
Genomic Mining of Prokaryotic Repressors for Orthogonal Logic 
Gates

Brynne C. Stanton1, Alec A.K. Nielsen1, Alvin Tamsir2, Kevin Clancy3, Todd Peterson3, and 
Christopher A. Voigt1

1 Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of 
Technology, Cambridge, MA 02139, USA

2 1600 4th Street, San Francisco, CA, 94158, USA

3 Synthetic Biology R&D Unit, Life Technologies, Carlsbad, CA 92008, USA

Abstract

Genetic circuits perform computational operations based on interactions between freely diffusing 

molecules within a cell. When transcription factors are combined to build a circuit, unintended 

interactions can disrupt its function. Here, we apply “part mining” to build a library of 73 TetR-

family repressors gleaned from prokaryotic genomes. The operators of a subset were determined 

using an in vitro method and this information was used to build synthetic promoters. The 

promoters and repressors were screened for cross-reactions. Of these, 16 were identified that both 

strongly repress their cognate promoter (5- to 207-fold) and do not interact with other promoters. 

Each repressor:promoter pair was converted to a NOT gate and characterized. Used as a set of 16 

NOR gates, there are >1054 circuits that could be built by changing the pattern of input and output 

promoters. This represents a large set of compatible gates that can be used to construct user-

defined circuits.

Introduction

Living cells can be programmed by incorporating integrated genetic gates into their DNA1. 

These gates rely on biochemical interactions to perform computational operations, including 

switches, logic, and memory2,3. Gates can be connected to each other when they are 

designed to be extensible, meaning that the form of their input and output signals are the 

same. For example, if both the inputs and outputs are promoters, then this signal is defined 
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as the flux of RNA polymerase (RNAP) on DNA4. To date, the complexity of circuits has 

been low, consisting of the few available gates based on the same transcription factors re-

used across labs and projects5. Increasing the number of available gates will enable the 

construction of larger circuits to encode more sophisticated algorithms6. The challenge has 

been that all of the gates within a circuit need to be orthogonal; in other words, the 

biochemical interactions on which they are based cannot cross-react7. It becomes 

increasingly difficult to add gates because the number of potential cross-reactions grows 

quickly as N2-N.

NOT and NOR gates are simple and broadly useful functions. A transcriptional NOT gate 

can be implemented by using an input promoter to drive expression of a repressor, which 

turns off expression of an output promoter (Figure 1a)8. Even these simple gates can 

perform signal-processing functions, for example to convert a dark sensor into a light 

sensor9 and a male sensor into a female sensor10. A NOR gate is a logic function where the 

output is ON only when both inputs are OFF. NOR gates are Boolean complete, meaning 

that they can be combined to generate any computational operation. A genetic NOR gate can 

be built by adding a second input promoter in series to the NOT gate, so that both input 

promoters drive the expression of the repressor11. Two gates are orthogonal if their 

repressors do not bind to each other's promoters. Obtaining more gates that can be used as 

part of the same circuit requires having a set of repressors that bind to different operator 

sequences.

There are a number of biochemical mechanisms that could be used to produce the repressing 

function required by a NOT gate. The most common is to use a protein-based repressor, 

which binds to an operator DNA sequence within its target promoter. Various classes of 

natural repressors exist, including phage repressors (e.g., cI), LacI, and TetR-family 

repressors, all of which have been used to build NOT gates8,12,13. Several modular scaffolds 

– zinc finger proteins (ZFPs)14 and transcription activator-like effectors (TALEs)15 – have a 

domain architecture that allows proteins to be designed to bind target sequences. ZFPs and 

TALEs have been used to control expression in eukaryotic cells16-18 and to a lesser degree 

in prokaryotes19,20. Recently, it has been shown that transcription can be repressed with a 

CRISPR-Cas system (“CRISPRi”) that uses a nuclease-null Cas9 protein and an RNA guide 

sequence to block transcription at a specific site21. Because of the programmability of the 

RNA-DNA interaction, this system holds promise for building orthogonal repressors; use of 

CRISPRi to build layerable gates has the potential to be a powerful tool in the construction 

of circuits.

In this paper, we decided to target TetR homologues for several reasons. First, TetR is one 

of the earliest and most pervasive transcription factors used in biotechnology and has 

appeared in numerous applications22. As an inducible system, it is part of a classic multi-

plasmid system23 and has been used in a broad range of host organisms, including bacteria/

archea24, fungi25, insects26, plants27, mammalian cells28, and live animals29. Second, it has 

been used in many genetic circuits in synthetic biology, including a toggle switch12 and 

oscillator13 in Escherichia coli. It has also been used to build a time-delay circuit in mice30 

and a NOT gate in mosquitoes10. Third, TetR and most homologues have a simple mode of 

repression where dimers bind to a promoter and physically block RNAP31. Fourth, they are 
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able to achieve specificity with relatively short operator sequences22. Finally, tens of 

thousands of homologues are available from many host organisms and there is evidence that 

they exhibit sequence specific binding to disparate operator sequences22. Small differences 

in the amino acid sequence and operator nucleotides have been shown to yield high-affinity, 

orthogonal interactions32,33. The potential for orthogonality is also large; coding theory 

predicts that there is an upper limit of 130 helix-turn-helix repressors that could function in 

one cell without exhibiting crosstalk34.

To increase the number of available gates, we used DNA synthesis to access repressors 

selected from the sequence database and screened them to identify an orthogonal subset. 

Using an in vitro microarray assay, the DNA binding preferences for individual repressors 

were comprehensively examined, from which well-defined motifs were obtained. This 

information, together with previously identified operator sequences, was used to construct 

synthetic promoter libraries to identify those that were highly repressed. The resulting 

repressor:promoter pairs were systematically converted into NOT gates, their cross reactions 

measured in all combinations, and then used to construct composite circuits in vivo. Overall, 

this work represents a large set of compatible, orthogonal components from which user-

defined circuits can be constructed by simply changing the pattern of input and output 

promoters between a set of conserved gates.

Results

Construction & characterization of a TetR homolog library

We developed a pipeline to expand the number of available TetR family repressors, to 

exhaustively measure their activity and orthogonality, and to characterize them in the 

context of genetic gates (Figure 1b). TetR homologues encompass one of the largest families 

of transcription factors, with 82,017 members currently annotated in EMBL-EBI35. To build 

a library of homologues, we started with 73 repressors obtained from a collated list of TetR 

homologues with known regulatory functions from diverse organisms22 (Figure 1c). 

Redundant sequences and incomplete entries were excluded from the list. This set contains 

homologs from 45 distinct prokaryotic species and has an average amino acid identity of 

21%. Genes were codon optimized for expression in a set of target organisms and built using 

DNA synthesis (sequences and sources of each repressor are provided in Supplementary 

Data Set 1).

For the majority of repressors in the library, the DNA sequences to which they bound were 

unknown. We adapted an assay based on Cognate Site Identifier (CSI) array analysis in 

order to determine their operators36. Previously, these arrays had been designed to assay 

transcription factors that bind to a 4-6 bp operator37. To screen for binding by our 

repressors, a CSI array was designed to accommodate the inverted-repeat containing 

operator sequences bound by TetR homologues (described in Online Methods and 

Supplementary Results, Supplementary Figure 1 and Supplementary Table 1). The array 

contained a unique putative binding sequence at each of its 2.1 million spots. All possible 28 

bp sequences were represented (Figure 2a) with the additional criteria that each sequence 

must have: 1) a perfect 14 bp inverted repeat, 2) a GC content of ≤51%, and 3) three fixed 

positions. We recombinantly expressed, purified, and labeled each repressor with a cyanine 
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5-conjugated antibody and, in the case where binding was observed, applied the repressor to 

two replicate arrays. Those array features that had high intensity values across two 

independent arrays (>0.25 COV) were selected and the corresponding sequences analyzed 

by MEME38 to identify consensus motifs (sequences representing each motif are provided in 

Supplementary Data Set 2). From this analysis, 10 repressors yielded well-defined motifs 

(Figure 2b). The operators for McbR, PsrA, QacR, and ScbR had been previously identified, 

and the array data closely matched sequences from the literature (Supplementary Figure 2). 

For each of the array-based motifs, the operon encoding the repressor (or the entire genome 

sequence when available) was analyzed for the presence of sequences similar to the array 

identified motifs. Sequences sharing significant similarity are illustrated in Supplementary 

Figure 3. Significant diversity exists among the operator sequences bound by different 

repressors within the library.

Design of synthetic promoters & measurement of crosstalk

Synthetic promoters were designed to contain operator sequences that were either identified 

using the array or obtained from the literature (Online Methods). A strong constitutive E. 

coli promoter (BBa_J23119) was used as a backbone into which an operator was placed39. 

Promoter libraries were constructed to determine the optimal placement and sequence of the 

operators. The data from the array were used to determine an “operator motif” the captures 

the functional diversity of the operator sequence (Figure 3a). Sequences consistent with the 

motif were constructed using degenerate oligonucleotides and inserted into various positions 

in the promoter around and between the -35 and -10 sequences. The promoter libraries were 

then screened in the presence and absence of their cognate repressor by eye or using flow 

cytometry (Figure 3b and Supplementary Data Set 3). From each library, the promoter that 

generated the highest dynamic range was identified, sequenced, and then confirmed. At the 

end of this process, we identified promoters that were responsive to 20 repressors (Figure 

3c). This set consists of 10 promoters whose operators were obtained from the CSI array and 

10 that were obtained from the literature (Supplementary Table 2).

To measure all possible cross-reactions, we assayed the activity of each repressor against the 

set of 20 promoters. Repressor expression was controlled by the HSL-inducible PLux 

promoter in a colE1 plasmid (Supplementary Figure 4). The promoters were fused to yellow 

fluorescent protein in a p15A plasmid (Supplementary Figure 5). The repressor and 

promoter plasmids were co-transformed in all combinations. The resulting 400 strains were 

grown in the presence of inducer, the promoter activity was measured using cytometry, and 

the fold-repression reported as the ratio between the non-repressor containing control 

plasmid and the induced repressor. These data were used to construct an orthogonality 

matrix that shows the specificity of each promoter and repressor (Figure 3d). The repressors 

are remarkably orthogonal, and a core set of 16 have negligible cross-reactions (TetR, 

IcaRA, AmtR, BetI, SrpR, Orf2, BM3R1, ButR, PhlF, AmeR, QacR, LmrA, PsrA, HlyIIR, 

McbR, ScbR, TarA, LitR, HapR, SmcR). Amongst this orthogonal set, the sequence 

diversity of the DNA-binding region is noteworthy (Supplementary Figure 6)31. Previous 

work shows that within the recognition region of the DNA binding domain (residues 25-44 

in TetR), residues 28 and 37 are particularly important for binding specificity31,33. Out of 
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the set of 16 orthogonal repressors, 11 and 9 different amino acids are represented at these 

positions, respectively.

Several groups of repressors are not orthogonal and this corresponds to amino acid similarity 

in their DNA-binding domain (Supplementary Figure 7). The HapR, LitR, and SmcR 

repressors (all from Vibrio species) interact with each other's promoters and have similar 

patterns of crosstalk. Similarly, the HlyIIR and PsrA repressors share amino acid identity 

and bind to similar operators. Surprisingly, the converse is not true, where similarity 

between promoters is not predictive of crosstalk. This is largely a result of the variability 

observed in the acceptable spacing distance between the 6-mer repeat of the operator. For 

example, the LitR and HapR promoters have spacers of 11 bp and 3 bp, but the repressors 

cross-react equally well with both.

NOT gate construction & response function measurement

The repressors and their synthetic promoters were used to build a library of NOT gates. To 

measure the response as a function of the activity of an input promoter, the IPTG-inducible 

PTac promoter was connected to each gate. The output was measured by having the 

repressible promoter drive the expression of yellow fluorescent protein (YFP). Each NOT 

gate consists of a 5-UTR, repressor gene, terminator, and synthetic promoter. These parts, 

along with the PTac inducible system, and YFP were assembled into a p15a plasmid 

(Supplementary Figure 5).

Ensuring repressor expression levels are within the appropriate range to generate a large 

output response represents a challenge in converting repressors into gates. Expression levels 

cannot be changed by varying the dynamic range of the input promoter because, for circuit 

construction, inputs must be swapped without further modification. Thus, we define the 

beginning of each gate to be the transcription start site and vary the repressor level by 

changing the strength of the RBS. Each repressor has unique properties that influence their 

absolute protein levels (e.g., codon usage, mRNA and protein stability, binding affinity). 

Hence, the ribosome binding site (RBS) of the repressors had to be individually tuned to 

maximize the dynamic range. To accomplish this, we used the RBS Calculator (Online 

Methods) to design a set of sequences that systematically vary the predicted expression level 

from medium-high to low (because the optimal desired expression level is not known a 

priori). These were used to design a degenerate oligonucleotide, from which an RBS library 

was constructed for 19 out of the 20 gates (Supplementary Table 3). These libraries were 

screened and the RBS that produced the highest dynamic range was selected 

(Supplementary Table 4).

The response function of a gate captures how the activity of the output promoter changes as 

a function of the input promoter. This information is critical in determining how gates will 

operate when connected in a circuit. It is also important that the inputs and outputs are 

reported in the same units4. As such, we reported these values as relative expression units 

(REU) (Supplementary Figure 8)39. This is done by normalizing the YFP output values by 

that measured from a reference standard, and by separately measuring the activity of the 

PTac input promoter as a function of IPTG (Supplementary Figure 9), using the same 
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reference standard. With these data, it is theoretically possible to know whether the range of 

the output of one gate is sufficient to serve as an input to the next gate in series.

Each gate produces a unique response function (Figure 4). The dynamic ranges of the gates 

vary from 207-fold (SrpR) to 5-fold (SmcR and ButR) with an average induction of 51.3-

fold (Supplementary Table 5). Cytometry distributions are shown for the ON and OFF 

states, which are narrow and have good separation, even for those that have a smaller 

dynamic range (Supplementary Figure 10). The response functions can be fit to a Hill 

function,

(1)

where y is the activity of the output promoter, ymin is the minimum output, ymax is the 

maximum output, n is the Hill coefficient, and K is the threshold level of input where the 

output is half-maximal. Equation 1 was used to fit the data for each gate and the parameters 

are shown in Supplementary Table 5.

The thresholds for the gates are similar with an average of K = 0.4 REU and a range of 0.1 

(TarA) to 1.3 REU (ButR). Considering this, all of the NOT gates have sufficiently high ON 

states (between 3 and 70 REU) to achieve full repression by crossing the threshold required 

by a downstream circuit. However, the OFF states range between 0.1 and 2.1 REU. Because 

the OFF states are similar in magnitude to the thresholds, this can be problematic when 

connecting gates, and can lead to a degradation in the signal as the number of layers in the 

program increases8.

Gates that exhibit ultrasensitivity generate a large output response with little change in the 

input signal. This also comes at a cost, where it becomes increasingly difficult to balance the 

input to span the range required to achieve the maximum response. The cooperativity for the 

majority of gates is n ≈ 2, which is consistent with that measured for TetR, and a 

mechanism of dimers binding to a single operator13. Five of the repressors yield gates with n 

> 3, with the largest being 6.1 for Orf2. This has been observed before with TetR 

homologues, which can bind with higher cooperativities by assembling as multimers or 

multiple dimers within a single operator40.

Transcription factors can be toxic and exhibit slow growth when expressed above a critical 

threshold41. We measured the impact on cell growth by recording the OD600 6 hours post-

induction for each NOT gate at various levels of induction (Supplementary Figure 11). The 

majority of repressors are non-toxic, even when maximally expressed. Six showed toxicity 

at high input levels: TarA, ScbR, ButR, SmcR, Orf2, and HapR, defined toxicity as >25% 

reduction of growth (Supplementary Figure 12). In each case, the toxicity occurs after the 

output promoter has been repressed. The quantification of regions of toxicity enables a 

designer to build circuits that avoid expression above these levels. Further, it enables a 

comparison between different biochemistries that can be used for the construction of 

integrated circuits.
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Connection of gates to create integrated circuits

The NOT gates can be converted into multi-input NOR gates by connecting multiple 

promoters in series to drive repressor expression11. Logic minimization algorithms, such as 

ESPRESSO42, can convert any arbitrary user-defined circuit into a wiring diagram 

composed of layered NOR gates43. The wiring diagram can then be replicated by a genetic 

circuit through assembling a particular pattern of input and output promoters connected to 

the gates (Figure 5). By changing this assembly pattern, the same set of underlying 

orthogonal gates can be used to build any arbitrary desired circuit.

To demonstrate the assembly of gates, we constructed two simple circuits that perform the 

AND and NAND logic functions through different permutations of the NOT and NOR 

gates. The inputs to the circuits consist of different combinations of inducible promoters: 

PTac (IPTG), PLux (AHL), and PTet (aTc) (Supplementary Figure 13). The NAND gate 

consists of two NOT gates (based on PhlF and LmrA), which invert the two input signals 

(Figure 5a). The output of the NOT gates are assembled in series to form an OR gate, which 

then serves as the output of the circuit. The circuit produces the correct NAND function, 

with a 6-fold difference between the OFF state (+/+) and the lowest ON state. The OFF state 

is high, which is consistent with the leakiness of the LmrA promoter.

The AND circuit was constructed by combining three gates (Figure 5b). The PhlF NOT gate 

(the same as that used for the NAND circuit) serves to invert one of the input promoters. 

The other input promoter is inverted by the QacR NOT gate. The output promoters of these 

gates are connected to BetI to form a NOR gate, the output of which drives the expression of 

YFP. This circuit produces a 4.4-fold response when the ON state (+/+) and the highest OFF 

state are compared. Flow cytometry histograms for each circuit and the terminal gates are 

illustrated in Supplementary Figure 14.

To determine whether individually measured response functions of gates (Figure 4) can be 

used to predict their combined response as a genetic circuit, we developed a simple model of 

the NAND and AND circuits. This model simply adds the response functions of the 

inducible inputs and the gates to obtain the response of the circuit as a whole, with no 

additional fit parameters. The OFF and ON states of inducible promoters that serve as inputs 

(PTac, PLux, and PTet) were measured independently and converted into REU 

(Supplementary Figure 15). The (OFF - ON) states of the inducible promoters are: PTac 

(0.06 - 6.2), PLux (0.7 – 8.2), and PTet (0.07 – 9.8). To determine the predicted function of a 

circuit, the combinations of signals from the input promoters are tracked through the gates 

using their response functions (Equation 1). This process is visualized in Supplementary 

Figure 15.

To model the NAND circuit, the range of PTac is inserted into the PhlF response function, 

yielding outputs of 16 and 0.1 REU (Supplementary Table 6). Similarly, the range of the 

PLux input is converted to 61 and 1.4 REU by the LmrA response function. The output of the 

OR gate is treated as the simple sum of the outputs of the tandem promoters. The predicted 

values for the four combinations of input states closely matches the experimental data 

(Figure 5a).
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To model the AND circuit, the output of PTac connected to the PhlF gate is the same as 

reported above (16 and 0.1 REU), and the output of PTet connected to the QacR gate is 20 

and 0.4 (Supplementary Table 7). To model the NOR gate, the outputs of these promoters 

are summed x = x1 + x2 and serve as the input to the BetI response function (Equation 1). As 

with the NAND circuit, the predicted response closely matches the experimental 

measurements (Figure 5b). Both circuits have some quantitative differences between the 

predictions and experimental data. This is likely due to the simplicity of the model, which 

does not account for changes in genetic context, promoter interference between tandem 

promoters, plasmid copy number variation6,44, or the growth phase under which the outputs 

were measured (Supplementary Figure 16).

Discussion

The ability to manipulate gene regulation is one of the last frontiers in genetic engineering. 

The implementation of computing in cells has the potential to impact many applications in 

biotechnology. However, the field has been limited in the size and sophistication of circuits 

that could be constructed from a small number of characterized transcription factors. Here, 

we significantly expand the number of repressors that are available for circuit construction. 

Further, we have rigorously measured the cross reactions to identify a core orthogonal set. 

Each member of this set is converted into a gate and fully characterized. Finally, we 

introduced a generalized method by which circuits can be assembled by changing the pattern 

of input and output promoters to reproduce a wiring diagram composed of NOT and NOR 

gates. For simplicity, we demonstrate this by building two circuits that perform digital 

Boolean logic operations. Note that the same approach could be applied to build analog45 

and dynamic13 circuits.

The mining effort described here started with 73 homologous repressors and ended with a 

set of 16 orthogonal gates. By considering all of the possible ways that these gates can be 

combined, one can imagine a “circuit space” that consists of all the possible wiring 

diagrams. The size of this space can be estimated by

(2)

where n is the size of the orthogonal set and k is the number of repressors in the circuit. This 

takes into account that: (i) there are up to 2k sensor inputs to the circuit as a whole, (ii) only 

NOT and 2-input NOR gates are considered, (iii) for a gate, each input can be comprised of 

one of the circuit inputs, an output from another gate, or be unconnected yielding (3k+1) 

possibilities, and (iv) functionally redundant or isomorphic circuits are not removed from the 

set. This estimates that n = 16 orthogonal gates can be used to build N > 1054 possible 

circuits. This set includes feedback loops and is not limited to digital logic. Each of these 

circuits can be accessed by permuting the input and output promoters into a particular 

pattern.

The challenge now becomes achieving a degree of reliability where the gates can be 

assembled into any of these circuits with a reasonable chance of functioning properly. While 
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we demonstrate this mapping with a few circuits, accessing the potential of the space 

remains a challenge. The first generation of gates presented here was designed to be simple 

and consist of a single operator in a constitutive promoter. This simplicity leads to gates that 

exhibit low cooperativity, a high OFF state, and sensitivity to genetic context44. Further, 

each gate utilizes the same pair of terminators, which can lead to evolutionary instability for 

large circuits46,47. Analyzing the gates in different contexts and identifying the failure 

modes could lead to second generation designs that are engineered to be faster, tunable, and 

robust by implementing design rules that have emerged from control theory and systems 

biology44,48-50.

We selected TetR homologues because of their high specificity, stability, and proven 

capability to operate in synthetic circuits. Other biochemistries could be used to expand the 

number of orthogonal gates in our library. To be compatible, the only constraint is that the 

inputs and outputs of each gate must be promoters, thus allowing the gates to be layered. 

The repressors could be other classes of proteins that bind DNA – such as TALENs or ZFPs 

– or be the leader RNA that directs Cas9 as part of CRISPRi; a single large circuit could 

contain mixtures of these biochemistries. Indeed, this may be a mechanism to expand the 

gate library beyond the informatic limit of any one family. For example, our TetR library 

already covers 15% of the predicted upper limit on helix-turn-helix repressors34.

The set of orthogonal gates we present is sufficiently large to implement nontrivial circuits 

of direct relevance to applications in biotechnology, which includes multi-input logic control 

for environmental or metabolite sensing, timers to control when different genes are 

expressed, multiple toggle switches for memory, and simple algorithms from control theory. 

However, now that parts are no longer limiting, it remains a challenge to build large circuits. 

To this end, computational tools will likely play a more central role in design. Changing the 

inputs and outputs to gates by rearranging the pattern of input and output promoters is a 

sufficiently simple operation to be performed by a computer. The co-development of simple 

schemes for genetic programming, as well as gates designed specifically to be compatible 

with these schemes, will enable the broader application of genetically encoded algorithms to 

program cells.

Online methods

Strains and Media

E. coli strain DH10B {F−mcrA Δ(mrr-hsdRMS-mcrBC) Φ80lacZΔM15ΔlacX74 recA1 

endA1 araΔ139 Δ(ara, leu)7697 galU galK λ-rpsL (StrR) nupG} was used for all 

experiments, except logic gate measurement where DH5α {fhuA2 lac(del)U169 phoA 

glnV44 Φ80’ lacZ(del)M15 gyrA96 recA1 relA1 endA1 thi-1 hsdR17} was used, and 

protein expression/purification where BL21(DE3)pLysS {F− ompT gal dcm lon hsdSB(r −B 

m −B) λ(DE3) pLysS(cmR)} was used. Cells were grown in Luria Bertani (LB) Miller Broth, 

M9 minimal media ((6.8 g/L Na2PO4, 3g/L KH2PO4, 0.5 g/L NaCl, 1 g/L NH4Cl, Sigma), 

2mM MgSO4, 100uM CaCl2, 0.4% glucose, 0.2% Casamino acids, 340 mg/L thiamine 

(vitamin B1)), or Super Optimal Broth (SOB). Ampicillin (50 μg/ml), Kanamycin (25 μg/

ml), and/or Chloramphenicol (37 μg/ml) were used where appropriate. Isopropyl β-D-1-

thiogalactopyranoside (IPTG) or 3OC6-N-(β-Ketocaproyl)-L-homoserine lactone 
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(3OC6HSL) inducers were used as inducers for the various repressor constructs. Each of the 

newly constructed plasmids was made by the one-step isothermal DNA assembly method or 

inverse PCR (see below). In all cases, Yellow Fluorescent Protein (YFP)51 was used as the 

reporter.

Codon optimization and gene synthesis

Repressor coding sequences were optimized for production in E. coli, chloroplasts, and 

Bacillus subtilis, using multi-parameter gene optimization methods52. Optimized sequences 

were synthesized by GeneArt, are contained within a pET21a-derived plasmid (where each 

repressor contains an amino-terminal 6x-histidine tag), and were sequence verified.

Calculation of relative expression units (REU)

REUs were calculated through use of a strain harboring pJ23101-YFP (Supplementary 

Figure 8), which contains a constitutive promoter (BBa_J23101) followed by a 5’UTR 

(BBa_B0032) and YFP. A plasmid containing the reference standard was transformed into 

DH10B cells to result in the in vivo reference strain. The reference strain was grown under 

conditions identical to an experimental strain (in this work, strains harboring NOT gates or 

genetic circuits). The mean reference fluorescence of three replicates minus white cell 

fluorescence was set to 1 REU. The mean fluorescence from experimental strains was 

divided by the reference standard to obtain their output in REU.

Repressor expression and purification

Plasmids encoding the synthesized repressor were transformed into BL21(DE3)pLysS cells. 

Single colonies were selected for by growth on LB Miller medium containing ampicillin and 

chloramphenicol. Cells were inoculated in SOB containing ampicillin and chloramphenicol 

and grown overnight at 37°C. The following morning, cells were diluted back to an OD600 

of 0.1 in 50 mL fresh SOB medium without antibiotics and were induced using 1 mM IPTG 

once cells reached an OD600 between 0.6 - 0.8. Cells were grown for 6 hours at 37°C at 250 

rpm in a shaking incubator, spun down at 4,000 rpm at 4°C, supernatant discarded, and 

pellets stored at −80°C.

Cell pellets were resuspended on ice in 5 mL binding buffer (0.5 M NaCl, 20 mM HEPES 

pH 8, 5 mM Imidazole, 50 mM Phenylalanine, 50 mM Isoleucine, 10% glycerol, and 0.1 μM 

DTT) containing protease inhibitors and 0.1% Igepal detergent. Resuspended cells were 

lysed by sonication at room temperature with a setting of 20% duty cycle and 0.1 second 

pulses, using two 20 second cycles, followed by a final 10 second cycle, with icing in 

between. Lysates were clarified by centrifugation at 4°C at 10,000 rpm for 30 minutes. 

Clarified extracts were then filtered, applied to 0.5 ml Nickel resin (that had been 

equilibrated with binding buffer for 30 minutes at room temperature using a Nutator), and 

the resin collected using a gravity flow column. The repressor-bound resin was washed with 

5 ml binding buffer, 10 ml wash buffer (0.5 M NaCl, 20 mM HEPES pH 8, 25 mM 

Imidazole, 50 mM Phenylalanine, 50mM Isoleucine, 10% glycerol, and 0.1 μM DTT), and 

eluted in 0.5 ml elution buffer (0.5 M NaCl, 20 mM HEPES pH 8, 0.5 M Imidazole, 50 mM 

Phenylalanine, 50mM Isoleucine, 10% glycerol, and 0.1 μM DTT). To the eluate, 3.5 mL 

binding buffer was added, applied to a 15 ml microconcentrator and spun down at 4000 x g 
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for 20 minutes at 4°C. The concentrated eluate was stored on ice, the concentration 

determined using Bradford reagent, distributed into approximately 150 μg aliquots, flash 

frozen in liquid nitrogen, and stored at −80 °C.

Custom array design and native operator sequence analysis

Analysis of previously characterized operators for the repressors within our library revealed 

that the repressors bind sequences ranging from 16-55 bp (with an average size of 28 bp) 

that are predominantly AT-rich, and contain inverted repeats. Based on this information, a 

custom array that contains AT-rich, 28-mer inverted repeat sequences was developed. To 

meet the manufacturer-imposed cut-off of 2.1 million probes, motif analysis was carried out 

(using the native operators) to identify conserved positions that could be fixed within the 

hairpin. From this analysis, a single motif was identified (Supplementary Figure 1). The 

alignment of operators representing the consensus sequence is listed in Supplementary Table 

1. Those positions that were fixed are as follows (counting back from the axis of symmetry 

within the hairpin in Figure 2a), 7=A, 13=A, and 14=T. Furthermore, a GC-cutoff of 45% 

was implemented (and included a portion of those having 51% GC content) to reach 2.1 

million distinct probes present on a single array. Arrays were synthesized by Roche 

Nimblegen and correspond to design file 110308_Hairpin_BS_CGH_HX1.

Repressor binding array experiments and extraction of operator data

Hairpin formation of Nimblegen-synthesized arrays (Figure 2a) was induced by washing 

arrays in methanol, followed by 30- and 15- minute incubations in 7 M Urea in 1× 

phosphate buffered saline (PBS) and 1× PBS at 65 °C, respectively, that had been warmed 

to 65°C, with gentle agitation and protection from light throughout. Arrays were then 

incubated in non-stringent wash buffer (6.6X SSPE, 0.01% Tween-20) at room temperature 

for 10 minutes, rinsed in 1× Wash Buffer 3 (Roche Nimblegen), dried using a microarray 

picofuge, and stored in the presence of desiccant protected from light. Binding reactions 

(0.25% non-fat dried milk, 0.5 mg/ml BSA, 100 μM DTT, 100 mM NaCl, 50 mM HEPES 

pH8, 150 μg purified repressor, and 2 μl cy-5 anti-his conjugate in a total volume of 1 mL) 

were incubated at room temperature for 45 minutes in a light protected microfuge tube. 

Gaskets were applied to an individual array, the chamber washed with water, protected from 

light using foil to minimize exposure, and blocked for 75 minutes at room temperature with 

2.5% non-fat dried milk. The blocking solution was removed, the chamber washed with 

buffer containing 100 mM NaCl and 50 mM HEPES pH8, and the binding reaction was 

hybridized to the array for 1 hour at room temperature using a slow and constant rotating 

motion. The binding reaction was removed, the chamber washed out with 100 mM NaCl and 

50 mM HEPES pH8, and the gasket removed. The array was rinsed with 1× Wash Buffer 3, 

dried using a microarray picofuge, and imaged using an Agilent DNA Microarray Scanner, 

Model G2565B. For those purified repressors that exhibited binding, a second array was run 

to eliminate potential hits that arose due to background or spatial effects. Binding to the 

array was observed for 34 repressors in the library. For each array, intensity values were 

assigned to individual sequences using Nimblescan software (Roche Nimblegen). Perl 

scripts developed by C. Warren (Illumavista Biosciences) were used to extract intensity 

values across both arrays.
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Statistical analysis was carried out for corresponding intensity values; those sequences that 

met a coefficient of variation cut-off of less than 0.25 for intensities were then averaged. 

Motif analysis was carried out for those sequences associated with high averaged intensity 

values using the motif finding algorithm MEME38. Sequences were input into MEME using 

the background Markov model: A 0.329453127, C 0.170546873, T 0.329453127, G 

0.170546873. Further MEME settings included any number of repetitions and searching the 

given strand only, with minimum and maximum widths between 12 and 28 bases. Sequences 

representing the operator motifs illustrated in Figure 2b are listed in Supplementary Data 
Set 2.

Library screening to identify repressible promoters

A single letter, degenerate code was defined for each position within an array-identified 

motif based on MEME-identified consensus sequences (Figure 2b) to generate an operator 

motif (Figure 3a). Degenerate oligonucleotides representing the resulting operator motif 

were designed to insert the operator motif into a strong, constitutive, synthetic Biobricks 

BBA_J23119 standard promoter39. Operator motifs were inserted, in various positions, 

between or around the -35 and -10 elements of the BBA_J23119 promoter using inverse 

PCR. Specifically, vector sequences were PCR amplified using Phusion DNA polymerase 

(NEB) along with the degenerate, operator-motif containing oligonucleotides. The resulting 

product was run on an agarose gel, extracted, and digested with DpnI. The blunted-ended, 

DpnI-digested product was phosphorylated (T4 Polynucleotide Kinase) and ligated (T4 

DNA ligase) in a single reaction at room temperature, transformed into chemically 

competent DH10B cells, and plated on selective LB medium. Libraries containing individual 

sequence variants of an operator motif were screened for fluorescence using a blue light 

transilluminator to ensure that the resulting promoters containing operator motifs retained 

activity. Those operator motif variants that promoted fluorescence were also screened for 

repression by co-transformation with the cognate repressor (Figure 3b). Briefly, DH10B 

cells containing a repressor plasmid expressing the cognate repressor were made competent 

using the Z-competent cell kit (Zymo Research). Plasmid DNA was prepared, in 96-well 

format, from individual fluorescent operator motif variants. The resulting plasmid DNA was 

transformed into Z-competent DH10B cells containing the cognate repressor. Overnights 

were made from cells containing the fluorescent operator motif reporters only, and cells 

containing both the reporter co-transformed with the cognate repressor. 1 μl of overnight 

culture was diluted into 200 μl 1× PBS and flow cytometry was carried out to quantify 

fluorescence levels in the presence and absence of repressor for the LitR and McbR 

repressors (and then assessed by eye for all other repressor/reporter screens using a blue 

light transilluinator). The promoter variant associated with the largest difference in 

fluorescence in the absence and presence of repressor was selected to be the cognate 

promoter for a given repressor. Promoters were also constructed using the previously 

identified operator sequences for the AmtR, BetI, BM3R1, HapR, HlyIIR, IcaR (A), LmrA, 

PhlF, SmcR, and TetR repressors listed in Supplementary Table 2. Individual operator 

sequences were inserted into the Biobricks BBA_J23119 standard promoter in various 

positions surrounding either or both of the -35 and -10 elements. Those promoters that 

retained constitutive activity were screened for repression by their cognate repressor using 

the methods outlined above.
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Construction and tuning of repressor expression

The reverse engineering feature of the RBS calculator53 (https://salis.psu.edu/software/

reverse) was used to identify a weak and a strong RBS sequence for each individual 

repressor, with the following settings: Free energy model: v1.1 and Organism (16s rRNA): 

Escherichia coli str. K12 substr. DH10B ACCTCCTTA. Specifically, RBS sequences were 

reverse engineered using the following 4 RBS sequences to obtain their translation initiation 

rate for an individual repressor: B0034 GAAAGAGGAGAAATACTAGATG, rbs1 

TCACACAGGAAACCGGTTCGATG, rbs2 TCACACAGGAAAGGCCTCGATG, or rbs3 

TCACACAGGACGGCCGGATG. Successive, single base substitutions were made until 

RBSs of the desired strength were obtained. This strategy was used to identify both a weak 

and strong RBS for a given repressor. The two respective strength RBS sequences were 

aligned and combined into a single, degenerate RBS (except in the case of TetR where a 

single RBS was used, Supplementary Table 3). The sequence content based off of the 

alignment and relative translation initiation strength information for each sequence variant 

were taken into account when assigning degenerate codes to each position within an RBS. 

Oligonucleotides were designed to encode the degenerate RBS, which was inserted 

upstream of the repressor coding sequence, to generate an RBS library. The repressor ORF, 

reporter fragment, and vector backbone were PCR-amplified using Phusion DNA 

polymerase (NEB) and fused into a single vector using Gibson assembly to generate a single 

response function vector (Supplementary Figure 5). The entire 20 μl Gibson reaction was 

transformed into chemically DH10B cells and plated onto LB selective medium containing 

ampicillin. Single colonies were inoculated and grown for 6 hours at 37 °C in SOB medium 

containing ampicillin, in 96-well format, in the presence and absence of 1mM IPTG. 

Fluorescence levels were quantified using flow cytometry to deduce fold change of the 

induced and uninduced clones as outlined above. Those clones demonstrating high levels of 

fluorescence in the absence of inducer, and low levels of fluorescence in the presence of 

inducer were selected. The RBSs that give rise to the highest fold-change are shown in 

Supplementary Table 4 and were used for the orthogonality measurements and in the 

construction of NOT gates.

Measurement of orthogonality matrix

Competent E. coli DH10B cells were made using the Z-competent cell kit (Zymo Research) 

that contained individual NOT gates (pRF-, Supplementary Figure 5), which serve as the 

reporter. Cells were transformed with an additional vector containing the repressor (pOrtho-, 

Supplementary Figure 4), whose expression was controlled by the 3OC6HSL-inducible PLux 

promoter54, in all possible combinations. Specifically, 10-50 ng of plasmid DNA was 

incubated with 10-20 μl Z-competent cells on ice for 10 minutes in a 96-well plate. 150 μl 

SOC broth was added, and cells were outgrown at 37°C for 1 hour with shaking at 1000 rpm 

in an ELMI shaker (ELMI Ltd) and plated on LB agar. Plated cells were inoculated into LB 

containing Ampicillin and Kanamycin, and grown overnight at 37°C with shaking at 1000 

rpm. The following morning, stationary-phase cultures were diluted 1:200 into LB 

containing antibiotics, and grown in a 96-well shaking incubator for four hours at 37°C with 

shaking at 1000 rpm. The cultures were diluted 1:100 into LB containing antibiotics and 20 

μM 3OC6HSL, except in the case of HapR, Orf2, ScbR, and SmcR, where 2 μM, 20 nM, 
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200 nM, and 200 nM 3OC6HSL was used, respectively, due to toxicity. The induced cells 

were grown at 37°C for 6 hours with shaking at 1000 rpm, and then fluorescence was 

measured by diluting the induced culture 1:40 in phosphate-buffered saline and carrying out 

flow cytometry as described below. Induction assays were run in triplicate for each 

repressor-reporter combination, and a control plasmid for the orthogonality assays (that 

corresponds to the pOrtho vector lacking a repressor coding sequence) was used as a 

normalization control to signify the unrepressed state for individual reporters. The data 

represent the average of three replicates collected on different days.

Measurement of NOT gate response functions

E. coli DH10B cultures containing NOT gate constructs were grown overnight for 16 hours 

in liquid SOB medium containing ampicillin. The cells were grown in a 96-well shaking 

incubator at 37°C and 1000 rpm. The next day, stationary-phase cultures were diluted 1:200 

into antibiotic-containing minimal M9 media supplemented with glucose, and grown in the 

96-well shaking incubator for three hours using the same shaking and temperature settings 

as the overnight growth. Subsequently, the cultures were diluted 1:700 into antibiotic-

containing minimal M9 media supplemented with glucose containing different 

concentrations of IPTG, and then grown for 6 hours in the shaking incubator to obtain 

sufficient exponential-phase cell density for cytometric analysis. The IPTG concentrations 

used were 0 μM, 5 μM, 10 μM, 20 μM, 30 μM, 40 μM, 50 μM, 70 μM, 100 μM, 150 μM, 200 

μM, and 1000 μM. At the end of the final growth period, cultures were diluted 1:5 into 

phosphate-buffered saline. Strains containing the plasmids for the measurement of input 

promoter activity (Supplementary Figure 9) and the conversion to REU (Supplementary 

Figure 8) were grown and measured concurrently with these strains. Flow cytometry was 

performed as described below. The data represent the average of three replicates collected 

on different days, and error bars correspond to the standard deviation between these 

measurements. Plasmids encoding all NOT gates (Supplementary Figure 5) and circuits 

(Figure 5) have been deposited to addgene (http://www.addgene.org/).

Measurement of genetic circuits

E. coli DH5α cultures containing the plasmids encoding the circuits were grown overnight 

in liquid SOB medium containing kanamycin and ampicillin (for the 2-plasmid NAND 

circuit) or kanamycin (for the 1-plasmid AND circuit) in a 96-well incubator at 37°C 

shaking at 1000 rpm. After 16 hours of growth, cultures were diluted 1:200 into LB medium 

with antibiotics, and grown in the 96-well shaking incubator for three hours using the same 

shaking and temperature settings as the overnight growth. Subsequently, the cultures were 

diluted 1:700 into LB medium with inducers and then grown for 6 hours in the shaking 

incubator. The inducer concentrations used are: 1 mM IPTG, 20 μM 3OC6HSL, and 100 

ng/mL aTc. Cultures were diluted 1:20 into phosphate-buffered saline and fluorescence was 

measured by flow cytometry as described below.

Cytometry measurement experiments

At the end of growth, cultures were diluted into phosphate-buffered saline with 2 mg/mL 

kanamycin to arrest cell growth. Cells were analyzed by flow cytometry, using a BD 
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Biosciences LSRII flow cytometer with a blue (488 nm) laser. An injection volume of 10 μL 

and the flow rate of 0.5 μL/s were used.

Cytometry data analysis

Cells were analyzed using FlowJo (TreeStar Inc., Ashland, OR), and populations were gated 

on forward scatter area from 100 to 50,000, and on side scatter area from 50 to 50,000. The 

gated population consisted of thousands of cells. The fluorescence geometric mean of the 

gated population was calculated, and the mean autofluorescence of a “white cell” control 

sample was subtracted from the experimental sample's mean. Fold-change is calculated by 

dividing the mean fluorescence of the ON state by the mean fluorescence of the OFF state 

(Supplementary Table 5). The data represent the average of three replicates collected on 

different days, and error bars correspond to the standard deviation between these 

measurements.

Cellular growth and toxicity data

Repressor toxicity was assessed by comparing the growth of induced, NOT gate-containing 

cells to the growth of uninduced cells (Supplementary Figure 11). Cells were grown 

identically to the response function assay. A 100 μL culture aliquot was placed into an 

optically clear bottom 96 well plate, and the absorbance was measured at 600 nm using a 

BioTek Synergy H1 Hybrid Microplate Reader. Repressors were considered toxic under 

conditions where cell growth is less than 75 percent of the uninduced culture growth. The 

final non-toxic induction point occurs at 200, 150, 100, 70, 70, and 70 μM IPTG for ButR, 

TarA, HapR, ScbR, SmcR, and Orf2, respectively. If the threshold for toxicity is redefined 

to a different number, a plot of the maximum induction levels (REU) for a given toxicity 

threshold is provided (Supplementary Figure 12). The data represent the average of three 

replicates collected on different days, and error bars correspond to the standard deviation 

between these measurements.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. A large repressor library is compiled using genome mining
(a) A genetic NOT gate (symbol shown) can be built using a repressor (pink arrow) that 

binds to an operator (pink box) in an output promoter. (b) The pipeline for the discovery and 

characterization of orthogonal repressors is shown. The second panel depicts a portion of the 

CSI microarray used to determine the operator sequence. (c) The complete library of 73 

synthesized repressors (plus TetR) are organized into a phylogenetic tree diagram, where 

carets indicate those repressors that appear in the final orthogonality matrix illustrated in 

Figure 3d. The tree was aligned based on respective repressor protein sequences and branch 

lengths correspond to relative divergence in amino acid sequence. The sequences and 

sources of each repressor are provided in Supplementary Data Set 1. The two IcaR 

orthologs originate from two distinct host organisms where (A) indicates Staphylococcus 

aureus and (E) indicates Staphylococcus epidermidis.
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Figure 2. The identification of operator sequences using an in vitro array assay
(a) The hairpin sequences used to build the array correspond to a 28-mer inverted repeat 

sequence. N's indicate that all nucleotides are allowed at that position. The arrows above the 

hairpin mark each 14-mer half site and indicate the axis of symmetry for the palindrome. 

The variable region is surrounded by GC-clamps on both the 5’ and 3’ ends, and the hairpin 

contains a GGA loop to induce hairpin formation. The 3’ end is tethered to the array surface 

via a flexible linker. (b) Operators are shown for those repressors that yielded well-

conserved sequence motifs.
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Figure 3. Design and screening of orthogonal promoters
(a) Degeneracy in operator sequences (Figure 2b) is converted into a single motif. The LitR 

motif is shown (W is A/T, H is A/T/C, Y is T/C, K is G/T, M is C/A, R is A/G, and D is 

A/T/G). The degenerate operator is placed in the BBa_J23119 constitutive promoter 

spanning either the -35 or -10 element (right panel). (b) The results of screening the LitR 

promoter library are shown. The fold-repression is calculated as the ratio of fluorescence 

from the promoter alone and that obtained when the repressor is present and uninduced for a 

single replicate. (c) The best promoters identified in the screens are shown for each repressor 

that are part of the final set of 20 repressors. The operator sequence is shown in capital red 

letters and the Shine-Delgarno as bold letters. Those promoters lacking the Shine-Delgarno 

sequence contain this sequence adjacent to the 3’ end of the sequence listed; when not 

shown, the sequence up to the ATG start is identical. (d) The promoters driving YFP 

expression are carried on a p15a plasmid and the repressors are under HSL-inducible control 

on a ColE1 plasmid (Supplementary Figure 5 and 4, respectively). The matrix has been 

sorted by eye, such that the most orthogonal promoters appear at the top and the least at the 

bottom, and similar patterns of cross-reactivity are clustered together. Repressor expression 

is induced by 20 μM HSL (except in the case where such concentrations of HSL are toxic, 

including HapR, Orf2, ScbR, SmcR which were induced with 2 μM, 0.02 μM, 0.2 μM, and 

0.2 μM HSL, respectively). The data represent the average of three replicates collected on 

different days.
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Figure 4. Response function measurement
The response functions are measured using the IPTG-inducible PTac promoter as an input 

and measuring the response of the output promoter. The activity of the input promoter is 

measured separately using YFP. The activities of the input and output promoters are 

converted to REU. The response functions of the NOT gates are shown. From left to right, 

the concentration of IPTG is: 0, 5, 10, 20, 30, 40, 50, 70, 100, 150, 200, 500, and 1000 μM. 

The error bars show the standard deviation of three experiments performed on different 

days. As a guide to the eye, the highest (LmrA) and lowest (BM3R1) response functions are 

shown on each plot with the region between them in grey. The dashed regions indicate the 

levels of expression beyond which toxicity is observed (Supplementary Figures 11 and 12). 

The data represent the average of three replicates collected on different days, and error bars 

correspond to the standard deviation between these measurements.

Stanton et al. Page 22

Nat Chem Biol. Author manuscript; available in PMC 2014 September 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. Construction and characterization of integrated circuits
(a) The process of promoter mapping for the assembly of gates into a desired circuit is 

shown for the NAND circuit. The measured data are grown under conditions of no inducer 

(−/−), 1 mM IPTG (+/−), 20 μM 3OC6HSL (−/+), and 1 mM IPTG and 20 μM 3OC6HSL 

(+/+). The bar graph details the measured output levels under all input combinations. Small 

black bars indicate the predicted output value for the indicated input. The data represent the 

average of three replicates collected on different days, and error bars correspond to the 

standard deviation between these measurements. (b) The design, construction, and 

characterization of the AND circuit is illustrated. Note that when multiple promoters are 

placed upstream of a repressor, the gate is converted from the NOT to NOR function. The 

measured data are grown under conditions of no inducer (−/−), 1 mM IPTG (+/−), 100 

ng/mL aTc (−/+), and 1 mM and 100 ng/mL aTc (+/+). The bar graph details the measured 

output levels under all input combinations. Small black bars indicate the predicted output 

value for the indicated input. The data represent the average of three replicates collected on 

different days, and error bars correspond to the standard deviation between these 

measurements.
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