 Angiotensin receptor blocker 14 (0.5%) 6320 (16.0%) 0.588*

 Anticoagulant 32 (1.1%) 2976 (7.6%) 0.318*

 Insulin 8 (0.3%) 2859 (7.3%) 0.372*

 Oral diabetic 0 (0.0%) 2592 (6.6%) 0.375*

 Nitrates 0 (0.0%) 2031 (5.2%) 0.330*

 Digoxin 31 (1.1%) 122 (0.3%) 0.095
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10 variables identified by the RF models for both com-
bined adult/pediatric and purely pediatric cohorts. All 
four models included age, height, weight, previous ambu-
latory encounters, specialty, and service among the top 
predictors. Notably, the important predictors for the dif-
ferent models varied with respect to the specific surgery 
CPT code, comorbidities, and medication usage.

Discussion and conclusion
We sought to assess the performance of CDS tools to pre-
dict resource utilization after pediatric elective surgeries 
using either combined adult/pediatric data or pediatric 
data alone. Our results indicate that models using a tra-
ditional regression-based method exhibit better perfor-
mance if they are built with cohort specific pediatric data 

Table 1 (continued)
* Standardized difference greater than 0.10 indicates meaningful difference between cohorts

Table 2 Elective surgery characteristics and resource utilization

* Standardized difference greater than 0.10 indicates meaningful difference between cohorts

Surgery characteristics Pediatric patients 
(< = 18 years of age) 
N = 2792

Adult patients 
(> = 19 years of age) 
N = 39,417

Standardized 
difference

Post-surgery resources

 Hospital length of stay (Mean, SD) 5.58 (13.8) 3.44 (4.63) 0.208 *

 ICU admission (N, %) 1020 (36.5%) 5402 (13.7%) 0.546*

 Required mechanical ventilation (N, %) 241 (8.6%) 1388 (3.5%) 0.215*

Procedure severity

 Minor 181 (6.5%) 1515 (3.8%) 0.754*

 Moderate 233 (8.3%) 8251 (20.9%)

 Major 1012 (36.2%) 22,500 (57.1%)

 None 1366 (48.9%) 7151 (18.1%)

Top 10 Adult surgical procedures (by Primary CPT Code)

 Total knee arthroplasty (27,447) 0 (0.0%) 3539 (9.0%) 0.932*

 Total hip arthroplasty (27,130) 9 (0.3%) 3254 (8.3%)

 Total shoulder arthroplasty (23,472) 1 (0.0%) 1226 (3.1%)

 Anterior arthrodesis incl. cervical discectomy below C2 (225,510) 2 (0.1%) 1160 (2.9%)

 Microsurgical w/ microscope (69,990) 191 (6.8%) 921 (2.3%)

 Lumbar arthrodesis w/ posterior technique (22,633) 5 (0.2%) 871 (2.2%)

 Anterior interbody arthrodesis incl. minimal discectomy (22,558) 2 (0.1%) 780 (2.0%)

 Autologous Blood Collection (86,891) 28 (1.0%) 747 (1.9%)

 Laparoscopy w/ gastric bypass and roux-en-Y (43,644) 4 (0.1%) 736 (1.9%)

 Intervertebral insertion of biomechanical device (22,853) 0 (0.0%) 651 (1.7%)

 Other 2550 (91.3%) 25,532 (64.8%)

Top 10 pediatric surgical procedures (by primary CPT code)

 Microsurgical w/ microscope (69,990) 191 (6.8%) 921 (2.3%) 0.836*

 Posterior arthrodesis for spinal deformity, 7–12 segments (22,802) 190 (6.8%0 114 (0.3%)

 Posterior spinal instrumentation, > 13 segments (22,844) 118 (4.2%) 121 (0.3%)

 Fluoroscopy for placement of central venous access device (77,001) 108 (3.9%) 8 (0.0%)

 Laparoscopic gastrostomy without construction of gastric tube (43,653) 60 (2.1%) 7 (0.0%)

 Remove and replace cerebrospinal fluid shunt (62,258) 58 (2.1%) 24 (0.1%)

 Negative pressure wound therapy (97,605) 50 (1.8%) 179 (0.5%)

 Subtrochanteric osteotomy with internal fixation (27,165) 43 (1.5%) 3 (0.0%)

 Other craniofacial/maxillofacial (21,299) 42 (1.5%) 0 (0.0%)

 Reimplant single ureter (50,780) 42 (1.5%) 5 (0.0%)

 Other 1890 (67.7%) 38,035 (96.5%)
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than with combined adult/pediatric data. In contrast, 
models using a machine learning method (RF) exhibited 
better performance when built using combined adult/
pediatric data than with pediatric data alone. These find-
ings suggest that machine learning-based models may be 
able to more appropriately account for key differences 
between pediatric and adult patient populations. More-
over, these findings have important implications for the 
development of CDS tools for different populations.

CDS tools are increasingly used to help guide clinical 
care and decision making; however, very few of these 
tools are developed specifically for pediatric populations 
[23]. In our experience, data from pediatric patients are 
frequently removed from the datasets used to develop 
CDS tools. Moreover, datasets for specific clinical sub-
populations, such as pediatric patients, are frequently 
not large enough to train the models that underlie these 
tools. Further, it is valuable to be able to use a single 
CDS across multiple patient populations. For example, 
while tools exist for hospital readmission for specific 
sub-populations [24, 25], we have found it easier to use 
a generalized hospital readmission risk score at our own 
institution [26]. Being able to leverage data from both 
adult and pediatric patients in the development of CDS 
tools could facilitate the development of CDS tools that 
perform well among pediatric patient populations.

Though we found that CDS tools based on combined 
adult and pediatric data perform well, this does not imply 
that children and adults have the same risk factors. Other 
groups have found that models trained solely on adults 

do not translate well to children [8], including tools for 
comorbidity indices [9], emergency medical services 
(EMS) dispatch triage protocols [10], mortality scores 
[11], and surgery duration [12]. Similarly, we found that 
models built with regression-based methods using com-
bined adult and pediatric data did not perform as well 
within the pediatric population as a model built on pedi-
atric data alone. Importantly, a machine learning method 
that included interaction terms for age improved the 
transportability of a regression-based model developed 
with combined adult and pediatric data to a pediatric 
population. These findings are supported by the exami-
nation of the top predictor variables from the models 
using combined adult and pediatric data versus pediatric 
data alone, in which adult and pediatric populations were 
found to have different important predictors for the clini-
cal outcomes of interest. Our findings demonstrate that 
accurately capturing and modeling differences associated 
with clinical sub-populations is a critical component in 
developing transportable CDS tools.

Our study has several strengths as well as some limi-
tations. We leveraged a large dataset from a diverse 
patient population to develop and test multiple mod-
eling approaches. However, as a single center study, 
model development and performance are dependent 
on local context, including composition of the local 
patient population, types of data commonly captured 
within the EHR, and the clinical scenario for which the 
CDS tool is being developed. Moreover, study results 
are likely to be dependent on the relative size of the 

Table 3 Model performance for each algorithm and outcome

ICU: Intensive care unit; AUROC: area under the receiver operator characteristic; PPV: positive predictive value

[Bracketed values represent 95% confidence intervals]

ICU Ventilator

Combined Pediatric Combined Pediatric

Random forests

 AUROC 0.942 [0.925, 0.958] 0.945 [0.928, 0.960] 0.862 [0.819, 0.902] 0.851 [0.807, 0.893]

 Calibration 1.414 [1.203, 1.701] 1.374 [1.161, 1.642] 0.935 [0.778, 1.131] 0.894 [0.743, 1.090]

 Low sensitivity 0.988 0.967 0.988 0.953

 High PPV 0.865 0.856 0.355 0.461

LASSO

 AUROC 0.911 [0.890, 0.930] 0.930 [0.911, 0.949] 0.821 [0.765, 0.872] 0.860 [0.820, 0.898]

 Calibration 0.926 [0.807, 1.082] 1.071 [0.946, 1.245] 0.673 [0.527, 0.848] 0.826 [0.680, 0.999]

 Low sensitivity 0.979 0.935 0.976 0.941

 High PPV 0.838 0.786 0.335 0.434

LASSO interactions

 AUROC 0.917 [0.897, 0.936] 0.932 [0.911, 0.950] 0.838 [0.795, 0.879] 0.860 [0.817, 0.898]

 Calibration 0.980 [0.853, 1.146] 0.993 [0.871, 1.166] 0.813 [0.671, 0.9876] 0.952 [0.789, 1.138]

 Low sensitivity 0.976 0.885 0.976 0.918

 High PPV 0.845 0.769 0.346 0.418
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pediatric population available for model development. 
It is possible that a health system with a high volume of 
pediatric surgeries may have a pediatric population that 
is large enough to develop a CDS tool specific to that 
population. Our findings are also specific to CDS tools 
designed to predict post-surgical resource utilization 

and may or may not be generalizable to other CDS 
types. Therefore, we do not view these as definitive 
results that model developers should always combine 
adult and pediatric data. Instead, our study provides an 
overall approach that can be used to develop and evalu-
ate different models for CDS tools.

Fig. 2 Performance of random forests cutpoints on test data. Performance of a decision rule for each outcome and cohort. The pediatric model is 
better able to obtain the nominal target of 95% sensitivity for medium/high risk patients along with the desired positive predictive value
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Overall, our findings demonstrate that while adults 
and children have different risk factors and character-
istics that are important for predicting clinical out-
comes, appropriate machine learning techniques can 
generate CDS tools that effectively model outcomes 
for both pediatric and adult populations. Importantly, 
this finding suggests that even for clinical outcomes for 
which the relevant pediatric patient population may be 
small, models may be developed using data from adults, 
provided that the model accounts for the interaction 
between age and important patient- and procedure-
level factors. Further, these findings indicate that there 
are additional opportunities and clinical scenarios that 
may be amenable to the development and application of 
CDS tools.
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