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ABSTRACT: An easy naked-eye detection technique for mercuric ions
in water using silanized quantum dots is demonstrated. Cadmium
selenide quantum dots were synthesized and rendered water soluble by
silica overcoating. The quantum dot emission was instantly turned off
by the mercuric ions in the analyte, enabling visual detection. The
emission quenching was associated with a concomitant bathochromic
shift, both in the absorption and emission profiles. The underlying
mechanism is a permanent surface modification of quantum dots by
mercuric ions, altering the electronic structure and, in turn, the
photophysical properties. The results confirmed the potential of this
simple system to be customized for on-site visual detection of mercury contamination in water bodies, biological fluids, and soil with
high selectivity and sensitivity.

■ INTRODUCTION
Mercury (Hg) is one of the top ten pollutants listed by the
World Health Organization (WHO), as it is a threat to any
form of life on earth in either of its variants�elemental
mercury, inorganic mercury, or organic mercury.1−3 Exposure
to mercury causes irreversible toxic effects, even in developing
fetuses, in the form of neurotoxicity and genotoxicity.4−6

Through anthropogenic activities over decades, a dangerous
hike in mercury concentrations�about 450% above natural
levels in the atmosphere�is reported in comparison with the
statistics before 1450 AD.7−9 According to the United Nations’
global mercury assessment, the major contributor to freshwater
mercury contamination is artisanal and small-scale gold mining
industries. When effluents from waste treatment, ore mining,
and processing, and the energy sector add to it, the situation
becomes more tragic for surface marine waters, the main
basement of mercury in the cycle. Here, the organic mercury is
accumulated in fish and hence in their consumers, both wildlife
and humans.10−12 Once entered into the body in any of its
forms, mercury ends up mainly in the lungs, kidneys, and
bloodstream, causing damage to all vital organs and the
brain.13

Determination of mercury content is challenging due to its
high volatility, even at ambient temperatures, and demands
sophisticated approaches like gas chromatography,14 neutron
activation analysis,15 atomic absorption spectroscopy,16 cold
vapor atomic fluorescence spectrometry,17 cyclic voltamme-
try,18 microcantilevers,19 inductively coupled plasma mass
spectrometry,20 surface-enhanced Raman spectroscopy,21

microfluidic system,22 etc. These methods involve multistep
sample preparation and/or advanced instrumentation, the
hands of trained personnel, and moreover time-consuming
experimental procedures. Besides, a compromise between the
convenience of on-site testing and its economic viability while
relying on these instrumental methods is still a bottleneck.
Although many organic fluorophores have been reported with
very low detection limits, developing a rapid, cheap, and simple
reusable sensor for field detection of mercury ions, especially in
water bodies at a ppb level remains a challenge.23,24

Nanoparticles are proven to be the best building blocks for
making low-cost and quick response chemical sensors/
chemodosimeters with high specificity for heavy metal
ions.25−32 The detection response is very easy to read out as
the signaling transduction is usually via a colorimetric response
or an emission switch on/off on interaction with the analyte.
The mechanism can be either energy transfer,33 electron/hole
transfer,34 inner filter effect,35 agglomeration,36 ion exchange
or complex formation with analytes,37 etc. Nanoparticles are
also ready to go for integration with analytical methods like
cyclic voltammetry, surface-enhanced Raman spectroscopy,
paper-based colorimetric devices, etc., which makes them more
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acceptable compared to organic fluorophores in designing
sensors with high specificity and a low detection limit.38−42

Although a variety of nanomaterials are studied and reported,
quantum dots stand alone due to their unique characteristics
such as sharp emission with high quantum yield, robustness,
and stability, which are the most desirable properties for a
signaling center.43−50

In the present study, we demonstrate a naked eye, rapid, and
selective detection of mercuric ions in water using the QD
emission “switch-off” strategy. To the best of our knowledge,
this is the first demonstration of mercuric ion sensing in water
using silanized cadmium selenide (CdSe) QDs. Hitherto, many
groups have successfully come up with mercury detecting
systems based on quantum dots, with detection limits down to
nanomolar. Most of them are designed via surface modification
with suitable molecules like proteins,51 nucleotides,52 DNA,53

polymers,54 amino acids,55 etc., which are often labor- and
cost-intensive as well as time consuming. In this work, we have
used a label-free detection probe where no surface
modification or functionalization protocols are necessary.
More importantly, the presence of mercuric ions, even in the
presence of other interfering ions, can be viewed just by mixing
QDs and water samples on a glass slide and illuminating under
a UV lamp.

■ RESULTS AND DISCUSSION
Water-soluble, luminescent silanized cadmium selenide
quantum dots (QDs) were prepared by following a reverse
microemulsion method as described elsewhere.56,57 QDs used
in the present study showed the first excitonic absorption peak
at ∼575 nm and the emission maximum centered at 582 nm
(blue trace in Figures 1A and 2A) in phosphate buffered saline

(PBS). The stability of QDs under various pH conditions and
the ionic strength of the medium were examined systematically
and showed excellent shelf life, even for months in the
suspension phase. The details of characterization and stability
studies are provided in the Supporting Information.
Experiments were conducted by adding aqueous solutions of

metal ion salts into a silanized QD suspension (0.16 μm in PBS
buffer pH 7.3) and monitoring absorption and emission
spectral properties systematically as a function of cation
concentration. We observed an instantaneous and stepwise
decrease in the emission intensity of QDs with an increase in
the concentration of mercuric ions (Figure 1A). The emission
was completely shut off at ∼14 μM loading of mercuric ions.

Surprisingly, this permanent shut off in QD emission was so
specific to mercuric ions as the other common metal ions like
Li+, Na+, K+, Mg2+, Ca2+, Ba2+, Mn2+, Fe2+, Co2+, Ni2+, Cu2+,
Zn2+, Cd2+, Al3+, and Pb2+ left an unaltered emission intensity
even at a very high loading of about 100 μM (Figure 1B).
It is quite noticeable that both the absorption and emission

profiles were affected while interacting with mercuric ions
(Figures 1A and 2A). Emission intensity was instantly and
permanently “turned off”, with a concomitant spectral
broadening on successive additions of mercuric ions. More
importantly, both absorption and emission maxima showed a
gradual red shift, to an extent of 25 nm, while adding analytes
up to 14 μM, where the emission was completely quenched.
The bathochromic shift in the absorption spectrum accom-
modated a mere shift in excitonic positions, keeping the overall
features intact. Furthermore, to probe the mode of interaction
between the analyte and QD, the exciton lifetime of QD was
measured as a function of analyte concentration (Figure 2B).
QDs showed a triexponential exciton decay characteristics with
an average lifetime of 18 ns, which was remarkably reduced to
7 ns (∼70% loss) in the presence of mercuric ions (Table S1).
Changes in absorption excitonic position along with a
considerable change in exciton decay lifetime indicated a
ground state interaction of mercuric ions with QDs, which
modified the electronic band structure.
It is possible to account for the redshift in the excitonic

transition in the absorption spectrum of QDs in terms of (i) an
increase in the overall size of the QDs due to Ostwald’s
ripening58 or (ii) a metal ion-induced aggregation of QDs.59,60

These possibilities can also result in emission quenching and
spectral broadening as the QD electronic energy levels are
influenced in either case. A high-resolution electron micro-
scopic (HRTEM) study in the absence and presence of
mercuric ions was done to resolve these assumptions (Figure
3). HRTEM images showed that the average size of QD as well
as its distribution remained unaffected in presence of mercuric
ions. It rules out any chance of an increase in QD size and/or
metal ion induced aggregation. Further, any turbidity on
introducing mercuric ions, even at higher concentrations was
not observed for QD suspension, which could be observable if
a metal ion induced aggregation was prevalent. Also, a
possibility of hole scavenging is ruled out, since mercuric
ions cannot be easily oxidized.
The QD emission quenching along with a bathochromic

shift in QD absorption and emission maxima in the presence of
mercuric ions can be explained based on the interaction of
metal ions with QDs, leading to the generation of new trap
states with low-lying energy levels. The bathochromic shift in

Figure 1. (A) Emission spectra of silanized CdSe QDs (0.16 μM,
PBS, pH 7.3) in the presence of mercuric ions (0−14 μM). (B)
Selectivity of Hg2+ compared to other cations (∼100 μM). Inset
photograph showing visual detection under a UV lamp: A1-Li+, A2-
Na+, A3-K+, A4-Mg2+, B1-Ca2+, B2-Ba2+, B3-Mn2+, B4-Fe2+, C1-Co2+, C2-
Ni2+, C3-Hg2+, C4-Cu2+, D1-Zn2+, D2-Cd2+, D3-Al3+, and D4-Pb2+.

Figure 2. (A) Absorption spectra of silanized CdSe QDs (0.16 μM,
PBS, pH 7.3), in presence of Hg2+ (0−14 μM), excited at 480 nm.
(B) Corresponding change in exciton decay lifetimes. Excited at 441
nm. Inset confirms a considerable decrease in the average exciton
lifetime on interaction with mercuric ions.
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the first excitonic position of the QD absorption spectrum on
adding mercuric ions (Figure 2A), corresponds to a reduction
in the energy gap of QDs from 2.16 to 2.07 eV. This can be
attributed to the generation of new energy levels close to the
valence and conduction band edges. Weller and co-workers
have earlier reported a red shift in the excitonic absorption
peak and a reduction in band edge emission intensity in the
case of cadmium sulfide (CdS) QDs on the addition of
mercuric ions. This is ascribed to the formation of quantum
sized HgS on the CdS surface, which alters the electronic
structure of QDs by generating new nonradiative decay
channels having lower energy states.61−63 Similar surface
modifications in the case of cadmium telluride (CdTe) QDs
were reported by Rogach and co-workers, where mercuric ions
react with the QD surface, leading to the formation of
quantum sized HgTe.64 Extending the same chemistry to the
present observation, mercuric ions are expected to react with
the CdSe QDs surface, leading to the formation of quantum-
sized HgSe on the QD surface, opening a new low energy
nonradiative channel for exciton decay.

+ ++ +n(CdSe) Hg Cd HgSe Cdn n
2

1
2

The red shift in absorption and emission maxima and
concomitant broadening of the emission profile can be thus
attributed to the formation of HgSe on the QD surface. It is
also supported by the fact that the solubility product of HgSe

(−log Ksp = 65) is lower compared to that of CdSe (−log Ksp =
35).65

In the absence of HgSe formation, the excitons formed in
CdSe QDs underwent the usual radiative recombination.
Mercuric ions modified the QD surface and altered the
electronic structure, which resulted in (i) a smaller band gap,
as evident from the considerable redshift in the excitonic
absorption peaks and emission maximum and (ii) crystal
defects like shallow and deep trap states, which broadened the
emission spectrum. This assumption is well supported by a
substantial reduction in the average lifetime, from 22 to 7 ns, in
the presence of mercuric ions, due to the opening of new
depopulation channels in the form of defects (Figure 4).
Obviously, the cation exchange reaction is plausible only if

the mercuric ions directly interact with the QD surface,
crossing the siloxane shell. HRTEM images showed the
presence of a very thin siloxane shell (∼1.5 nm, Figure 5C)
formed by hydrolysis and condensation of aminopropyl silane
(APS). The structural backbone of silica shell is a three-
dimensional network of a dimer formed by APS through a
siloxane bond, with one amino group anchoring on the QD
surface while the other one projecting toward the periphery.
From a simple ball and stick model, the overall length of this
dimer is approximately estimated as 1.5 nm (Figure 5D).
Moreover, the porosity of the siloxane shell is enough to
facilitate the pass through of mercuric ions, as reported in the

Figure 3. (A) Schematic representation of various possibilities that leads to emission quenching of QDs, while interacting with Hg2+ ions. HRTEM
images of silanized QDs: (B) in absence of mercuric ions. (C) After adding Hg2+. Neither an increase in size or aggregation is observed.
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case of silica over coated CdS QDs studied by Iwasaki et
al.66−68

The specificity of the QD probe toward mercuric ions was
further confirmed by conducting emission quenching studies in
the presence of other probable metal ions in water. QD
dispersion was initially loaded with a very high amount of
metal ion salts (Li+, Na+, K+, Mg2+, Ca2+, Ba2+, Mn2+, Fe2+,
Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Al3+, Pb2+; ∼90 μM each). The
decrease in the emission intensity was found to be negligible
(∼10%; trace “b” in Figure 5A). But the addition of mercuric
ions (8 μM) to this QD�metal ions pool resulted in a
substantial reduction in the luminescence intensity of QDs
(trace “c” in Figure 5A). It clearly indicated the possibility of
using QDs for the selective detection of mercuric ion
contamination in raw water, without the aid of any
sophisticated instruments but with a handheld UV lamp
(Figure 5B and the video link provided in the Supporting
Information). The corresponding limit of detection (LOD)
was estimated as 1.5 ppm (according to the 3σ IUPAC
definition).69

■ CONCLUSIONS
We have demonstrated the use of QDs in the selective
detection of mercuric ions in water by an instant emission
switch off, even in the presence of interfering metal ions, with a
LOD down to 1.5 ppm. The photophysical properties of QDs
were dramatically influenced by mercuric ions: a bathochromic
shift in the absorption and emission spectra along with a
decrease in the luminescence intensity were observed. It is
anticipated that the mesoporous, thin silica shell is permeable
to mercuric ions, allowing interaction with the CdSe core
surface. The spectral changes are attributed to the formation of
quantum-sized HgSe on the CdSe surface. In short, silanized
QDs open up an easy fluorometric method for the naked eye
detection of mercuric ions in the presence of other interfering
metal ions, without the aid of any specialized instruments. This
straightforward technique is customizable for the on-site
analysis of real samples from water bodies, biological systems,
and soil to visually identify mercuric ions without cross-
sensitivities, simply with the help of a hand-held UV lamp.

■ MATERIALS AND METHODS
The electronic absorption spectra were recorded on a
Shimadzu Model UV-3101 or a 2401 PC UV−vis−NIR
scanning spectrophotometer; emission spectra were collected
using a SPEX-Fluorolog F112X spectrofluorimeter, and
photoluminescence lifetimes were measured using an IBH
Picosecond single photon counting system with an excitation
source of 440 nm (pulse width <200 ps), and luminescence
decay profiles were deconvoluted using IBH data station
software V2.1. Fourier transform infrared (FTIR) studies were
performed using a Shimadzu IR Prestige-21 FTIR spectrom-
eter. X-ray diffraction patterns were recorded using the Philips
X’Pert Pro, X-ray diffractometer with Cu Kα radiation (1.5406
Å) and spectra were analyzed using X’Pert Highscore software.
For HRTEM studies, a drop of nanoparticle solution was
placed on a carbon-coated Cu grid, and the solvent was
allowed to evaporate. Specimens were imaged on a FEI Tecnai
G2 S-TWIN 300 kV high-resolution transmission electron
microscope. Melting points were determined on a Mel-Temp
II melting point apparatus.
All the spectroscopic studies were carried out at ambient and

identical conditions (unless specified) where the QD
concentration was in a micro molar (∼0.17 μM) range and
PL spectra were collected by exciting at 450 nm (OD ≈ 0.05)
for all samples. Also, we have accounted for the small dilution
effect (<2%) by performing control experiments. Experiments
were performed using spectroscopic grade solvents, double
distilled/deionized water, and PBS (pH 7.3). Reagents used
were purchased from Aldrich, Merck, and Fluka and used as
such.

■ EXPERIMENTAL SECTION
Synthesis of TOPO-Capped CdSe QDs. A reaction

mixture containing cadmium oxide (0.067 g, 0.52 mM),
dodecylamine (3.8 g, 20.7 mM), trioctylphosphine oxide (2.7
g, 6.9 mM), and tetradecylphosphonic acid (0.40 g, 1.4 mM)
was heated to 300 °C until cadmium oxide dissolved
completely to produce an optically clear solution. Keeping
the temperature at 300 °C, an injection mixture containing
TOPSe (83 μL, 0.08 mM) and TOP (5.2 mL, 2.5 mM) was
introduced. After the desired crystal growth, the reaction was
arrested by reducing the reaction temperature to ambient

Figure 4. Exciton recombination pathways in CdSe QDs (solid
arrow) and in the presence of HgSe on the CdSe QD surface (dashed
arrow). The ΔE corresponds to the redshift in the excitonic peak of
about 25 nm.

Figure 5. (A) QD emission: a → in the absence of any analytes, b →
in a pool of 15 metal ions used in this study, and c → b + Hg2+. (B)
Photograph of b and c. (C) HRTEM showing a thin silica shell over
the QD core. (D) Overall length of an APS dimer on the QD surface
obtained from the minimum energy optimized structure using
Chem3D.
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conditions, and the QDs thus obtained were purified by size
selective precipitation using methanol, followed by centrifuga-
tion. QDs were characterized by spectroscopic and HRTEM
analyses and their average size was estimated as 7.3 nm.
Synthesis of Silica-Overcoated CdSe QDs. Cyclohexane

(10 mL) was added with a mixture of Igepal CO-520 (1.3 mL),
CdSe QDs (400 μL) along with APS (63 μL, 0.36 mM) and
stirred vigorously for 30 min under inert atmosphere. Then,
ammonia solution (150 μL, 33 wt %) was added, and the
stirring was continued for 24 h. The salinized QDs were
precipitated as globules, which was further purified by washing
with dry chloroform (4 mL) five times to remove unreacted
components and then redissolved in PBS (pH 7.3). Igepal CO-
520 (1.3 mL) was dissolved in cyclohexane (10 mL) by stirring
under an inert atmosphere for 30 min.
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