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Abstract

For decades, retinoids and their synthetic derivatives have been well established anticancer treatments due
to their ability to regulate cell growth and induce cell differentiation and apoptosis. Many studies have
reported the promising role of retinoids in attaining better outcomes for adult or pediatric patients
suffering from several types of cancer, especially acute myeloid leukemia and neuroblastoma. However,
even this promising differentiation therapy has some limitations: retinoid toxicity and intrinsic or acquired
resistance have been observed in many patients. Therefore, the identification of molecular markers that
predict the therapeutic response to retinoid treatment is undoubtedly important for retinoid use in clinical
practice. The purpose of this review is to summarize the current knowledge on candidate markers,
including both genetic alterations and protein markers, for retinoid resistance and sensitivity in human
malignancies.
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Introduction
Defective or aberrant cell differentiation is a hallmark of
many human malignancies. The initial step in an aber-
rant tumor cell phenotype involves various mutations
that alter signaling pathways, epigenetic modifiers, and
transcription factors, leading to the deregulated expres-
sion of proteins required for cell differentiation.
During the 1970s and 1980s, as an elegant alternative to

killing cancer cells by cytotoxic therapies, several scientific
achievements popularized the strategy of inducing malig-
nant cells to overcome differentiation inhibition and to
enter apoptotic pathways [1]. The initial preclinical results

proved to be very promising and fueled hope for the de-
velopment of a new approach in cancer treatment called
“differentiation therapy” [2].
In general, differentiation therapy aims to reactivate

the endogenous differentiation program in transformed
cells to resume the mutation process and eliminate the
tumor phenotype. Thus, this strategy offers the prospect
of a less aggressive treatment that limits damage to the
normal cells in the organism.

Natural and synthetic retinoids in anticancer
treatment
Retinoids, i.e., natural and synthetic vitamin A derivatives,
have been studied for decades in clinical trials due to their
established role in regulating cell growth, differentiation
and apoptosis. Retinoids are key compounds in biological
differentiation therapy. Retinoids have critical functions in
many aspects of human biology: at the cellular level, they
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control cell differentiation, growth, and apoptosis [3].
Several biologically active vitamin A derivatives, namely,
all-trans retinoic acid (ATRA), 9-cis retinoic acid
(9-cis-RA), and 13-cis retinoic acid (13-cis-RA), have been
tested for potential use in cancer therapy and chemopre-
vention [4–7]. The most effective clinical use of ATRA
was demonstrated in acute promyelocytic leukemia (APL)
treatment [8]. Additional studies have indicated that
13-cis-RA is beneficial in high-risk neuroblastoma (NBL)
treatment after bone marrow transplantation, suggesting
that retinoids may play an adjuvant therapeutic role in the
management of minimal residual disease [9]. List of all hu-
man malignancies, for which the clinical treatment with
retinoids was already tested, is given in the Table 1.

Nevertheless, vitamin A-associated toxicity involving
liver and lipid alterations, dry skin, teratogenicity, bone
and connective tissue damage substantially limits the
long-term administration of natural retinoids. Both
ATRA and 13-cis RA are pan-RAR activators, which can
explain their large negative side effects. For these rea-
sons, the modification of several functional groups has
produced new, synthetic retinoids that have increased
chemoprevention efficacy and reduced toxicity com-
pared with these parameters in other natural retinoids.
These modifications include the substitution of benzoic
acid with aromatic rings or can change their solubility in
water, for example. Fenretinide (N-(4-hydroxyphenyl)
retinamide, 4-HPR) has been discussed as an effective

Table 1 Overview of the human cancer types treated with retinoids in clinical studies

Type of cancer Retinoid Type of treatment Reference

Acute myeloid leukemia ATRA Trial Phase III [101]

Acute promyelocytic leukemia ATRA Trial Phase IV [8]

B-cell lymphoma Fenretinide Trial Phase II [102]

Breast carcinoma ATRA Observational study [103]

Cervical carcinoma 13-cis-RA Trial Phase II [104]

Cutaneous T-cell lymphoma Bexarotene Trial Phase II-III [105]

Ewing’s sarcoma Fenretinide Trial Phase I [106]

13-cis-RA Observational study [107]

Glioblastoma multiforme 13-cis-RA Trial Phase II [108]

Gliomas 13-cis-RA Trial Phase III [109]

Fenretinide Trial Phase II [110]

Hepatocellular carcinoma Polyprenoic acid Observational study [111]

Mantle cell lymphoma Fenretinide Trial Phase II [102]

Medulloblastoma Fenretinide Trial Phase I [106]

13-cis-RA Observational study [107]

Multiple myeloma ATRA Trial Phase II [112]

Neuroblastoma 13-cis-RA Observational study [107]

Trial Phase I [9]

Fenretinide Trial Phase I [106]

Non-small lung cancer ATRA Trial Phase II [113]

Osteosarcoma 13-cis-RA Observational study [107]

Fenretinide Trial Phase I [106]

Ovarian carcinoma Fenretinide Trial Phase II [114]

Pancreatic carcinoma ATRA Trial Phase I [115]

Papillary thyroid cancer 13-cis-RA Observational study [116]

Prostate carcinoma Fenretinide Trial Phase II [117]

Renal carcinoma Fenretinide Trial Phase II [118]

Small cell lung cancer Fenretinide Trial Phase II [119]

Squamous cell carcinoma 13-cis-RA Case series trial [120]

T-cell malignancies 13-cis-RA Phase II [121]

Wilm’s tumor Fenretinide Phase I [106]
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cancer treatment, especially due to its pro-apoptotic and
anti-angiogenic effects even in ATRA-resistant cell lines
and with minor side-effects profile [10]. Bexarotene is a
synthetic retinoid that is approved by the European
Medicines Agency to treat skin manifestations of
advanced-stage cutaneous T-cell lymphoma in adult pa-
tients refractory to at least one systemic treatment [11].
Several studies have suggested that bexarotene is an ef-
fective anticancer treatment that is able to decrease pro-
liferation and promote apoptosis in cells expressing
retinoid X receptors (RXRs) [12, 13]. A very recent study
described synthesis of a novel retinoid WYC-209, which
abrogates growth of melanoma tumor-repopulating cells
and inhibits lung metastases in vivo, showing minimal
toxicity on non-tumor cells [14].
When it comes to synthetic RA analogues that are still

being synthesized and tested, the biggest disadvantage of
such new compounds is undoubtedly the lack of infor-
mation about their long-term effects on human body.

Mechanisms of retinoid resistance
Biological retinoid activity is based on the binding of reti-
noids to specific nuclear receptors (retinoic acid receptors
(RARs) bind retinoic acid and RXRs bind retinoids) that
act as inducible transcription factors. When activated,
these nuclear receptors form RXR-RAR heterodimers or
RXR-RXR/RAR-RAR homodimers that subsequently
modulate retinoid-responsive gene expression two ways:
(i) by binding to retinoic acid response elements (RAREs)
in the promoter regions of target genes or (ii) by antagon-
izing the enhancer action of other transcription factors,
such as AP1 or NF-IL6 [15].
Although pharmacological retinoid doses have been ap-

proved by the Food and Drug Administration (FDA) and
other regulatory bodies for the treatment of some
hematologic malignancies and high-risk NBL, the chemo-
preventive and therapeutic effects of retinoids in other
solid tumors are still unclear. Even in tumors that are
treated with retinoids the therapeutic response to the reti-
noids is often limited to a small proportion of the treated
patients [16]. This limited effect is thought to result from
retinoid resistance, which is defined as the lack of a tumor
cell response to the same pharmacological dose of reti-
noids that sensitive cells respond to, as evidenced by pro-
liferation arrest or differentiation. Moreover, after retinoid
treatment, some carcinomas not only fail to exhibit
growth inhibition but instead respond with enhanced pro-
liferation. A clue to this paradoxical behavior was sug-
gested by the finding that retinoic acid and its natural
receptor also activate peroxisome proliferator-activated re-
ceptor (PPAR) β and δ (PPARβ/δ), which are involved in
mitogenic and anti-apoptotic activities [17].
Many potential mechanisms have been proposed for ret-

inoid resistance (Fig. 1). In general, the cancer cell

response to the pharmacological retinoid doses is affected
by several mechanisms, including decreased retinoid up-
take [18], increased retinoid catabolism by cytochrome
P450 [19], active drug efflux by membrane transporters,
the downregulated expression of various RAR genes (pro-
moter methylation), the altered expression of coactivators
or downstream target genes, and changes in the activities
of other signaling pathways [20].
Although retinoid resistance remains problematic in the

area of biological anticancer therapy, the discovery of bio-
markers that indicate retinoid resistance or sensitivity in
each individual patient seems to be important for the re-
cent personalized therapy strategy, which is aimed at iden-
tifying of the most effective therapy for individual patients.
In the next chapters, we focus on describing the most
promising putative biomarkers that predict retinoid resist-
ance or sensitivity in the most relevant cancer types.

Predictive biomarkers of retinoid resistance
During the past decades, several biomarkers have been
identified that can predict the therapeutic response to retin-
oid treatment in a few human malignancies, including adult
leukemia, pancreatic and breast carcinoma and pediatric
NBL. These predictive biomarkers are both genetic alter-
ations (typically chromosomal translocations leading to fu-
sion protein expression) and proteins (upregulated or
downregulated). In the following parts of this review, we
present the recent knowledge concerning these biomarkers
in relation to retinoid resistance and sensitivity. An over-
view of all these biomarkers is given in the Table 2.

Predictive biomarkers in acute myeloid leukemia
Acute myeloid leukemia (AML) is a heterogenous malig-
nant clonal disease characterized by the accumulation of
undifferentiated myeloid blasts, which predisposes patients,
especially those with APL-type AML, to overcome im-
paired differentiation via differentiation-inducing agents,
such as granulocyte-colony stimulating factor (GCSF) or
ATRA, in addition to conventional chemotherapy [21, 22].
Despite providing high cure rates, such approach is associ-
ated with hematologic toxicity as well as with the risk of
secondary myeloid neoplasms in approximately 2% of pa-
tients. The introduction of arsenic trioxide (ATO) and es-
pecially the studies on combined treatment with ATRA
plus ATO showed the possibility how to improve the effect-
iveness of ATRA in APL patients: two large independent
randomized trials reported significant improvement in clin-
ical outcome of patients treated with ATRA-ATO if com-
pared with those receiving ATRA only [23, 24].
Studies from the last decade identified meningioma 1

(MN1) as a hematopoietic oncogene with a key role in mye-
loid leukemogenesis. Based on the gene expression analyses
in several hundreds of AML patients, MN1 overexpression
is associated with a poor prognosis in these patients [25–27].
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Specifically, 67.4% AML patients had high levels of MN1 ex-
pression if compared with control group and 75% of AML
patients with high MN1 expression were classified as of
intermediate risk according cytogenetic risk categories [27].
The MN1 protein seems to have at least two functions:
promote self-renewal and proliferation and block cell
differentiation [28]. Interestingly, MN1 locates to RAREs
and has been implicated as a transcription cofactor in
RAR-RXR-mediated transcription [29]. A study on the MN1
expression pattern in AML patients revealed that MN1
overexpression is strongly associated with resistance to
ATRA-induced differentiation and cell cycle arrest. In
MN1-overexpressing hematopoietic cells, several genes reg-
ulated by RARα (p21, p27) were repressed and were not up-
regulated by ATRA treatment [28].
APL is also characterized by a specific chromosomal

translocation (Fig. 2a) between the retinoic acid receptor
alpha (RARA) and a number of fusion partners (X-RARA).
This chromosomal rearrangement plays a critical role in the
disease phenotype, particularly regarding ATRA sensitivity.

Although a high proportion of APL patients achieve
complete remission after treatment with ATRA, most pa-
tients who receive continuous ATRA treatment later relapse
and develop the ATRA-resistant phenotype of this disease
[30]. At least 98% of APL patients carry the t(15;17) trans-
location, resulting in RARA fusion with the promyelocytic
leukemia (PML) gene (PML-RARA) [31]. The fusion of
PML sequences to RARA regions increases fusion receptor
affinity for co-repressors [32]. Therefore, the increased
levels of ATRA are required to induce dissociation of
co-repressors and to promote a therapeutic response to the
treatment. In addition to PML, a limited number of patients
exhibit a variety of other X-RARA fusions [33–39]. The
fusion partner also plays a key role in the response to the
retinoid treatment: APL patients carrying NPM1 and
NuMA fusion partners respond clinically to ATRA treat-
ment [40, 41], whereas APL cases involving PLZF (promye-
locytic leukemia zinc finger), IRF2BP2 (interferon regulatory
protein 2 binding protein 2) and STAT5b presented with
ATRA resistance and a poor prognosis [42–45]. One of the

Fig. 1 Possible mechanisms of retinoid resistance. Cancer cell retinoid resistance may be caused by several independent mechanisms including
(1) decreased retinoid uptake; (2) intracellular retinoid metabolism; (3) altered intracellular retinoid availability due to CRAB protein binding; (4)
increased retinoid efflux by ABC transporters; (5) increased retinoid catabolism catalyzed by cytochrome P450; (6) decreased RAR and/or RXR
expression; (7) inhibited retinoid-induced transcription by the repressor complex, (8) altered coactivator structure, expression, or activity; (9)
altered downstream target gene expression
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most important tools in APL treatment is minimal residual
disease monitoring with a special focus on the molecular
detection of the PML-RARA transcript. Although the possi-
bility of this monitoring was also reported in patients with
PLZF-RARA- and STAT5b-RARA-positive diseases, no data
regarding the clinical value of this tool are available [46, 47].
Molecular analysis of the possible mechanisms of ret-

inoid resistance suggested that the reciprocal RAR-
A-PLZF fusion product from the derivative chromosome
17 [der(17)] functions as a transcriptional activator tar-
geting PLZF-binding sites, leading to cellular retinoic
acid-binding protein 1 (CRABP1) upregulation. The
CRABP1 protein is structurally similar to the cellular
retinol-binding proteins, sequesters retinoic acid to limit
its access to the nucleus [48], and is a well-established
mediator of retinoid resistance in various biological

models [49–51]. Similarly, APL patients expressing both
fusion gene products exhibited primary resistance to
ATRA [42, 52, 53]. In contrast, blast cells from a patient
with the PLZF-RARA fusion transcript only were sensi-
tive to ATRA treatment under in vitro conditions, and
these results correlated with clinical remission after
ATRA administration in this patient [54]. Moreover, two
fusion proteins, PLZF-RARA and RARA-PLZF, nega-
tively impacted the activity of CCAAT/enhancer binding
protein α (C/EBPα), a master regulator of granulocytic
differentiation [55]. Further research in a murine APL
model demonstrated that the co-administration of
8-CPT-cAMP (8-chlorophenylthio-adenosine-3′, 5′-cyc-
lic monophosphate) improves the therapeutic effect of
ATRA by enhancing cellular differentiation and increas-
ing PLZF-RARA degradation [56]. Nevertheless, the

Table 2 Overview of the candidate biomarkers for predicting the retinoid treatment response in various human malignancies

Putative predictive biomarker Tumor
type

Experimental model Reference

Biomarkers indicating retinoid resistance

MN1 overexpression AML 83 newly diagnosed patients (60 years or older) treated in the trial NCT00151255 [28]

PML-RARA expression APL NB4 cell line [32]

PLZF-RARA+RARA-PLZF expression APL Case reports of 6 patients with PLZF-RARA fusion genes with no clinically signifi-
cant response to ATRA

[42]

IRF2BP2-RARA expression APL Case report of 1 patient resistant to ATRA [44]

STAT5b-RARA expression APL Case report of 1 patient resistant to ATRA [43]

PML L-type splicing variant in E5(−)E6(−)
isoform

APL Short report of 79 de novo patients [57]

PML V-type splicing variant with spacer
between PML-RARA

APL Sequence analysis of RARα genomic region of 3 patients [61]

FABP5 overexpression PDAC 14 patient-derived cell lines [71]

BC MCF-7 cell line [17]

Truncated RARβ’ isoform expression BC MCF-7 cell line [78]

ERBB2 expression BC MCF-7 and HER2/NEU transfected MCF-7 cell lines [79]

CRABP1 expression BC FFPE breast tumor tissue samples, established cell lines [81]

CRABP2 knockdown PDAC 14 patient-derived cell lines [71]

NF1 knockdown NBL Panel of 25 cell lines [91]

HMGA2 expression NBL 4 established cell lines [96]

UNC45 expression NBL F9 mouse embryo teratocarcinoma cell line [100]

Biomarkers indicating retinoid sensitivity

NuMA-RARA expression APL Frozen bone marrow samples [40]

NPM1-RARA expression APL Cultured bone marrow cells from patient harvested at time of relapse [41]

PLZF-RARA expression APL Case report of 62-year-old patient [54]

RARα receptor overexpression BC 2 established cell lines, tissue cultures of primary breast tumors, 42 established cell
lines

[76, 77]

ZNF423 expression NBL Panel of 25 cell lines [91]

PBX1 expression NBL 16 established cell lines, 3 independent clinical datasets (ganglioneuromas n = 7,
low-risk NBL n = 11, intermediate-risk NBL n = 5)

[88]

HOXC9 expression NBL 3 established cell lines [89]

AML acute myeloid leukemia, APL acute promyelocytic leukemia, PDAC pancreatic ductal adenocarcinoma, BC breast carcinoma, NBL neuroblastoma
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ability of this type of combined differentiation therapy to
overcome retinoid resistance has never been proven in
humans.
Published results on APL cell lines also suggest a pos-

sible association between the splicing variants of the
PML-RARA fusion gene and the therapeutic response to
ATRA [57]. These variants resulted from the alternative
splicing of the PML sequence, which contains heteroge-
neous breakpoint cluster regions (bcrs) at three different
sites (Fig. 2b) [58–60].

Sequencing analysis of the PML-RARA gene in a cohort
of 79 APL patients showed that the L-type fusion transcript
resulting from the alternative splicing was present in three
isoforms. One of these isoforms, the E5(−)E6(−) isoform
with exons 5 and 6 deleted, is associated with the
ATRA-resistant phenotype [57]. A subsequent localization
study reported that the E5(−)E6(−) protein was detected in
the cytoplasm only, whereas the other two isoforms were
distributed throughout the nucleus and cytoplasm. The ex-
clusive cytoplasmic localization of the E5(−)E6(−) isoform

a

b

Fig. 2 Genetic alterations used as predictive biomarkers for APL patients. a Chromosomal translocations between RARA and several fusion
partners playing an important role in maintaining resistance/sensitivity of APL patients to retinoids [122]. b Breakpoint cluster regions (bcr) in PML
gene resulting in alternative splicing and different therapeutic response to ATRA in APL patients. E5(−)E6(−) isoform of L-type fusion transcript
with exons 5 and 6 deleted is associated with the ATRA-resistant phenotype
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is apparently responsible for inhibiting ATRA-dependent
transcription and for subsequently blocking cell differenti-
ation. Thus, monitoring E5(−)E6(−) isoform expression in
APL patients with the L-type PML-RARA fusion gene
might be helpful for predicting a patient’s response to
ATRA treatment.
Similarly, APL cells with the V-type splicing isoform,

characterized by exon 6 truncation, were also reported
to be less sensitive to ATRA treatment. In this group of
APL patients, a subset with lower ATRA sensitivity pre-
sented with a relatively long “spacer” with a cryptic cod-
ing sequence inserted into the joining sites between the
truncated PML and RARA mRNA fusion partners. Sub-
sequent in vitro studies confirmed these results, reveal-
ing that spacer deletion restored ATRA sensitivity [61].

Predictive biomarkers in pancreatic ductal
adenocarcinoma
The vitamin A metabolism disturbances that result in a de-
creased intracellular ATRA concentration were originally
described in pancreatic ductal adenocarcinoma (PDAC)
[62] and later, in other human malignancies, also [63]. Pre-
vious studies in PDAC cell lines have indicated the ability
of ATRA to induce cell cycle arrest and differentiation, al-
though these data revealed highly variable retinoid sensitiv-
ity among the PDAC cell lines [64, 65]. Based on the
receptor-dependent retinoid mechanism, the potential
patient benefit from this treatment is highly dependent on
the retinoid receptor expression level in tumor tissue.
Among others, RARβ expression is downregulated in
PDAC [66–68], which may explain the negative outcomes
of clinical trials focused on retinoid treatments.
ATRA typically induces cell differentiation and growth ar-

rest in most epithelial cell types. However, experiments in
Capan-1 cell line have shown that in addition to an antipro-
liferative effect, retinoids increase cell migration, resulting in
an invasive phenotype [69]. This effect is probably caused by
the presence of the nuclear receptors PPARβ/δ, which are
also activated by exogenous retinoids and form heterodi-
mers with RXR. While canonical RAR-dependent gene ex-
pression leads to growth arrest, PPARβ/δ activation initiates
proliferation, cell survival and tumor growth in mouse
model [70]. The distribution of available ATRA between
PPARβ/δ and RAR receptors is regulated by the levels of
two key intracellular ligand-binding proteins: fatty
acid-binding protein 5 (FABP5) and cellular retinoic
acid-binding protein 2 (CRABP2). Depending on their rela-
tive abundance within the cell, FABP5 and CRABP2 trans-
port exogenous retinoids from the cell cytoplasm into the
nucleus, to either PPARβ/δ or RARs [17]. A recent study on
14 PDAC cell lines demonstrated that it might be possible
to predict PDAC cell sensitivity to ATRA on the basis of the
relative expression levels of these two retinoid-binding pro-
teins. According to this study, 10 of 14 cell lines expressed

the one or the other binding protein confirming the pattern
of reciprocal differential expression of both transcripts in
PDAC cells. FABP5highCRABP2null PDAC lines were resist-
ant to ATRA-mediated growth inhibition and apoptosis and
also exhibited an increased migration and invasion pheno-
type. In contrast, FABP5nullCRABP2high cell lines retained
ATRA sensitivity. These results were also confirmed in vivo
using xenograft models [71]. Immunohistochemical detec-
tion of FABP5 in PDAC samples revealed that about 20% of
them were completely negative for FABP5 indicating these
patients as suitable candidates for retinoid therapy [71].
Since the retinoid binding affinity of the CRABP2-RAR
pathway is higher than that of the FABP5-PPARβ/δ path-
way, at least a partial ATRA-mediated tumor-suppressive ef-
fect is expected in tumors with comparable FABP5 and
CRABP2 expression.

Predictive biomarkers in breast carcinoma
Breast carcinoma is a heterogenous disease classified
into subtypes according to the expression of biological
markers, such as estrogen receptor (ER), progesterone
receptor (PR) and epidermal growth factor receptor 2
(HER2) [72–74]. According to recent clinical trials
aimed at investigating the efficacy of retinoids as adju-
vant treatment in breast carcinoma, some patients bene-
fited from the retinoid treatment. Moreover, the breast
carcinoma cell response to retinoids can be predicted by
evaluating the expression of several marker proteins.
Indeed, several studies have demonstrated that the

average RARα receptor level is significantly higher in
ATRA-sensitive than ATRA-resistant breast carcinoma
cell lines [75–77]. Furthermore, a truncated RARβ’ iso-
form has also been identified in some of these cell lines
and it has been associated with increased cell prolifera-
tion and ATRA resistance [78].
Another potential marker of ATRA resistance was sug-

gested by a study describing Her2/neu-induced ATRA re-
sistance in breast cancer cell lines [79]. ERBB2 transfection
in ATRA-sensitive breast carcinoma cells induced ATRA
resistance. When Her2/neu was blocked by trastuzumab,
the cells exhibiting induced ATRA resistance became
ATRA sensitive again. This study also hypothesized that
Her2/neu may induce ATRA resistance in breast carcinoma
cells by suppressing RARA expression and/or by deregulat-
ing the G1 checkpoint of the cell cycle.
As described in the PDAC section in this review, the

abundance of the intracellular retinoic acid transporters
CRABP2 and FABP5 within the cell can indicate breast car-
cinoma cell response to ATRA, since these molecules have
been shown to play opposing roles in mediating the cellular
response to retinoids [17]. According to the microarray
analysis of gene expression in 176 primary breast carcin-
oma samples, FABP5 is preferentially upregulated in estro-
gen receptor-negative (ER-) and triple-negative breast
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carcinoma cells (TNBC), and an increased FABP5 mRNA
level is associated with poor patient prognosis and high
tumor grade [80]. In this study, FABP5 normalized signal
intensity scores were categorized into high versus low using
cut-off point of 0.768. In this cohort, 61% of patients
showed high FABP5 expression and these patients had a
significantly decreased survival rate if compared with those
with low FABP5 expression. Moreover, FABP5 silencing in
Hs578T breast carcinoma cell line resulted in approxi-
mately 40% reduction in proliferation activity. However, al-
though breast cancer cells with an increased FABP5/
CRABP2 ratio present with increased ATRA resistance, this
ratio does not always accurately predict the breast cancer
cell response to ATRA, indicating that other factors are also
involved in the mechanism of retinoid resistance develop-
ment. Another recent study identified CRABP1 as the third
key player that potentially influences the breast cancer cell
response to ATRA. This protein has been identified as a
retinoid inhibitor and probably sequesters retinoic acid in
the cytoplasm, thereby preventing RAR activation in the
nucleus. Similarly to FABP5, CRABP1 is also preferentially
expressed in ER- and TNBC tumor tissues that are prone
to ATRA resistance [81]. According to this study, CRABP1
synergizes with FABP5 to compete with CRABP2 for retin-
oic acid molecules, thereby reducing retinoic acid access to
RARs within the nucleus.
These findings provide molecular tools to predict and

eventually overcome ATRA resistance in breast carcinoma
therapy. CRABP1 and FABP5 co-expression may serve as a
predictive biomarker of ATRA resistance in this tumor
type, and the downregulation may be a key step in (re)sen-
sitizing breast carcinoma cells to retinoid therapy. A novel
mechanism for resensitizing ATRA-resistant cells to
ATRA-mediated apoptosis was recently introduced: the
phytochemical curcumin is able to upregulate CRABPII,
RARβ and RARγ expression in TNBC cell lines and thereby
sensitizes cells to ATRA-induced apoptosis. This reversed
resistance to ATRA-induced apoptosis in TNBC cells was
dependent on the curcumin dose and treatment length
[82]. Overall, this study highlights the potential of curcumin
as a possible therapeutic adjuvant in ATRA-resistant breast
carcinomas.
Another recent study compared the phosphoproteome

and transcriptome of established ATRA-sensitive and
ATRA-resistant cell lines derived from breast carcinoma
(MCF7, BT474). One of the most interesting results was
that ATRA did not regulate the phosphorylation of the
same proteins in both cell lines, i.e., the ATRA-resistant
cell line exhibited a deregulated kinome. High-throughput
sequencing experiments revealed that 80% of the genes
regulated by ATRA in MCF7 cells were not regulated in
BT474 cells and vice versa. Additionally, 40% more genes
were regulated by ATRA in the MCF7 cells than in the
BT474 cells. Moreover, this study indicates that ATRA

induced RARα phosphorylation in resistant cell lines only,
which may cause kinome deregulation and consequences
in other intracellular metabolic pathways [83].

Predictive biomarkers in neuroblastoma
Neuroblastoma (NBL) is a neuroectodermal tumor aris-
ing from elements of the neural crest and represents the
most common extracranial solid tumor in children. In a
subset of high-risk NBL patients with minimal residual
disease, retinoid administration was proven effective as a
part of postconsolidation therapy after intensive multi-
modal treatment. Unfortunately, approximately 50% of
this patient population is resistant to this treatment or
develops resistance during therapy [84]. Moreover, a re-
cent study evaluated the efficacy and safety of additional
retinoid therapy in NBL patients and presented a more
critical view, concluding that no clear evidence exists for
a difference in overall survival and event-free survival in
patients with high-risk NBL treated with or without reti-
noids [85]. However, the usefulness of differentiation
therapy with retinoids largely depends on the ability to
identify a subset of NBL patients who benefit from this
treatment, according to analyses of retinoid resistance/
sensitivity markers. Recent investigations on the mecha-
nisms of retinoid resistance identified several down-
stream retinoid-regulated proteins and discussed these
proteins as possible predictive biomarkers for the clinical
response to retinoid treatment.
PBX1 belongs to the three-amino-acid loop extension

(TALE) family of atypical homeodomain proteins and in-
teracts with other homeodomain-containing nuclear
proteins, such as HOX and MEIS, to form heterodimeric
transcription complexes. PBX1 is involved in a variety of
biological processes including cell differentiation and
tumorigenesis [86, 87]. Recent study revealed that in
NBL cell lines treated with 13-cis-RA, PBX1 mRNA and
protein expression levels are both induced in 13-cis--
RA-sensitive cell lines only. After treatment with 13-cis
RA, all 6 RA-sensitive cell lines showed a significant in-
crease in PBX1 expression, whereas RA-resistant cell
lines exhibited no such effect. These studies also re-
vealed that reduced PBX1 protein levels result in an ag-
gressive growth phenotype and 13-cis-RA resistance.
Finally, the authors demonstrated that in primary NBL
tumor tissue, PBX1 expression correlated with the histo-
logical NBL subtype, with the highest PBX1 expression
in benign ganglioneuromas and the lowest expression in
high-risk NBL [88].
Homeobox (HOX) proteins function as regulators of

morphogenesis and cell fate specification and are key
mediators of retinoid action in nervous system develop-
ment. Among members of the HOX family of transcrip-
tion factors, HOXC9 seems to play an important role in
neuronal differentiation. A recent study revealed that
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the HOXC9 promoter is epigenetically primed in an ac-
tive state in ATRA-sensitive NBL cell lines and in a si-
lenced state in ATRA-resistant NBL cell lines. Moreover,
HOXC9 protein levels were significantly higher in differ-
entiated NBL cells than in NBL cells undergoing
ATRA-induced differentiation [89].
The protein neurofibromin 1 (NF1) is known to

antagonize the activation of RAS proteins but is also in-
volved in other signaling pathways, such as the cAMP/
PKA pathway [90]. NF1 controls the retinoid treatment
response in NBL cells through the RAS-MEK signaling
cascade and has been identified as the lead candidate gene
for influencing retinoic acid-induced differentiation in
NBL cell models [91]. According to this study, SH-SY5Y
cells with NF1 knockdown continued to proliferate when
exposed to RA in contrast to the control cells. Subsequent
experiments showed downregulation of RA target genes
in NF1 knockdown cells. These results may indicate the
role of NF1 in maintaining RA resistant phenotype.
In further research, genomic aberrations of the NF1

gene were found in 6% of primary NBL representing a
subset of cases where the loss of NF1 gene could be
caused by gene mutation.
A connection between NF1-RAS-MEK signaling and ret-

inoic acid action was demonstrated by the finding that the
NF1-RAS-MEK cascade suppresses ZNF423 protein ex-
pression, which functions as a RAR/RXR coactivator. Add-
itionally, tumors with activated RAS signaling and low
ZNF423 expression present with a poor response to
13-cis-RA (isotretinoin) treatment. Moreover, decreased
NF1 and ZNF423 gene expression, reflecting hyperactivated
RAS/MAPK signaling, is correlated with a very poor clin-
ical outcome in NBL patients and was detected in 78% of
patients with relapsed NBL [92], whereas high expression
levels both of these proteins are associated with the best
prognosis in NBL patients. As a result, Holzel and col-
leagues suggest that pharmacological MEK inhibition can
sensitize NBL cells that are resistant to retinoid-induced
terminal differentiation. Although these data seem to be
readily translatable, several important questions will need
to be addressed before incorporating this therapy into clin-
ical practice. It will be critically important to determine
how MEK inhibition combined with isotretinoin will fit into
the overall NBL treatment strategy and whether MAPK
pathway activation is a mechanism of acquired resistance
to isotretinoin therapy or a collateral event of oncogenic
driver mutations only [93]. Another recent study also indi-
cated a potential role of MEK cascade inhibition in over-
coming ATRA resistance in malignant peripheral nerve
sheath tumors (MPNST) in vitro, but no correlation was
found between ZNF423 mRNA levels and the sensitivity of
MPNSTcells to ATRA [94]. These results demonstrate that
some other mechanisms are involved in maintaining ATRA
resistance of MPNSTS cells.

High-mobility group A (HMGA) proteins function as
ancillary transcription factors and regulate gene expres-
sion through direct DNA binding or protein-protein in-
teractions and play important functions in controlling
cell growth and differentiation. HMGA2 is completely
absent in adult organisms; its expression is restricted to
rapidly dividing embryonic cells and tumors with epithe-
lial and mesenchymal origins [95]. HMGA2 was also de-
tected in some retinoid-resistant NBL cell lines. In NBL
cell lines, a causal link between HMGA2 expression and
retinoid-induced growth arrest inhibition was proven
using exogenous HMGA2 expression, which was
sufficient to convert HMGA2-negative, retinoid-sensitive
cells into retinoid-resistant cells [96]. In contrast,
HMGA1 was found to be expressed at different levels in
all NBL cell lines [97], indicating that its action is neces-
sary for functions conserved throughout the develop-
mental differentiation of the sympathetic system.
UNC45A, another potential marker of retinoid re-

sistance, is a protein encoded by the UNC45A gene,
a member of UNC45-like genes, which are evolu-
tionarily highly conserved, and the resulting protein
products are involved in muscle development and
myosin assembly [98]. The UNC45A protein has
been shown to modulate the HSP90-mediated mo-
lecular chaperoning of the progesterone receptor,
since the UNC45A blocks the chaperoning of this
receptor to the hormone-binding state [99]. In NBL
cell lines, the role of UNC45A in causing ATRA re-
sistance was suggested by Epping and co-workers
[100]. When UNC45A was ectopically expressed in
their experiments, ATRA-sensitive human NBL cell
lines failed to undergo growth arrest after ATRA
treatment. The UNC45A protein levels required for
ATRA resistance were similar to the levels in several
cancer cell lines. Neither the endogenous nor the ec-
topically expressed UNC45A protein levels were af-
fected by ATRA treatment. Moreover, UNC45A
expression also inhibited the differentiation of NBL
cells cultured in the presence of ATRA, indicating
the resistant phenotype.

Conclusion
This review was aimed to summarize the current
knowledge, both clinical and experimental, on predict-
ive markers in human cancers that are treated with
retinoids as a part of the therapeutic regimen. This
review demonstrated that each described cancer type
seems to have a unique pattern of altered signaling
pathways, resulting in a set of predictive biomarkers
that indicate retinoid resistance or sensitivity, which
is typical for this malignancy. Many of the research
studies mentioned in this review are only initial, and
the acquired results require further detailed
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investigation and clinical validation of the proposed
predictive biomarkers. However, these studies demon-
strate the promising future for differentiation therap-
ies that use retinoids, especially in identifying reliable
markers that predict the response of each individual
patient to this type of treatment. Hopefully, the per-
sonalized approach will be a new milestone in anti-
cancer differentiation therapy.
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