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Abstract: Formaldehyde (HCHO) is an important indicator of indoor air quality and one of the
markers for detecting lung cancer. Both medical and air quality applications require the detection
of formaldehyde in the sub-ppm range. Nanocomposites SnO2/TiO2 are promising candidates for
HCHO detection, both in dark conditions and under UV illumination. Nanocomposites TiO2@SnO2

were synthesized by ALD method using nanocrystalline SnO2 powder as a substrate for TiO2 layer
growth. The microstructure and composition of the samples were characterized by ICP-MS, TEM,
XRD and Raman spectroscopy methods. The active surface sites were investigated using FTIR and
TPR-H2 methods. The mechanism of formaldehyde oxidation on the surface of semiconductor oxides
was studied by in situ DRIFTS method. The sensor properties of nanocrystalline SnO2 and TiO2@SnO2

nanocomposites toward formaldehyde (0.06–0.6 ppm) were studied by in situ electrical conductivity
measurements in dark conditions and under periodic UV illumination at 50–300 ◦C. Nanocomposites
TiO2@SnO2 exhibit a higher sensor signal than SnO2 and a decrease in the optimal measurement
temperature by 50 ◦C. This result is explained based on the model considering the formation of n-n
heterocontact at the SnO2/TiO2 interface. UV illumination leads to a decrease in sensor response
compared with that obtained in dark conditions because of the photodesorption of oxygen involved
in the oxidation of formaldehyde.

Keywords: formaldehyde gas sensor; sub-ppm concentration; UV light; metal-oxide nanocomposites;
SnO2; TiO2

1. Introduction

Formaldehyde, HCHO, a colorless gas with an unpleasant odor, is a toxic compound that causes,
in trace concentrations of 0.1–0.5 mg/m3, serious diseases of the respiratory tract, gastrointestinal tract
and eyes. Biochemical oxidation of HCHO in human body occurs with the formation of carbon dioxide
and formic acid, which, with prolonged exposure, causes asthma, pulmonary edema, and cancer.
Formaldehyde is widely used in the manufacturing of polymeric materials for flooring, furniture, heat
and electrical insulation, artificial tissues, plastic windows, etc. In addition, a concentrated HCHO
solution (formalin) is used in medicine for disinfection, and in the food industry for the preservation of
fruits and vegetables. Formaldehyde is also included in some cosmetics and personal care products.
A detailed description of the characteristics of formaldehyde and its effects on health can be found
in Ref. [1]. According to the World Health Organization, the maximum permissible concentration of
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formaldehyde in the air of the working area is 0.5 mg/m3 (0.4 ppm), in the air of the residential area is
0.125 mg/m3 (0.1 ppm) [1,2].

Recently, it was proposed that formaldehyde is one of the markers for lung cancer detection using
exhaled breath analysis [3–6]. The median HCOH level observed for lung cancer patients (83 ppb) is
higher than that for healthy ones (48 ppb) [5]. Thus, both medical and air quality applications require
the detection of formaldehyde in the sub-ppm range.

Metal oxide based semiconductor gas sensor for formaldehyde detection are quite attractive since
they can have sufficient sensitivity, are inexpensive and can be integrated into portable devices such as
e-Nose, that could detect formaldehyde at ppb level at high humidity level (e.g., 90% RH for breath
analysis) and in the presence of different interfering gases [6–8]. However, most studies consider the
sensor characteristics of various semiconductor oxides in the detection of HCHO in the concentration
range of 10 ppm or more [9,10]. Recent efforts are focused at the implementation of a new principle
of HCHO detection under conditions of minimal thermal heating combined with illumination by a
low-power UV or visible light source [11,12].

It was shown by the authors of [13–18] that under UV illumination molecules of volatile organic
compounds (VOCs: acetone, acetaldehyde, ethanol, hydrocarbons) undergo photolysis on the surface
of semiconductor oxides that facilitates their subsequent oxidation with chemisorbed oxygen, leading
to a change in the conductivity of the semiconductor. Titanium dioxide TiO2 and zinc oxide ZnO
demonstrate the highest activity in the photocatalytic VOCs oxidation. A comparative study on UV
light activated porous TiO2 and ZnO sensors demonstrated that TiO2 exhibited a superior performance
to ethanol and formaldehyde [19].

As a sensor material for HCHO detection TiO2 with different morphology was studied: mesoporous
powders [20], nanotube arrays [21], polycrystalline thick films [22], hollow microspheres [23]. In all
cases, the investigations were conducted under UV illumination. The experimental study of the
TiO2 sensor properties in dark conditions is difficult because of the exceptionally high electrical
resistance of these materials. A decrease in the resistance of TiO2-based materials can be achieved
by creating nanocomposites, in which TiO2 plays the role of a photocatalyst/receptor, while the
transport of charge carriers is effectuated by another semiconductor with more suitable electrical
characteristics. Nanocomposites SnO2/TiO2 are promising candidates for formaldehyde detection
both in dark conditions and under UV illumination. It was shown that as compared with pure
SnO2 and TiO2, nanocomposites with different Sn/Ti ratio demonstrate higher sensor response toward
triethylamine [24], ammonia [25], hydrogen [26,27], and formaldehyde [28]. Moreover, DFT calculations
and experimental study presented by the authors of [29] revealed that these nanocomposites have
higher photocatalytic activity in UV-light initiated degradation of RB5 and RhB dyes. However,
the role of each component in the formation of the sensor signal when detecting formaldehyde in dark
conditions and under UV illumination is not clear.

In this paper, we compare the sensor properties of nanocrystalline SnO2 and TiO2@SnO2

nanocomposites when detecting formaldehyde in the sub-ppm range in dark conditions and under
periodic UV illumination in the temperature range of 50–300 ◦C.

2. Materials and Methods

2.1. Materials Synthesis

Nanocrystalline SnO2 was prepared by the precipitation method. Aqueous ammonia solution
(25%) was added dropwise to 0.3 M solution of tin (IV) chloride pentahydrate (SnCl4·5H2O, 98%,
Sigma-Aldrich) under vigorous stirring until pH = 7 [30,31]. The synthesis was carried out at room
temperature. The obtained α-stannic acid gel was separated by centrifugation at 3500 rpm for 3
minutes, repeatedly washed with deionized water and then with 0.01 M NH4NO3 solution. AgNO3

test was used to confirm the negative reaction to chloride ions. The resulting gel was dried in air at
50 ◦C for 24 h, then obtained β-stannic acid xerogel was ground in an agate mortar and annealed in
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air at 300 ◦C for 24 h. According to transmission electron microscopy data [30,31] the SnO2 powder
consists of a rounded shape, agglomerated nanoparticles of 3–8 nm in diameter.

Nanocomposites TiO2@SnO2 were synthesized by atomic layer deposition (ALD) method.
Titanium (IV) isopropoxide (Ti(OCH(CH3)2)4, TTIP) and H2O used as precursors, were introduced
consequently into the growth reactor containing SnO2 nanocrystals to avoid premature interaction.
The ALD parameters: temperature and pressure were set to 150 ◦C and 0.1 torr, respectively. TTIP
and H2O were kept in bubblers at 40 ◦C and 24 ◦C, respectively. The typical ALD cycle included
the following stages: 1 s for TTIP dosing, 10 s for N2 purging, 0.2 s for H2O dosing, and 25 s for
N2 purging. The ALD cycles were repeated for 500, 1000 and 2000 times, respectively, producing
TiO2@SnO2 nanocomposites with increasing Ti/Sn ratio. After ALD synthesis the nanocomposites were
annealed in air at 500 ◦C for 1 h to remove organic residues and ensure TiO2 crystallization. To obtain
an adequate reference sample, nanocrystalline SnO2, which was not subjected to ALD treatment, was
additionally annealed in air at 500 ◦C for 24 h.

2.2. Materials Characterization

Chemical composition ([Ti]/([Ti]+[Sn]), mol%) of TiO2@SnO2 nanocomposites was determined
by X-ray fluorescent analysis (XRF) performed on M1 Mistral spectrometer (Bruker, Billerica, MA,
USA) with the beam energy of 50 keV. The diameter of the analyzed area was 1.0 mm, the signal
accumulation time 2 min.

The microstructure of the synthesized products was studied by high resolution transmission
electron microscopy (FE-TEM, JEOL JEM-2100F, JEOL Ltd., Tokyo, Japan).

The phase composition of TiO2@SnO2 nanocomposites was characterized using powder X-ray
diffraction (XRD) and Raman spectroscopy. The XRD patterns were collected by DRON-4 diffractometer
(Burevestnik, Moscow, Russia) using monochromatic Cu Kα radiation (λ = 1.5406 Å). The survey was
carried out in the range of 2θ = 10◦–80◦ with a step of 0.1◦ at scanning rate of 0.5◦/min. The crystallite
size dXRD of SnO2 and TixOy phases was calculated from the broadening of the most intense XRD
peaks using Scherer equation. WinXPow (STOE and Cie GmbH, Darmstadt, Germany) software was
used for phase and full profile analysis, DSH software (laboratory made) was used for crystallite size
calculations. The crystalline phases were determined using structural parameters of SnO2 cassiterite
(ICDD 41-1445), TiO2 anatase (ICDD 21-1272) and TiO2 brookite (ICDD 75-1582). Raman spectra were
recorded by a Renishaw InVia multichannel spectrometer (Renishaw plc., Gloucestershire, UK) using
an argon laser with a wavelength of 514 nm as the radiation source. The laser beam was focused on the
sample using a microscope objective (magnification × 50) so that the analyzed area was approximately
100 µm2. The spectra were recorded in air at room temperature in the range of 100–900 cm−1 with a
step of 1 cm−1 (data was collected for each point for 10 s).

The nature of chemical groups presenting in obtained samples was investigated using the FT-IR
spectroscopy. The IR spectra were recorded using a Perkin–Elmer Spectrum One Fourier Transform
Infrared (FT-IR) spectrometer (Perkin Elmer Inc., Waltham, MA, USA) in the range of 4000–400 cm–1

with a step of 1 cm–1 in the transmission mode. For this the TiO2@SnO2 powders (0.3–0.5 mg) were
grinded with 50 mg of dried (350 ◦C, 2 h) KBr (FT-IR grade, Sigma-Aldrich, Saint Louis, MO, USA) and
pressed into tablets. DRIFT spectra were collected in situ using the DiffusIR annex and heated flow
chamber HC900 (Pike Technologies, Fitchburg, WI, USA) sealed by ZnSe windows. DRIFT spectra
were registered in the range 4000–1000 cm−1 at 4 cm−1 resolution with an accumulation of 30 scans.
Powders (50 mg) were placed in alumina crucibles (5 mm diameter). Gas mixture containing 100 ppm
of HCHO in dry air was used for the investigations.

The investigations of SnO2 reference sample and TiO2@SnO2 nanocomposites by the method
of thermo-programmed reduction with hydrogen (TPR-H2) was effectuated on Chemisorb 2750
(Micromeritics, Norcross, GA, USA) in a quartz reactor using 10% H2/Ar gas mixture (50 mL/min)
under the heating to 900 ◦C at a heating rate of 10 K/min.
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Specially designed micro-hotplates were used to investigate gas sensor properties.
The micro-hotplates consist of dielectric substrate (Al2O3) with dimensions of 0.9 × 0.9 × 0.15
mm, which provides a small temperature gradient between the heater and the sensitive layer. Substrate
is covered with Pt electrodes on the top side for resistance measurements and Pt heater on the back
side, which is protected by an insulating layer of dielectric paste. Electrodes and heater are made using
Pt-based paste by screen printing method (Figure 1). The powders of nanocrystalline oxides were
mixed with a vehicle (α-terpineol in ethanol) and deposited in the form of thick films over dielectric
substrate to cover the electrodes. Thick films were sintered at 300 ◦C for 10 hours in air to remove the
organic binder. The method used allows us to obtain the coatings which are continuous and uniform
over the entire substrate with the thickness about 1 µm [30] and with the value of resistance in air
at 300 ◦C, differing by no more than 10%. The current–voltage (I-V) characteristics of the sensors
measured using Potentiostat P-8-NANO (Elins, Zelenograd, Russia) are shown in Figure 1c. All the
samples exhibited linear I-V curves both for positive and negative applied bias voltages up to +2V and
−2V, respectively.
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Figure 1. Micro-hotplate scheme: (a) front side; (b) back side; (c) Current–voltage (I-V) characteristics
of the sensors.

The schematic illustration of sensor measurements setup is shown in Figure 2. The DC conductivity
was measured in situ using electronic module (10) providing control of sensor heating and high-precision
measurement of the resistance of the sensitive layer. The sensors were placed into a Teflon airtight and
light-tight flow chamber (3) connected to a computer-controlled (5) gas delivery system with electronic
mass-flow controllers (8). The measurements were carried out under a controlled constant flux of
100 mL/min in the temperature range of 300–50 ◦C with a step of 50 ◦C, in the dark conditions and
under periodic UV illumination. Miniature UV LED (4) (10 mW/cm2, λmax = 365 nm) located at a
distance of 4 cm above the sensors was used as an illumination source. The power of the LED was
effectuated using DC power supply (1). The illumination of the sensors was carried out in a pulsed
mode with the period 2 min “on”–2 min “off”. An automatic cyclic relay (2) periodically opened and
closed the circuit, allowing measurements to be made with periodic illumination. The sensor properties
of SnO2 reference sample and TiO2@SnO2 nanocomposites were investigated toward formaldehyde
HCHO (0.06–0.08–0.15–0.3–0.6 ppm) in air (relative humidity at 25 ◦C RH25 = 30%). The gas mixtures
containing preassigned concentration of HCHO were prepared by dilution of certified gas mixture
(6) with background purified air (7). Flow through humidifier (9) was used to adjust the humidity
(RH25 = 30%) of gases passing through the sensor chamber. The sensor response was calculated as
S = Rair/Rgas, where Rair is the resistance in background air, Rgas is the resistance in the presence
of HCHO.
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Figure 2. Schematic illustration of sensor measurements setup. (1) DC power supply QJ2002C (Ningbo
JiuYuan Electronic, Zhejiang, China); (2) Time relay REV-114 (Novatek-Electro, Moscow, Russia);
(3) Teflon airtight and light-tight chamber (laboratory-made); (4) UV LED (SMD-5050 XML, Epileds
Co. LTD, Taiwan, China); (5) Control PC; (6) Analyte gas bottle (4.6 ppm of HCOH in N2, certified gas
mixture, Monitoring, Russia); (7) Pure air generator («Granat-Engineering» Co.Ltd, Moscow, Russia);
(8) Mass Flow Controller EL-FLOW F-221M (Bronkhorst, Ruurlo, The Netherlands); (9) Humidifier
Cellkraft P-2 (Cellkraft AB, Stockholm, Sweden); (10) electronic module providing control of sensor
heating and high-precision measurement of the resistance of the sensitive layer (MGA-2-1, Senseria,
Tomsk, Russia).

3. Results and Discussion

3.1. Characteristics of Nanocrystalline SnO2 and TiO2@SnO2 Nanocomposites

The elemental and phase composition of the samples under investigation are presented in Table 1.
An increase in the number of ALD cycles led to a proportional increase in the titanium content
(presented as ([Ti]/([Ti]+[Sn]) ratio, mol%) in nanocomposites.

Table 1. Elemental and phase composition of SnO2 reference sample and TiO2@SnO2 nanocomposites
with crystallite size dXRD of detected phases.

Sample Number of ALD
Cycles

[Ti]/([Ti]+[Sn]),
mol.%

Phase Composition

Phases dXRD, nm

SnTi-0 0 0 SnO2 cassiterite 9 ± 1

SnTi-1 500 20 ± 2
SnO2 cassiterite 5.1 ± 0.5
TiO2 brookite 13 ± 1
TiO2 anatase n/d

SnTi-2 1000 24 ± 2
SnO2 cassiterite 4.5 ± 0.5
TiO2 brookite 16 ± 2
TiO2 anatase n/d

SnTi-3 2000 39 ± 3
SnO2 cassiterite 3.5 ± 0.5

TiO2 anatase 22 ± 2

Figure 3 shows the TEM image of SnO2 powder used as a substrate in ALD synthesis confirming
formation of SnO2 nanocrystals with approximate size of 5–10 nm. Lattice-resolved TEM image
presented in Figure 3b highlights the crystalline phase of SnO2 with a plane spacing of 0.34 nm
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belonging to the (110) plane of cassiterite SnO2. The lattice-resolved TEM image of SnTi-1 nanocomposite
(Figure 3c) makes it possible to detect crystalline regions with interplanar distances of 0.34 and 0.29
nm, corresponding to (110) SnO2 (cassiterite) and (121) TiO2 (brookite), respectively.
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According to the results of the XRD analysis (Figure 4), the SnO2 annealed at 500 ◦C (equivalently
to the post-synthetic annealing used for the synthesis of TiO2@SnO2 nanocomposites) crystallizes in a
tetragonal cassiterite structure (ICDD 41-1445) with a crystallite size of 9–10 nm. Intense reflections from
the cassiterite phase are observed in the diffraction patterns of all the samples. The titanium-containing
phases, formed during post-synthetic annealing, change with an increase in the number of ALD
cycles. The TiO2 with brookite structure (ICDD 29-1360) presents in SnTi-1 and SnTi-2 nanocomposites,
as evidenced by the appearance of the intense (121) diffraction peak at 2θ = 30.8◦. The most intense
(120) at 2θ = 25.3◦ and (111) 2θ = 25.7◦ diffraction reflections of brookite coincide with the most
intense (101) diffraction reflection (2θ = 25.3◦) of the TiO2 anatase phase (ICDD 21-1272). Therefore,
the presence of the anatase phase in these nanocomposites cannot be excluded. The intensity of
diffraction peak at 2θ = 25.3◦ increases with increasing titanium content. In the diffraction pattern
of SnTi-3 nanocomposite a new diffraction peak at 2θ = 48.1◦ corresponds to the (200) reflection of
the anatase phase. At the same time, the diffraction peak at 2θ = 30.8◦ does not appear that indicates
the absence of the brookite phase in this sample. The least intense and wide peaks in the ranges of
2θ = 36.5◦–40.0◦ and 2θ = 52.6◦–64.5◦ correspond to the superposition of the reflections of almost
all of the above phases, so their deconvolution and assignment to a certain phase is a difficult task.
The broadening of the SnO2 reflections in the diffraction patterns of nanocomposites and overlap
of intense diffraction peaks corresponding to SnO2 and TiO2 in SnO2-TiO2 (anatase) and SnO2-TiO2

(brookite) systems (in contrast to the TiO2-ZnO [32]) do not allow us to make a positive or negative
conclusion about the incorporation of Ti into the SnO2 lattice.

The crystallite size of detected Sn- and Ti-containing phases depending on titanium content in the
samples is presented in Table 1. The crystallite size of tin dioxide, used as a substrate for the deposition
of titanium dioxide by the ALD method, is 3–4 nm [30,31]. The post-synthetic annealing at 500 ◦C,
necessary for the removal of organic residues of the titanium precursor, leads to an increase in the size
of SnO2 crystallites to 9–10 nm. With an increase in the titanium content in TiO2@SnO2 nanocomposites,
a decrease in the size of SnO2 crystal grains is observed as compared with the reference sample.
A similar effect was repeatedly noted for nanocomposites based on semiconductor metal oxides [33–35].
The presence of impurities on the surface of growing crystallites slows down their growth rate under
isothermal annealing due to the so-called Zener pinning [36]. The maximum crystallite size of the
main phase is determined by the volume fraction and the size of particles (crystalline or amorphous)
segregated on the surface of growing crystallites. The deposition of TiO2 layer on the surface of
nanocrystalline SnO2 reduces the area of SnO2 intergranular contacts, that prevents recrystallization



Sensors 2019, 19, 3182 7 of 24

of SnO2 particles. The greater the thickness of the deposited TiO2 layer, the less the coarsening of
SnO2 particles occurs. For the TiO2 brookite phase in SnTi-1 and SnTi-2 nanocomposites the crystallite
size was estimated using the (121) reflection that does not overlap with another diffraction peaks. For
the size of the crystallites of the TiO2 anatase phase, such an estimate is possible only in the case of
SnTi-3 nanocomposite, in which there is no brookite phase. For the Ti-containing phases, the increase
in the crystallite size is observed. Since during the ALD cycles the Ti-containing precursor has been
deposited on the outer surface of SnO2 agglomerates, the sintering and coarsening of Ti-containing
particles will be easier. That is why an increase in the titanium content leads to an increase in the
crystallite size of the Ti-containing phases.
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cassiterite (ICDD 41-1445), TiO2 anatase (ICDD 21-1272) and TiO2 brookite (ICDD 29-1360).

The IR spectra of nanocrystalline SnO2 and TiO2@SnO2 composites are compared in Figure 5a.
In all spectra, a large broad peak in the region of 2700–3500 cm–1 is observed, which is related to
the stretching vibrations of OH groups and a peak at 1628 cm–1, which is related to the deformation
vibrations of adsorbed water [37,38]. The wide and intense absorption bands at 530 cm–1 and 620 cm–1

in the case of SnO2 correspond to stretching vibrations of the Sn–O and symmetric vibrations of the
O–Sn–O bonds, respectively [39]. The metal–oxygen (M–O) oscillation modes for SnO2 and TiO2 in
TiO2@SnO2 composites overlap in the range of 400–650 cm–1, nevertheless different components can
be distinguished. All the FT-IR spectra of the composites show vibration modes at 450 and 610 cm–1,
which can be attributed to oscillations of Ti–O–Ti and Ti–O bonds, respectively [40–42]. With an
increase in the titanium content an increase in the intensity of the Ti–O oscillation modes is observed,
which appears as a broadening of the M–O absorption peak in this region.

Figure 5b shows the Raman spectra of nanocrystalline SnO2 (SnTi-0) and TiO2@SnO2 composites.
Raman spectrum of the SnO2 clearly shows three characteristic modes at 480.5, 631 and 772.8 cm−1 that
correspond to the Eg, A1g and B2g vibrational modes, respectively [43,44]. The A1g and B2g modes are
associated with symmetric and asymmetric Sn–O stretching, respectively, orthogonally to the c axis.
The translational Eg mode is related to the motion of oxygen anions along the c axis [43,44]. The B1g

oscillation mode appears only in the spectra of nanocrystalline SnO2 in the range of 100–184 cm−1 [45,46].
In the SnO2 spectrum presented in Figure 5b the band at 137 cm−1 is due to B1g mode, the shift may be
associated with the nanoparticles size effect.
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J. Zuo et al. studied the size effects in SnO2 nanoparticles [47]. They showed that, in addition to
the characteristic vibrational modes of bulk SnO2, the Raman spectrum of nanocrystalline SnO2 has two
additional Raman scattering bands at 358 (B1) and 572 cm−1 (B2). The B2 band corresponds to surface
modes and is very sensitive to the changes in crystallite size for nanoscale SnO2. The appearance of
surface modes is associated with a small particle size of SnO2 and can be due to the appearance of
oscillations that are forbidden by symmetry due to the breaking of long-range order in the systems
of reduced dimension. That is why a decrease in crystallite size leads to the formation of a highly
defective surface layer, the contribution of which will be the highest for the materials with the smallest
particle size [48]. Based on the above considerations, the wide band located at 563 cm−1 corresponds
to the surface modes associated with in-plane oxygen vacancies of the nanocrystalline cassiterite
SnO2 [48–50]. Consequently, the small size and surface defects of the SnO2 nanoparticles may have a
positive effect on the gas sensitivity of the sensor. This assumption was experimentally confirmed in
by the authors of [31], where it was shown that the relative intensity of Raman surface modes IS/IV
taken as the ratio of the sum of their intensities IS to the intensity of A1g mode IV demonstrates the best
linear correlation with gas response of SnO2 nanocrystalline materials to CO.

Changes in the crystal’s local symmetry produce changes in some of the components of the
polarizability tensor, even for usually forbidden vibration modes [49]. That is why the A2u IR active
and Raman forbidden modes are found to transform into Raman active modes [48]. In this case the
bands at 309 and 352 cm−1 (Eu) and the band at 444 (B1u) are related to transformation of an IR to
Raman active modes.

Raman peaks observed in the spectra of TiO2@SnO2 composites at 145, 198, 397, 516 and 635 cm−1

(Figure 5b), refer to the Eg, Eg, B1g, A1g + B1g and Eg modes of the anatase phase, respectively [51].
For TiO2 nanoparticles the Eg Raman peak is mainly caused by symmetric stretching vibration of
O–Ti–O groups, B1g peak is caused by symmetric bending vibration of O–Ti–O and A1g peak is caused
by antisymmetric bending vibration of O–Ti–O [52]. The presence of an intense 145 cm−1 mode
(a characteristic oscillation mode of anatase) indicates that TiO2 nanocrystals have a certain degree of
long-range order, while weaker and wider peaks in the high-frequency region indicate the absence of a
short-range order in the anatase phase [53–55]. According to the factor group analysis, TiO2 brookite
phase has a total of 36 Raman active modes (9A1g + 9B1g + 9B2g + 9B3g). Raman spectra of the SnTi-1
and SnTi-2 composites show both anatase and brookite bands. In total, 4 brookite bands were readily
identified, including A1g (255 cm−1), B3g (285, 443 cm−1), B2g (581 cm−1). Also, the A1g (153, 194 cm−1)
and B2g (395 cm−1) brookite bands may be overlapped by anatase modes, which are very close to
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them [56,57]. The full assignment of the vibrational modes in the Raman spectra of nanocomposites is
presented in Table 2.

Table 2. Assignment of Raman vibrational modes (cm−1).

SnTi-0 SnTi-1 SnTi-2 SnTi-3

137 (B1g, cassiterite) 145 (Eg, anatase) 145 (Eg, anatase) 145 (Eg, anatase)
309 (IR Eu, cassiterite) 198 (Eg, anatase) 198 (Eg, anatase) 198 (Eg, anatase)
352 (IR Eu, cassiterite) 255 (A1g, brookite) 255 (A1g, brookite)
444 (IR B1u, cassiterite) 285 (B3g, brookite) 285 (B3g, brookite)

481 (Eg, cassiterite) 397 (B1g, anatase) 397 (B1g, anatase) 397 (B1g, anatase)
563 (surface mode) 443 (B3g, brookite) 443 (B3g, brookite)

631 (A1g, cassiterite) 516 (A1g+B1g, anatase) 516 (A1g+B1g, anatase) 516 (A1g+B1g, anatase)
773 (B2g, cassiterite) 581 (B2g, brookite) 581 (B2g, brookite)

635 (Eg, anatase) 635 (Eg, anatase) 635 (Eg, anatase)

Thus, the Raman spectra confirm the data obtained by the XRD method. The formation of the
metastable brookite phase is observed in SnTi-1 and SnTi-2 composites. Anatase can play the role of a
stabilizer for this phase [58]. A correlation among the surface enthalpies of the TiO2 three polymorphs
and their particle size was found by Zhang and Banfield [59]. The formation energies of anatase,
brookite and rutile are sufficiently close that they can be reversed by small differences in surface
energies. Zhu et al. [60] developed an empirical expression on a critical grain size of brookite, which
determines the transition sequence between anatase and brookite. These transformations become
noticeable with prolonged isothermal annealing at temperatures above 500 ◦C. To avoid the changes
in phase composition and crystallite size of nanocomposites subjected to post synthesis annealing
at 500 ◦C, the maximum temperature during the manufacture of sensor elements and gas sensor
measurements did not exceed 300 ◦C.

3.2. Gas Sensor Properties

As discussed in the review [8], depending on the operating temperature the change of the resistance
of n-type semiconductor oxides when interacting with formaldehyde is due to HCHO oxidation with
chemisorbed oxygen Oα−

β(ads)
to HCOOH or CO2:

β·HCHO(gas) + Oα−
β(ads) = β·HCOOH(gas) + α·e

− (1)

β·HCHO(gas) + 2Oα−
β(ads) = β·CO2(gas) + β·H2O(gas) + 2α·e− (2)

At constant temperature and HCHO concentration, the value of the sensor response will depend
on the concentration and the predominant form of chemisorbed oxygen on the surface of the
semiconductor oxide.

According to the literature [20,61–64], the interaction of UV light with TiO2 involves the following
processes: electron-hole pairs generation (3), oxygen photodesorption (4), formation of “active”
chemisorbed oxygen (5), which is able to oxidize formaldehyde even at room temperature (6)

hν
TiO2
→ h+(hν) + e−(hν) (3)

h+(hν) + O−2(ads) → O2(gas) (4)

O2(gas) + e−(hν)→ O−2(ads)(hν) (5)

HCHO(gas) + O−2(ads)(hν)→ CO2(gas) + H2O(gas) + e− (6)
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Under UV light, hydroxyl groups presented on the TiO2 surface can also pass into the “active”
form (7) and then participate in the oxidation of formaldehyde (8):

OH− + h+(hν)→ OH•(hν) (7)

HCHO(gas) + 2·OH•(hν)→ CO2(gas) + H2O(gas) + 2·H+ + 2·e− (8)

Figure 6 demonstrates the change in the resistance of nanocomposites with the cyclic changes in
the composition of the gas phase “air (15 min)”–“0.6 ppm HCHO in air (15 min)”. The measurements
were carried out in the temperature range of 300–50 ◦C in dark conditions (Figure 6a) and under
periodic UV illumination (Figure 6b). At a fixed temperature, TiO2@SnO2 nanocomposites have a
higher resistance than unmodified SnO2 (SnTi-0). UV illumination leads to reduced resistance of
nanocomposites by 1.5–3 times. In all cases in the presence of HCHO, the resistance of SnO2 and
TiO2@SnO2 nanocomposites decreases due to the oxidation of formaldehyde by chemisorbed oxygen.
In dark conditions at low measurement temperatures (T < 200 ◦C), the baseline resistance drift is
observed for all samples. This may be due to the accumulation of formaldehyde oxidation products
on the surface of the sensitive layer under these conditions. The use of UV illumination reduces the
drift of the resistance at T = 150 ◦C. It can be assumed that UV light stimulates the desorption of the
products of formaldehyde oxidation.
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Figure 6. Resistance of the TiO2@SnO2 nanocomposites in the temperature range 300–50 ◦C under
periodic change of the gas phase composition (a) in dark conditions; (b) under periodic UV (λmax = 365
nm) illumination.

The obtained results allowed us to draw the temperature dependence of the sensor response
S = Rair/Rgas (Figure 7a). The maximum sensor response of unmodified SnO2 (SnTi-0) is observed
at T = 20 ◦C. The introduction of Ti-containing phases leads to a decrease in the temperature of the
maximum sensor signal to 150 ◦C. In dark conditions, the maximum response was detected for the
SnTi-2 nanocomposite. The use of UV illumination does not change the position of the maxima on the
temperature dependence of the sensor response, but unexpectedly it leads to a slight decrease in the
signal value in the low temperature range of 50–150 ◦C. Such a decrease in the sensor response can
be caused by a decrease in the concentration of chemisorbed oxygen participating in the oxidation
of formaldehyde by reactions (1) and (2), due to the partial desorption of oxygen from the surface
of semiconductor oxides under UV light [65]. Figure 7b shows the temperature dependences of the
effective photoresponse SPh of nanocomposites in background air calculated as SPh = Rdark/Rlight, where
Rlight is the minimum resistance achieved during the sensor illumination, and Rdark is the maximum
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resistance achieved in the dark period [66]. The maximum photoresponse corresponds to a temperature
range of 150–200 ◦C. A decrease in the SPh value with an increase in the measurement temperature up
to 250–300 ◦C is due to the contribution of thermal oxygen desorption in dark conditions.

Sensors 2019, 19, x FOR PEER REVIEW 11 of 23 

 

resistance achieved in the dark period [66]. The maximum photoresponse corresponds to a 
temperature range of 150–200 °C. A decrease in the SPh value with an increase in the measurement 
temperature up to 250–300 °C is due to the contribution of thermal oxygen desorption in dark 
conditions. 

 
(a) (b) 

Figure 7. (a) Temperature dependencies of sensor response of the TiO2@SnO2 nanocomposites toward 
0.6 ppm HCHO in air in dark conditions (left) and under UV periodic illumination (right); (b) 
Temperature dependencies of effective photoresponse SPh of the TiO2@SnO2 nanocomposites in 
background air. 

The dynamic sensor characteristics, response time 𝜏  and recovery time 𝜏∗ , are presented in 
Figure 8. Even though the absolute values of response time and recovery time are strongly dependent 
on the parameters of the testing system (geometry and size of the measurement cell, the method to 
switch the gases, the gas flow rate), they are useful to compare the dynamic sensor characteristics of 
materials if measurements are performed in identical conditions. With a decrease in the operating 
temperature, an increase in both the response and recovery times is observed. It should be noted that 
the sensor based on unmodified SnO2 is characterized by significantly worse dynamic characteristics 
than sensors based on TiO2@SnO2 nanocomposites, which are close to each other. Such a difference 
may be due to a decrease in the degree of sintering of SnO2 nanoparticles in nanocomposites as 
compared to unmodified tin dioxide. 

 
Figure 8. Temperature dependencies of response time 𝜏  (left) and recovery time 𝜏∗  (right) during 
detection of 0.6 ppm HCHO in air in dark conditions. 
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background air.

The dynamic sensor characteristics, response time τ90. and recovery time τ∗90. , are presented in
Figure 8. Even though the absolute values of response time and recovery time are strongly dependent
on the parameters of the testing system (geometry and size of the measurement cell, the method to
switch the gases, the gas flow rate), they are useful to compare the dynamic sensor characteristics of
materials if measurements are performed in identical conditions. With a decrease in the operating
temperature, an increase in both the response and recovery times is observed. It should be noted that
the sensor based on unmodified SnO2 is characterized by significantly worse dynamic characteristics
than sensors based on TiO2@SnO2 nanocomposites, which are close to each other. Such a difference may
be due to a decrease in the degree of sintering of SnO2 nanoparticles in nanocomposites as compared
to unmodified tin dioxide.
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To clarify the mechanism of formaldehyde oxidation on the surface of semiconductor oxides,
the in situ DRIFT studies have been conducted. In situ DRIFT spectra of the unmodified SnO2 (SnTi-0)
and SnTi-2nanocomposite during HCHO adsorption at room temperature are shown in Figure 9.
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Figure 9. In situ DRIFT spectra of the unmodified SnO2 (SnTi-0) (a) and SnTi-2 nanocomposite (b)
during HCHO adsorption at room temperature.

The bands of weakly bonded forms at 1202, 1742, 1766 and 3010 cm−1 for SnTi-0 and at 1768 cm−1

for SnTi-2 attributed to molecular adsorption form of HCHO with the formation of hydrogen bonds
between its carbonyl oxygen and surface hydroxyl groups [67–69]. The formation of CO2 (at 2337 and
2365 cm−1) was observed on SnTi-0 after 5 min of HCHO adsorption, moreover these bands grew in
intensity with the increase of the adsorption time [70]. In SnTi-2 spectra the bands at 1344 and 1592 cm−1

are assigned to COO symmetric stretching and COO asymmetric stretching of formate species [71,72].
The bands located at 2838, 2890 and 2590, 2868 cm−1 for SnTi-0 and SnTi-2, respectively, belong to CH
stretching of formate species [68,73,74]. The bands at 2936 cm−1 for SnTi-0 and 2930 cm−1 for SnTi-2
were assigned to the characteristic peak of dioxymethylene (DOM) intermediate [71]. The other DOM
bands also were identified at 1050, 1107, 1145 cm−1 for SnTi-0 and 1066, 1107, 1146, 1165, 1478 cm−1 for
SnTi-2 [67,68].

Figure 10 shows the DRIFT spectra of the SnTi-2 nanocomposite obtained during the heating in
dry air at T = 300 ◦C after formaldehyde adsorption at room temperature. From the results, it can be
seen that the formats are intensively desorbed from the surface of the nanocomposite, as evidenced by
decreasing of their characteristic vibrational modes at 1346, 1382 and 1553 cm−1 [68,71,72]. However,
at such a high temperature, there is an increase in the intensity of dioxymethylene species, the bands of
which are at 1050, 1108 and 1450 cm−1 [67,68], which indicates partially HCHO oxidation to DOM. Most
likely, at T=300 ◦C, formaldehyde is oxidized to CO2 and H2O, as a result of which hydroxyl groups of
water accumulate on the surface (increase in the intensity of OH bands at 3550 and 3630 cm−1) and CO2

desorption occurs (decrease in intensity at 2340 cm−1); at room temperature CO2 is accumulated on the
SnTi-0 surface (Figure 9a). The assignment of IR bands for intermediates is summarized in Table 3.
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Figure 10. In situ DRIFT spectra of the SnTi-2 nanocomposite obtained during the heating in dry air at
T = 300 ◦C after formaldehyde adsorption at room temperature.

Table 3. Assignment of IR bands (cm−1) for the intermediates of HCHO oxidation.

Sample Formaldehyde HCHO DOM H2COO- Formate HCOO- Other Bands

SnTi-0

1202 τ (CH2) 1050 ν(CO) 2838 ν(CH) 2337 CO2
1742 ν(CO) 1107 ρ(CH2) 2890 ν(CH) 2365 CO2
1766 ν(CO) 1145 ρ(CH2)

3010 2936 δ (CH2)

SnTi-2

1768 ν(CO) 1066 ν(CO) 1344 νs(COO) 2340 CO2
1107 ρ(CH2) 1346 νs(COO) 3550 ν(OH)
1146 ρ(CH2) 1382 δ(CH) 3630 ν(OH)
1165 ρ(CH2) 1553 νass(COO)
1450 δs(CH2) 1592 νass(COO)
1478 δs (CH2) 2590
2930 δ (CH2) 2868 ν(CH)

So, for HCHO oxidation, oxygen ions adsorbed on the surface of the nanocomposites play a key
role in the generation of the surface formates. According to the results of the in situ DRIFT analysis
and literature review [67–70,75,76] we propose a reaction mechanism as depicted in (9)–(12):

HCHO(gas) → HCHO(ads) (9)

β·HCHO(ads) + Oα−
β(ads) → β·H2COO−

(ads) + (α− 1)·e− (10)

β·H2COO−
(ads) + Oα−

β(ads) → β·HCOO2−
(ads) + β·OH(α−1)−

(ads)
(11)

2β·HCOO2−
(ads) + Oα−

β(ads) → 2β·CO2 + β·H2O + (4β+ α)·e− (12)

At first, formaldehyde molecularly adsorbs as a whole via strong hydrogen-bonding interactions (9).
Desorption of formaldehyde is in competition with the reaction between formaldehyde and co-adsorbed
surface oxygen to yield formate HCOO-, which can proceed via formation of dioxymethylene H2COO-

intermediate (10),(11) [69]. For SnTi-0 sample there are two weak bands at 2337 and 2365 cm−1 indicated
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the appearance of carbon dioxide [64,77]. In this case, CO2 and H2O were formed as the result of
oxidation of formate ions (12) of chemisorbed oxygen on semiconductor oxides [78], reaction (10)
proceeds without changing the electron concentration in the conduction band of the semiconductor,
that causes the absence of a sensor response at T = 50 ◦C (Figure 6).

The observed effect of Ti-containing phases on the sensor response of SnO2 toward HCHO in dark
conditions should be explained based on the model considering the formation of n-n heterocontact at
the SnO2/TiO2 interface. The estimated band alignment of the SnO2 (cassiterite) and TiO2 (anatase)
is presented on Figure 11a [24,79,80]. The available lower-energy conduction band states stimulate
electron transfer to n-SnO2 [81]. As a result, the depletion layer is formed at n-TiO2 surface due to
loss of electrons, and accumulation layer is formed at SnO2 surface due to added electrons. In turn,
an increase in the electron concentration stimulates the chemisorption of oxygen species enhancing the
response formed due to reactions (1). The scheme in Figure 11a is constructed for the heterocontact
SnO2 (cassiterite)/TiO2 (anatase), since the anatase phase is present in all nanocomposites (as it follows
from the data of Raman spectroscopy). Brookite (revealed in SnTi-1 and SnTi-2 nanocomposites)
is the least studied polymorph of TiO2. However, from the data of Ref. [82] it follows that the
bottom of the conduction band of brookite lies above the bottom of the conduction band of anatase.
Thus, in the formation of a heterocontact SnO2 (cassiterite)/TiO2 (brookite), electron transfer will
also occur from TiO2 (brookite) to SnO2, increasing the chemisorption of oxygen on its surface.
An increase in the concentration of chemisorbed oxygen on the surface of nanocomposites compared
with unmodified SnO2 is confirmed by the method of thermo-programmed reduction with hydrogen
(TPR-H2). Figure 11b shows the temperature dependencies of the hydrogen consumption during the
reduction of unmodified SnO2 and SnTi-1 nanocomposite. The reduction of SnO2 with hydrogen
occurs in the temperature range of 430–800 ◦C, the maximum H2 consumption is observed at T = 620 ◦C.
The introduction of Ti-containing phases leads to a shift of the H2 consumption towards lower
temperatures 570–600 ◦C. Such a change in the TPR-H2 profiles may be due to the reduction of highly
dispersed Ti-containing phases. According to the reports [83–85], the reduction of TiO2 with hydrogen
occurs at T > 400 ◦C, the maximum H2 consumption is observed at T = 530–650 ◦C, depending on
the TiO2 dispersion. Another feature of the TPR-H2 profiles is the presence of hydrogen absorption
peaks in the low-temperature range of 100–400 ◦C. This corresponds to the interaction of hydrogen
with oxygen-containing particles (chemisorbed oxygen, hydroxyl groups, etc.) on the surface of highly
dispersed semiconductor oxides. The reduction of TiO2@SnO2 nanocomposites is accompanied by more
significant hydrogen consumption in the low-temperature region that indicates a higher concentration
of oxygen-containing species on its surface. An increase in the concentration of chemisorbed oxygen on
the surface of nanocomposites provides an increase in their resistance compared to unmodified SnO2.
At the same time, due to the photodesorption of chemisorbed oxygen under UV light, TiO2@SnO2

nanocomposites are characterized by the larger photoresponse in the background air and demonstrate
a more significant decrease in the sensor response to HCHO.

Thus, we are forced to conclude that in the case of TiO2@SnO2 nanocomposites, the amplitude
of the sensor response when detecting HCHO in the sub-ppm range is determined mainly by the
SnO2/TiO2 interface. The role of UV light is to enhance the photodesorption of oxygen, and the
processes of HCHO oxidation by photoactivated particles (reactions (6) and (8)) do not contribute to
the sensor response.

The dependence of the sensor response on the HCHO concentration in air was studied in dark
conditions and under periodic UV illumination at 150 ◦C during the stepwise increase and subsequent
stepwise decrease in the HCHO concentration (Figure 12). The results obtained allowed us to build
the calibration curves (Figure 13a) and to determine the lower detection limit (LDL). As in the case
of measurements at different temperatures, when using UV illumination, a decrease in the sensor
response toward HCHO is observed, that may be due to the photodesorption of chemisorbed oxygen
under UV light. The LDL values were calculated from the calibration curves as the gas concentration
corresponding to the minimum measurable sensor signal Rav/(Rav – 3σ) , where Rav is the average
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sensor resistance in air at 150 ◦C, σ is the standard deviation of the resistance in air. A decrease in the
sensitivity of nanocomposites is accompanied by an increase in LDL from 9–15 to 30–32 ppb (Table 4).
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Figure 11. (a) Estimated band alignment of the SnO2 (cassiterite) and TiO2 (anatase) phases (left)
and SnO2/TiO2 n-n heterocontact (right); (b) TPR-H2 profiles of unmodified SnO2 (SnTi-0) and
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Figure 12. Resistance of the TiO2@SnO2 nanocomposites at T = 150 ◦C under stepwise change of the
HCHO concentration (a) in dark conditions; (b) under periodic UV (λmax = 365 nm) illumination.
The numbers in the figure correspond to HCHO concentration (ppm).

The comparison of the sensor response toward 0.06–0.6 ppm HCHO for SnTi-2 nanocomposite
with the literature data [7–11,20–23,28,86–117] is shown in Figure 13b and Table 5. There are very few
papers that consider the detection of formaldehyde in a practically important sub-ppm concentration
range. TiO2@SnO2 nanocomposites exhibit high sensitivity to HCHO in the sub-ppm range. Higher
sensor response values were obtained only by the authors of [86], where metastable In4Sn3O12 was
used as sensitive material at 350 ◦C and in Ref. [7], where Si modified SnO2 was used at 400 ◦C. It should
be noted that TiO2@SnO2 nanocomposites have comparable sensitivity at much lower measurement
temperature (150 ◦C vs. 350 ◦C or 400 ◦C), which can provide a significant reduction in the power
consumption of semiconductor gas sensor.

In addition to reducing power consumption, a sufficiently low measurement temperature allows
one to achieve an increase in the selectivity of sensors when detecting various VOCs. The cross
sensitivity of SnO2 and TiO2@SnO2 nanocomposites was studied at a measurement temperature of
150 ◦C in the detection of formaldehyde, benzene, and acetone (Figure 14). It can be noted that the
synthesized materials have low cross-sensitivity to benzene in the wide concentration range. As for



Sensors 2019, 19, 3182 16 of 24

acetone, the interference of signals can occur if acetone concentration is in the range of C > 1 ppm and
at least 20 times higher than formaldehyde concentration. SnTi-2 nanocomposite is characterized by
the lowest response to acetone.
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Figure 13. (a) Calibration curves for the HCHO detection using TiO2@SnO2 nanocomposites at
T = 150 ◦C under stepwise change of the HCHO concentration in dark conditions (left) and under
UV periodic illumination (right). (b) Comparison of the values of the sensor response of SnTi-2
nanocomposite (triangles) with the literature data [8–11,20–23,28,87–117] (squares), Ref. [7] (diamonds)
and Ref. [86] (circles). The color of the symbol corresponds to the measurement temperature. For correct
comparison all the data were recalculated as S = (Rair/Rgas - 1)*100%.

Table 4. Sensor characteristics of unmodified SnO2 and TiO2@SnO2 nanocomposites in HCHO detection
at 150 ◦C.

Sample S (to 0.06 ppm) LDL, ppb Rav, Ohm
τ90, s τ*90, s

Dark UV Dark UV Dark UV

SnTi-0 1.34 1.17 9 30 1.2·105 1.1·105 360 780
SnTi-1 1.49 1.20 9 32 1.2·106 7.4·105 120 660
SnTi-2 1.72 1.26 15 32 6.5·107 2.2·107 120 660
SnTi-3 1.48 1.21 10 30 5.8·106 3.5·106 120 680

Table 5. Literature data on sensor response S = (Rair/Rgas - 1)*100% of metal oxide semiconductor gas
sensor in formaldehyde detection.

Material HCHO conc., ppm Response S T, oC Ref.

Si-SnO2 FSP a films 0.003 6.5 400 [7]
In4Sn3O12 thin films 0.02 110 350 [86]

CuO nanocubes 0.05 4 300 [87]
SnO2-Au 0.05 2 300 [8]

In2O3 nanolamellas 0.08 4 300 [88]
TiO2 UV activation 0.1 67 RT [22]

SnO2-NiO 0.3 18 300 [89]
Ag-LaFeO3 0.5 2400 40 [90]
Ag-LaFeO3 1 2400 90 [91]

TiO2 hollow microspheres 5 3900 RT [23]
Au@ZnO core-shell structure 5 957 RT [92]

CdO-In2O3 10 9900 95 [93]
SnO2 mesoporous 10 9900 150 [94]
TiO2 macroporous 10 6900 RT [20]

Cd-In2O3 hollow fibers 10 1500 280 [95]
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Table 5. Cont.

Material HCHO conc., ppm Response S T, oC Ref.

Ag-SnO2 nanoparticles 10 1340 125 [96]
SnO2/In2O3 nanofibers 10 650 375 [97]

SnO2 nanowires 10 145 270 [98]
SnO2/α-Fe2O3 hollow spheres 10 100 250 [99]

Pd-SnO2 thin films 10 55 250 [100]
NiO thin films 10 50 300 [101]

TiO2 nanotube arrays 10 7 RT [21]
La2O3-SnO2 thin films 18.7 5400 250 [102]

NiO thin films 20 330 340 [103]
ZnO UV activated 50 10700 RT [104]

TiO2-SnO2 50 3000 360 [28]
La1-xSrxFeO3 50 2500 200 [105]

SnO2-MWCNT b 50 300 250 [106]
Au@SnO2 core-shell structure 50 190 RT [107]

SnO2 microspheres 100 3730 200 [108]
Cd-TiO2/SnO2 100 1400 320 [109]

ZnO/ZIF c 100 1100 300 [110]
Au-ZnO octahedrons 100 660 RT [111]

γ-Fe2O3 100 500 320 [77]
α-Fe2O3 100 52 325 [112]

CdO/Sn-ZnO 200 200000 200 [113]
ZnO-MnO2 200 2600 320 [114]

Ga-ZnO 205 13 400 [115]
LaFeO3 hollow nanospheres 500 1900 260 [116]

ZnO 1000 99600 210 [117]
a Flame spray pyrolysis; b Multiwall carbon nanotubes; c Zeolitic Imidazolate Framework.
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Comparing the sensor characteristics of unmodified SnO2 and TiO2@SnO2 nanocomposites in
the detection of formaldehyde at 150 ◦C (Table 4) we can conclude that the SnO2 is inferior in the
magnitude of the sensor response and the dynamic characteristics (response and recovery time). For
HCHO detection at concentrations of 60 ppb and above, the SnTi-2 nanocomposite, which exhibits the
highest sensor response and the lowest cross-sensitivity to acetone, seems to be preferred. However,
for the measurements of lower HCHO concentrations, the SnTi-1 nanocomposite characterized by
lower LDL value, lower base resistance in air, and the same dynamic characteristics, may be optimal.
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As a summary, we have to conclude, that compared to the sensor characteristics described
in [7,86,118], the sensors based on TiO2@SnO2 nanocomposites are inferior in sensitivity and selectivity.
However, their advantage is significantly reduced operating temperature. The increase in sensitivity
while maintaining a low operating temperature should be possible due to the addition of modifiers of
different chemical nature on the surface of TiO2@SnO2 nanocomposites. The increase in selectivity,
in particular towards humidity, can be achieved using passive filters—selective membranes based
on SiO2 [6,118–120] or metal organic frameworks [110,121] as well as by the creation of multi-sensor
systems operating using mathematical signal processing [6,122].

4. Conclusions

Nanocomposites TiO2@SnO2 obtained by ALD synthesis were investigated as sensitive materials
for sub-ppm formaldehyde detection in dark conditions and under periodic UV (λmax = 365 nm)
illumination. As observed by XRD and Raman spectroscopy, all nanocomposites contain nanocrystalline
SnO2 cassiterite and TiO2 anatase as the main crystalline phases. Depending on Ti content in
nanocomposites predetermined by the number of ALD cycles, the minor TiO2 phases brookite, rutile
and anosovite have been found. A thorough study of nanocomposites using FTIR and TPR-H2 methods
made it possible to establish that nanocomposites have a higher concentration of chemisorbed oxygen
and surface hydroxyl groups compared to unmodified SnO2. When detecting formaldehyde in the
sub-ppm range, TiO2@SnO2 nanocomposites exhibit a higher sensor signal than SnO2 and a decrease in
the optimal measurement temperature by 50 ◦C. This result is explained based on the model considering
the formation of n-n heterocontact at the SnO2/TiO2 interface. TiO2@SnO2 nanocomposites have high
sensitivity toward HCHO at quite low measurement temperature 150 ◦C that can provide a significant
reduction in the power consumption and an increase in the selectivity of semiconductor gas sensors
when detecting various VOCs.

Unexpectedly, UV illumination leads to a decrease in sensor response compared with the results
obtained in dark conditions. So, we have to conclude that in the case of TiO2@SnO2 nanocomposites,
the amplitude of the sensor response toward sub-ppm HCHO concentrations is determined mainly by
the SnO2/TiO2 interface. The UV light stimulates the photodesorption of oxygen, while the processes
of HCHO oxidation by photoactivated particles do not contribute to the sensor response.
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