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Abstract

Background: The QuantiGene® Plex 2.0 platform (ThermoFisher Scientific) combines bDNA with the Luminex/xMAP
magnetic bead capturing technology to assess differential gene expression in a compound exposure setting. This
technology allows multiplexing in a single well of a 96 or 384 multi-well plate and can thus be used in high throughput
drug discovery mode. Data interpretation follows a three-step normalization/transformation flow in which raw median
fluorescent gene signals are transformed to fold change values with the use of proper housekeeping genes and negative
controls. Clear instructions on how to assess the data quality and tools to perform this analysis in high throughput mode

are, however, currently lacking.

throughput screening campaign.

openanalytics.eu/app/QGprofiler

Results: In this paper we introduce QGprofiler, an open source R based shiny application. QGprofiler allows for proper
QuantiGene® Plex 2.0 assay optimization, choice of housekeeping genes and data pre-processing up to fold change,
including appropriate QC metrics. In addition, QGprofiler allows for an Akaike information criterion based dose response
fold change model selection and has a built-in tool to detect the cytotoxic potential of compounds evaluated in a high

Conclusion: QGprdfiler is a user friendly, open source available R based shiny application, which is developed to support
drug discovery campaigns. In this context, entire compound libraries/series can be tested in dose response against a
gene signature of choice in search for new disease relevant chemical entities. QGprofiler is available at: https://qgprofiler.
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Background

Gene expression, through the quantification of mRNA is
commonly used in biomedical research for patient diag-
nostics and/or therapeutics [1-3]. The quantification of
mRNA is routinely performed using real-time quantita-
tive PCR (RT-qPCR), measuring gene expression levels
in a highly sensitive and specific manner [4]. However,
there are limitations to this technique, which relate to
the need for RNA extraction and the enzymatic based
reverse transcription and target mRNA amplification
steps which are prone to errors [5, 6].
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Branched chain DNA (bDNA) technology, in which the
signal and not the mRNA target sequence is amplified,
provides a non-enzymatic alternative to qPCR [7-9]. The
QuantiGene® Plex 2.0 platform (ThermoFisher Scientific)
combines bDNA with the Luminex/xMAP magnetic bead
capturing technology. This platform does not require an
RNA extraction step, as it measures mRNA levels directly
from cultured cells [10], cell lysates [11], tissue homoge-
nates [12], formalin-fixed tissues [13], to name only a few
starting points. The amplification of the signal depends on
the cooperative hybridization between the target mRNA
and three oligonucleotide probes. These probes are cap-
ture extenders, label extenders and blocking probes,
whose sequences depend on the mRNA target sequence
[11]. The hybridized mRNA target sequence is
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immobilized on the bead via a capture probe that links the
bead with parts of the capture extender sequence, which
provides the specificity of the signal [9]. The signal is sub-
sequently amplified by adding a pre-amplifier sequence,
which partly overlaps with the label extender sequence,
and by several amplifiers, which generate the branched
DNA structure and harbor hybridization sites for biotinyl-
ated label probes [11]. The biotinylated bDNA binds
streptavidin conjugated R-phycoerythrin (SAPE) resulting
in a raw fluorescent signal that is proportional to the hy-
bridized mRNA quantity [7, 9, 14]. Besides the SAPE
fluorescent signal, the Luminex reader also detects the in-
ternal dye of the individual beads allowing for differenti-
ation between target specific beads. The Luminex/xMAP
magnetic bead capturing technology allows for multiplex-
ing in a single well of a 94 or 384 multi-well plate and is
thus able to quantify the expression of a series of genes in
a high throughput mode [11]. As such, the QuantiGene®
Plex 2.0 platform (ThermoFisher Scientific) does not only
offer the possibility to quantify mRNA levels in the con-
text of patient diagnostics and/or therapeutics but can also
be used in a high throughput drug discovery setting. In-
deed, entire compound libraries could be tested, in single
dose or dose response, against disease specific gene signa-
tures in search for new disease relevant chemical starting
points [10]. However, a proper data analysis framework
should be put in place to analyze mRNA levels in high
throughput mode.

The data analysis flow proposed by ThermoFisher Sci-
entific is relatively straightforward and aims to translate
and normalize gene expression, in the linear range of the
assay, to fold change (FC) values, reducing signal vari-
ability due to sample preparation, sample input variabil-
ity and/or overall well/plate/experimental effects [15].
This is achieved by three main steps on a per-gene basis.
In a first step, the gene signal is corrected for possible
technical noise. The mean background signal, obtained
from RNA sample free wells, is subtracted from the raw
median fluorescence intensity values. In a second step,
the relative gene expression is calculated by dividing the
background corrected gene signals with the geometric
mean of the housekeeping genes (HKG), which are taken
along in the experiment. Finally, in a third step, fold
changes are computed by dividing the relative expression
value by the median relative expression value from the
untreated samples (i.e. negative control). The proposed
three step signal transformation approach will, however,
only be effective in reducing technical/experimental re-
lated variability, when applied to high-quality and stable
signals. To the best of our knowledge, clear instructions
on how to assess the data quality are currently lacking,
while most researchers perform the transformations in a
local spreadsheet environment or by means of manual
calculation.
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Against this background we present experimental data
tested in dose response and introduce a newly developed
open source available R based shiny application: QGpro-
filer, that allows for proper QuantiGene® Plex 2.0 assay
optimization, choice of HKG and data pre-processing
from raw gene expression to normalized FC values in-
cluding appropriate QC metrics. In addition, we propose
a way to assess cytotoxicity and introduce a dose re-
sponse FC. QGprofiler is available at https://qgprofiler.
openanalytics.eu/app/QGprofiler and will accept a 96
multi-well plate format in dose response.

Methods

Experimental conditions

In order to assess the minimal number of beads, the sta-
bility of the HKG and optimize the data analysis flow,
data from 304 samples (i.e. samples treated with differ-
ent compounds in different dose ranges) were generated
from five independent QuantiGene® runs (Table 1). Cell
lysates were prepared according to manufacturer’s in-
structions, using the QuantiGene® Sample Processing Kit
(Cultured Cells), while the QuantiGene® assay was run
on a Luminex FlexMAP® 3D platform, following the
QuantiGene® 2.0 Plex user manual, distributed by Ther-
moFisher Scientific [15].

Bead number

Three independent datasets, together measuring 29
unique genes with an average >50 beads per gene/well
were used to define the minimal number of beads,
needed to produce stable median fluorescence intensity
values (Table 1). A total of 10, 20, 30, 40 and 50 fluores-
cent signals (i.e. beads) were subsampled per gene and
per well and their median fluorescence intensity value
was calculated. These median values were compared to
the median fluorescence intensity, produced by the en-
tire bead set, assumed to be the golden standard (eq.1).
The subsampling procedure was repeated 100 times for
each gene/well combination.

X*—X..
"X — %100 (1)

i

Yodev;; =

with xNZ the median of the resampled fluorescent signal and

x;; the reported median fluorescent signal using all
available beads

for each well j and gene i

The obtained deviation percentages were subsequently
combined across the different wells per gene, by taking
the overall mean. These values were plotted in function
of the number of beads (ie. 10 to 50) and piece-wise
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Table 1 Overview of the different experimental settings with number of samples, compounds, genes, HKG and background used to
assess the ideal number of beads, linearity of HKG signal and overall QGprofiler data flow. Where samples are either vehicle or

compounds tested in multiple dose in a particular background

Experiment # Samples Total # Genes # HKG # Compounds Background

Bead Number Dataset 1 46 14 3 2 Xenograft A
Dataset 2 6 14 3 1 Xenograft B
Dataset 3 132 18 3 19 Cell line C

Linearity of HKG Dataset 4 60 26 26 0 Cell line C

Data Analysis Flow Dataset 5° 60 20 2 10 Cell line C

?data set is provided to explore the QGprofiler application

linear regression was applied. This regression model en- EQ) = f(x, (b,e,d,&)) = c

abled the determination of a gene specific bead number E d-c

threshold above which adding beads does no longer sig- + =

nificantly affect the stability of the deviation percentages. L+ exp(b( log(x)—e))(2>

Linearity of HKG signal

One data set, measuring 26 HKG across 60 samples,
with an average > 50 beads per gene/well was used to as-
sess the limit of quantification (LOQ) (Table 1). The lin-
earity of the background corrected signals as a function
of the cell counts was investigated to define and set the
LOQ. Both 5 and 10 SD above the mean background
median fluorescence intensity values were considered as
potential LOQ thresholds, as suggested by ThermoFisher
Scientific [15].

Data analysis flow

One dataset, measuring 20 unique genes and 2 HKG
across 60 samples (10 compounds which 6 doses each)
in one cellular background with an average >50 beads
per gene/well was used to demonstrate the data analysis
flow, ranging from the raw gene expression value to the
FC computation, including assessment of HKG stability
(Table 1). To correct for experimental differences, the
relative gene expression was calculated, as the ratio of
the background corrected values versus the geometric
mean of the HKG. Finally, FC values were computed by
dividing the relative expression value of each sample by
the median relative expression value from the untreated
samples (i.e. negative control). Stability of the HKG was
assessed at the FC level. HKG that fell outside the [0.8;
1.2] FC range were removed from the analysis, until the
FC of the remaining HKG met this FC range criterion.

Dose response modeling

Dose response curves were fitted to the FC values by
means of the drm() function, available in the R package
drc [16]. Let y denote the observed FC value corre-
sponding to dose value x (x >0). The mean of y, E(y), is
characterized using the model function f depending on
dose x:

This model is a log-logistic model, sometimes referred
to as a Hill model, which describes a typical s-shape for
the mean response. The slope parameter b denotes the
steepness of the curve, (i.e. Hill slope), while ¢ and d are
the asymptotes of the response and € refers to the loga-
rithm of the effective dose (€ =1og(AC50)) [16]. A param-
eter constraint (i.e. b >0) was imposed to ensure that
parameters d and c refer to the plateaus of the dose-response
curve at dose zero and maximal dose, respectively, inde-
pendent of the increasing/decreasing nature of the dose-
response curve. As such, setting d =1 fixed the plateau at
dose zero for all dose-response curves at FC=1 (i.e. mean
FC value of negative controls). In addition, a second param-
eter constraint (i.e. ¢>0) was imposed to ensure that FC
values could not be modelled in the negative region of the
response.

The resulting model is referred to as a three-
parameter log-logistic (3PL) model with model parame-
ters b >0, ¢ >0 and & estimated from the data. A model
fitting scheme was applied to obtain a final model fit for
each compound/gene combination. If all response FC
values were observed within the [0.8; 1.2] FC range, the
response was regarded as uninformative [15] and a con-
stant fit was applied. If at least 1 FC value fell outside the
[0.8; 1.2] FC range, three different models were fitted, in-
cluding (1) a constant fit, (2) a 3PL dose response model
as described above and (3) a weighted version of the 3PL
dose response model as described above, down weighting
high FC values to address variance heterogeneity in the re-
sponse (i.e. w; = F%z) The final model was chosen using
the Akaike information criterion (AIC).

Finally, the absolute AC50 values were extracted as
potency estimates, using the model parameters of the
most optimal fit by the ED() function of the drc package
[16]. These absolute AC50 values correspond with a FC
of 0.5 or 1.5 for a decreasing or increasing dose response
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curve respectively. The absolute AC50 values were
chosen over the relative AC50 values, since the former
are more robust against bias in the estimation of the sec-
ond asymptote which is not always reached in the tested
dose range.

Input files QGprofiler

QGprofiler requires the input of two files. In a first
xls(x) file, a template should be provided which maps
each well to its specific experimental condition (an ex-
ample template file can be found in Additional file 4).
This file should contain two sheets named: Plate and
HKG. If multiple plates need to be processed at the same
time, the file needs to contain an additional third sheet:
Rawdata. The Plate sheet specifies for each well the fol-
lowing variables: compound, concentration and cell
count, timepoint and cell line. A short description for
each of these variables is provided in Additional file 3:
Table S1. Wells for which none of the variables are an-
notated, will be discarded when loading the raw data.
Variables that are never annotated are assumed to be
constant across the plate and will not be considered dur-
ing the analysis.

The text provided in cell A1 generates the title of the
data set and is used throughout the analysis (e.g. graph
titles, file export names). The HKG sheet tabulates the
housekeeping genes, which should be listed in column
A. The gene names must correspond to the gene names
used in the raw QuantiGene® data file. The Rawdata
sheet contains the name of the raw data file that needs
to be merged with the template in cell Al. A second .txt
or .csv file contains the name of the raw QuantiGene®
data file, generated by the Luminex FlexMAP® 3D plat-
form (Additional file 5).

Results

Typically, QuantiGene® raw data are formatted as me-
dian fluorescence intensity values across individual
beads. The individual bead numbers have been reported
to range from 50 to 100 beads per gene per well, while it
is generally recommended to have an average of 50 bead
counts per gene. Factors such as sample viscosity, wash-
ing steps throughout the assay and possible bead carry-
over across wells, can cause a drop in the actual number
of beads per gene/well which might destabilize the re-
ported median fluorescence intensity values. The per-
centage by which the median fluorescence intensity
values for different bead numbers deviate from the en-
tire bead set generated median fluorescence intensity
values, is represented per gene across the different wells
in Fig. la. The bead number threshold distribution,
above which the median fluorescence intensity value,
relative to the median fluorescence intensity values for
the entire bead population is no longer affected, defined
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by piece-wise linear regression, is plotted in Fig. 1b. The
95th percentile of this distribution corresponds to 37.45
beads per gene and well, indicating that 5% of the genes
will return a less stable median fluorescence intensity
value when bead numbers drop below 37 (Fig. 1b). Based
on this assessment it was decided to set the bead num-
ber threshold in QGprofiler by default at 37 beads per
gene and well. As a result, QGprofiler will automatically
discard raw median fluorescence intensity values that
were obtained from a total number of beads <37 and
will subsequently list all discarded gene/well combina-
tions in its QC tab (Fig. 2a). Nevertheless, this parameter
is made flexible and can be adjusted depending on the
risks one is willing to take dependent on the stage of the
project, as the majority of genes are already stable from
30 beads onwards. Once these wells with insufficient
bead numbers are removed, a background correction is
performed. The latter subtracts the mean background
value from the raw median fluorescence intensity values
in a gene-specific manner. QGprofiler provides the pos-
sibility to visually inspect all background signals, enab-
ling the identification of deviating background wells on a
per gene basis (Fig. 2b). At this stage, deviating wells can
be removed from the analysis by removing them from
the template file. Negative signals after background cor-
rection are not accepted and will be set to zero.

Figure 2c represents the mean background corrected
median fluorescence intensity value across negative con-
trol wells for a selection of HKG in function of cell
count. The mean background corrected median fluores-
cence intensity values across all background wells plus 5
and 10 SD of the background signal were plotted as po-
tential LOQ thresholds. It is clear from Fig. 2c, that the
mean of the median fluorescence intensity values across
the background wells plus 10 SD of the background sig-
nal can be used as LOQ. Indeed, above 10 SD, the back-
ground corrected median fluorescence intensity signal of
most HKG falls within the linear range and can thus be
used for further analysis. All wells for which at least one
HKG mean background corrected median fluorescence
intensity drops below LOQ;, will automatically be dis-
regarded by QGprofiler and will be listed in its QC tab.
The LOQ; based data removal step is only performed
for the HKG, since the disease relevant genes that fall
below LOQ;q, might still contribute to the dose response
fitting. To properly describe the background well median
fluorescence intensity distributions and thus the gene
specific LOQ;q thresholds, it is advised to increase the
number of background wells from 3 to 6, contrary to
what is suggested by ThermoFisher Scientific [15].

Once the technical noise is removed, the gene signal is
normalized against the HKG, which are chosen because
of their stability in the required experimental conditions
during assay optimization. This normalization allows for
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correction of experimental differences and is performed
by calculating the relative expression, which is the ratio
of the background corrected median fluorescence inten-
sity values for a certain gene versus the geometric mean
of the background corrected median fluorescence inten-
sity values for all HKG. If the HKG are not stable across
different experimental conditions, they may over or
under correct the gene signal. Hence, it is key to define
a proper set of stable HKG using the appropriate assay
conditions, prior to the drug discovery campaign and to

keep this set constant during the campaign itself. A
HKG is said to be stable if its corresponding FC values
lie within the [0.8, 1.2] FC interval, (i.e. accepting a 20%
variability [15]). QGprofiler provides metrics and visuals
to inspect the stability of the HKG across the experi-
mental conditions (Figs. 2d, 3). When correctly chosen
during assay optimization, HKG are not expected to fall
outside the [0.8, 1.2] interval. However, it is regularly ob-
served during drug discovery campaigns that HKG devi-
ate from the 20% FC range for some compounds, which
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may be indicative for compound induced cytotoxic
effects. It has been shown (data not provided), that the
20% FC interval is even not sensitive enough to assess
compound induced cytoxicity. Hence, in addition to the
EC assessment, QGprofiler investigates the background
corrected HKG dose response plots to flag the cytotox
potential of a compound (Figs. 2e, 4). If the background
corrected median fluorescence intensity value for one or
more HKG drop below a 70% reduction of the mean
background corrected median fluorescence intensity
value across all negavtive control wells, in a dose
dependent manner, the compound*dose condition is
marked as cytotoxic in QGprofiler. These conditions
(dose and compound) will be listed in the QC tab and
the final efficacy table provided by QGprofiler (Figs. 2a,
3b) and these compounds are recommended to be
followed-up in more specific assays. While the
normalization procedure using HKG has some pitfalls, it
also has some additional strengths of flagging potential
cytotoxic compounds (Fig. 4). This normalization step is
most crucial for a proper data transformation and re-
quires careful investigation of all HKG quality metrics
that are provided in QGprofiler both during assay
optimization as well as during the screen itself (Fig. 2).

FC values are subsequently computed by taking the ratio
of the relative expression of each gene versus the median
relative expression for the same gene across the negative
control wells. Since the negative controls are key to define
both FC and cytotoxicity (i.e. 70% drop versus median
negative control) it is imperative to include at least six
negative control wells, similarly as with the background
wells, for a proper distribution estimate. QGprofiler pro-
vides the possibility to inspect the negative control values
across the different genes as well (plots not shown).
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Once the quality of the different metrics computed
during data transformation from raw median fluores-
cence intensity to FC, has been evaluated, the gene spe-
cific dose response (i.e. FC) relationship can be modelled
in QGprofiler (see Material and Methods) (Fig. 2g). Al-
though all curves will start at a fixed FC value of 1, it is
often challenging to estimate how the curves might end,
since the maximal effect is not always reached in the in-
vestigated dose range. Hence, QGprofiler will tabulate
the absolute AC50 value instead of the relative AC50
value. Absolute AC50 values correspond to the concen-
tration where a FC of 0.5 or 1.5 is reached, depending
on the sign of the Hill slope. This metric is not, in con-
trast to the relative AC50, dependent on the estimation
of the maximum effect and will therefore be more ro-
bust against incomplete curves. Next to the absolute
AC50 (log and original scale), QGprofiler will also tabu-
late the Hill slope, maximal effect, associated standard
errors and FC at maximal concentration, as extracted
from the final model, selected based on the AIC criter-
ion. In addition, a cytotoxicity flag will be shown when
the background corrected median fluorescence intensity
for a HKG drops below the cytotoxic threshold as ex-
plained above.

Discussion

The user friendly, open source available R based shiny
application, QGprofiler, is developed to support drug
discovery campaigns. As such, it is currently used as a
primary screening tool in multiple lead optimization
projects within J&J, both within the field of infectious
diseases and oncology. In this context, entire compound
libraries/series are tested against a gene signature of
choice in search for new disease relevant chemical
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entities both in in-vitro as well as in-vivo backgrounds
representative for the disease. As proposed by Thermo-
Fisher Scientific [15], raw gene values are transformed to
FC values which are subsequently modelled in dose re-
sponse to extract gene specific AC50 values when com-
pounds are profiled in dose response otherwise FC are
compared across conditions. To be successful and select
the most promising chemical candidates, it is, however,
crucial that FC and downstream efficacy estimates remain
stable and comparable across different experimental runs.
The latter is achieved in QGprofiler, by introducing qual-
ity control steps along the entire data transformation and
analysis process. These steps include (1) minimal bead
number assessment that is needed to generate stable raw
fluorescent signals, (2) stability control of the background
signal, (3) selection and stability control of the HKG and
(4) quality assessment of the negative controls. In
addition, QGprofiler offers the possibility to perform dose
response modelling and makes use of the HKG back-
ground corrected signals to infer and flag cytotoxicity of
compounds. The latter is only possible when HKG are
properly chosen during the assay optimization, prior to
the drug discovery campaign. A series of stable HKG have
been suggested by Thermofisher, including ACTB,
ATP6V1A, B2M, GADPH, GUSB, HMBS, HPRT],
LDHA, PGK1, POLR2A, PPIA, PPIB, RPL13A, RPL19,
RPL32, RPLPO/Arbp, RPS3, RPS18, RPS20, RPS23, RPS29,
TBP, TERC and TXN2. However, depending on the ex-
perimental conditions, at least some of these HKG (i.e.
PPIB, RPLPO, LDHA, RPS20, B2M, GADPH and RPL13A)
can go outside of the 20% FC variability range
(Additional file 1: Figure S1). Hence, it should be stressed
that assay optimization across a wide range of experimen-
tal conditions (e.g. cell density, exposure time, dose range,
compound class) is a crucial pre-requisite for success.

The latter falls outside the scope of this publication.
However, these assay optimization assessments are
nonetheless available in QGprofiler. For instance,
QGprofiler allows the user to define the most optimal
cell density for a series of compound doses and/or times
of exposure as a function of the linearity of the Quanti-
Gene” signal (Additional file 2: Figure S2).

After appropriate pre-processing of the raw gene sig-
nals and FC modelling, QGprofiler will generate AC50
values. These gene specific AC50 values are the primary
parameters of interest during large scale drug discovery
campaigns, as they allow to pin point and rank the most
promising drug candidates within the extended screened
chemical space. However, it is important to assess the
standard errors that are associated with the AC50 values
to allow for a proper AC50 assessment and thus deter-
mination of its (un) certainty. When the standard errors
on logl0 AC50 are larger than 0.3 (i.e log10(2)), it is ad-
vised to repeat the experiment, increasing the number of
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replicates and/or revising the concentration range. These
estimates are indicated with a ~in the final results table.
Additionally, it must be mentioned that QGprofiler will
only generate absolute AC50 values, as they are more
robust against incomplete curves compared to their rela-
tive AC50 counterparts. Nonetheless, the absolute AC50
estimate is based on a 3PL model fit, and one would
thus ideally need at least two concentrations beyond the
absolute AC50 value to retrieve unbiased estimates.

While the QuantiGene® Plex 2.0 assay allows measur-
ing up to 80 genes simultaneously, ranking compounds
on all these potency estimates becomes challenging. In-
stead of looking at gene-specific ranks, one could move
to consensus ranking techniques (R-package ConsRank
[17]) which is based on median ranks across the genes
according to the Kemeny’s axiomatic approach [18]. Al-
ternatively, supervised and/or unsupervised multivariate
projection/ordination techniques (e.g. PCA, CDA,
TSNE) can reduce the dimensionality and allow for
compound ranking in a reduced space while retaining
most of the transcriptional information. Such techniques
extend the strength of the QuantiGene Plex® 2.0 assay,
in a multidimensional transcriptional decision making/
ranking compound space. Figure 5 represents such an
analytical approach in lead optimization stage for an on-
cology related target where compounds are ranked on
transcriptional signatures. Starting from the FC dose
response model (Fig. 2f), the absolute AC50 value is
extracted for each gene/compound combination and
used to ordinate all compounds along the first principal
component axes, which captures 90% of the transcrip-
tional signal. The genes that drive the observed
compound ordination are superimposed. Based on the
weighed PCA score distances between the compound(s)
and a reference compound, all screened compounds can
be sorted, ranked and prioritized, as their distance score
is a measure for their desired transcriptional effect.

Currently we are expanding QGprofiler to accommo-
date both 96 and 384 multi-well plate formats. In
addition, QQprofiler will be able to process data from
(a) QuantiGene® singleplex, (b) QuantiGene® multiplex
and (c) QuantiGene® to accommodate the throughput
increment in our drug discovery campaigns. As such a
single gene is exposed to a single compound, a series of
genes are exposed to a single compound and a series of
genes are exposed to a series of compounds in a single
well respectively. All these applications can be
performed in both 96 and 384 well format and rely on
the same bDNA technology. As such, the same
normalization and transformation processes as described
above, all available in QGprofiler, can be used to assure
accurate data quality in single, multi and plex on plex
QuantiGene® experimental settings, to be used in further
downstream analysis.
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Fig. 5 PCA based compound ranking with superimposition of the gene signature. The first principal component is mainly driven by the disease
genes. Compounds can be prioritized based on PCA weighed distances as illustrated for cpd_034 (rank 3) and cpd_065 (rank 18), with compounds on
the left of the refCpd having some promising transcriptional signal for the target related gene signature

Conclusions

The transcriptional profiling QuantiGene® Plex 2.0 plat-
form (ThermoFisher Scientific) can be used in a drug
discovery setting, since it allows multiplexing in a single
well of a 96 or 384 multi-well plate in which cells are ex-
posed to entire chemical libraries. Data interpretation
follows a three-step normalization/transformation flow
in which raw median fluorescent gene signals are trans-
formed to fold change values with the use of proper
housekeeping genes and negative controls. Clear instruc-
tions on how to assess the data quality and tools to per-
form this analysis in high throughput mode are,
however, currently lacking. We have developed a user-
friendly open source R based shiny application, QGprofi-
ler to address these needs in a series of control and ana-
lysis steps. These steps include the (1) minimal bead
number assessment to obtain stable raw fluorescent sig-
nals, which has been set to 37 beads per well and gene,
(2) stability control of background signal and determin-
ation of the gene specific lower limit of quantification,
(3) selection and stability assessment of HKG based on
FC distributions within the FC range of 0.8 and 1.2, (4)
geometric mean normalization with the remaining HKG
and computation of relative gene expression values, (4)
quality assessment of the negative controls, (5) dose re-
sponse modelling at the FC level and (6) possibility to
infer cytotoxicity on the HKG background corrected sig-
nals versus the negative control distribution. QGprofiler
is available at: https://qgprofiler.openanalytics.eu/app/
QGprofiler

Additional files

Additional file 1: Figure S1. FC based stability of a series of commonly
used HKG in function of cell density, (i.e. 500 and 2500 cells/well) keeping
all other parameters constant. (PNG 187 kb)

Additional file 2 Figure S2. Selection of optimal cell density based on
the linearity of the background corrected signal for each of the genes.
Optimal condition is in the mid cell densities. At the high-end saturation
of the signal is observed, while at the other end the signal drops below
the LOQ10 for some genes. (PNG 64 kb)

Additional file 3: Table S1. Experimental variables to be annotated in
QGprofiler template input file. (DOCX 16 kb)

Additional file 4: QGprofiler template plate layout file. (XLSX 9 kb)
Additional file 5: QGprofiler raw data input file. (CSV 28 kb)
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