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The advent of artificial intelligence (AI) and machine learning (ML) in particular, in medicine,
holds many promises. Although the acceptance of any innovation in medicine is chronically slow,
psychiatry showed to be especially conservative in this regard (1). There are brilliant examples
of ML applications in medicine, such as skin-cancer/sarcoma detection (2), early detection of
retinopathies (3), and many more (4). But despite a lot of effort invested in computational
psychiatry projects (5) we can see zero clinical applications (6). In addition, recent publications
coming from review done by AI experts are showing that ‘medical information ismore complex and
less available than the web data that many algorithms were trained on, so results can be misleading’
(7, 8).

Our group focused mainly on data-driven computational psychiatry research (9–14). We also
became aware of so-called unwarranted optimism (15–17) and reported on it (10, 12). The
expression’ unwarranted optimism’ is coined in ML community to signify for unrealistically
inflated high accuracies of models due to unresolved Dimensionality of problem, absent external
validation, unproportional ratio between number of variables and number of subjects in high-
dimensional medical datasets, and existance of unattended blind spots. It also illustrates the
phenomenon that the scientific community, in our opinion, lulles itself into thinking that we are
developing models that work much better than they actually do (7).

A recent publication demonstrated that ML’s purely reliance on patient’s medical history,
medication, epidemiological data, and scales/questionaries data (18) are simply not capable of
providing practically useful results. We also explored the possibilities of this methodology in
forecasting mania in bipolar depression disorder-BDD (13, 14, 19, 20). In this research we
collected daily self-reports (via mobile phone applications), clinical assessment (standard clinical
interviews and scales/questionaries), medical histories (including medication, and other important
variables), several sleep variables, smartwatch variables (173 variables per person in total) in
attempt to construct an accurate dynamical model of transition between five clinically defined
states and in order to forecast mania phase. We used complex pipeline, several feature extraction
methods, several feature selection models, and applied four different ML models and network flow
model, in order to mathematically describe clinically compiled data (to represent the bidirectional
transition between five distinct phases in BDD). The aim was in essence to extract the most
relatable variables that have prognostic value in early warning of mania, that resulted in real
personalized medicine application. Among all the variables the best predictors of mania were sleep
quality (and duration) and irritability (13), and Random Forest scored the best. The classification
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Čukić and López Objective Detection and Monitoring of Depression

using only selected variables produced better results than using
all available information. Hence, dimensionality reduction of a
problem was crucial to this research.

Whelan, Garavan, Gillan, and their colleagues, explained in
their publications before 2017, why computational psychiatry
projects, even when relying on neuroimaging data are flawed
(16, 17), arguing that some basic postulates from Information
theory and Statistical learning theory are ignored, despite wide
accessibility of many ML models. The consequence is overly
optimistic (and misleading) results, that are not leading to
clinically useful applications [see also (21–23)]. There are many
publications that confirmed (among them the 2021 report from
Alan Turing Institute on faulty AI application in Health) the
notion that majority of AI applications in Health are simply
yielding very poor results, like for example famous IBM’sWatson
for Oncology that failed catastrophically [(24) report (25)]. See
for example (7, 26–28), for review of this particularly inflated
expectations of machine learning applications in Health. As
phenomenon described in Statistical Learning Theory, a “Curse
of dimensionality”, demonstrated to be the central problem in
particular with datasets with the large number of features in vast
digital health data, shown to be challenging the development of
robust AI models (in particular, their generalizability). Whenever
you sample from all the possible values, the average interpoint
distance between samples is rising as the dimensionality of
that data space changes (1D, 2D, 3D, etc.). The increased
sparsity in the relevant feature space exponentially increases
the volume of blind spots in data (7). Those are contiguous
regions of feature space for which we don’t have samples.
By this the training set becomes biased in an important way,
and so fails to include samples from the region (7). A small
high-dimensional training sample (characteristic for majority
of health applications) is susceptible to dataset blind spots
(26). Also, the volume of blind spots scales exponentially
with the number of features. If data from the sample is
susceptible to blind spots and the data from those blind spots are
encountered after deployment, the model can produce incorrect
treatment recommendations that are not detected during model
development (7).

We argue here that the central thing that can lead
to the resolution of this frustration, is an addition of
electrophysiological signals analysis, and appropriate
characterization of it which yields highly accurate results in
detection and prediction of any ML model used (11, 12). The
overall accuracies per seven ML models used, depending of the
number of principal components included, were between 92
and 95%, showing that the proper non-linear characterization of
a resting EEG was the key for practically useful detection. We
showed that in this way (characterizing EEG with non-linear
measures capable to accurately detect its intrinsic dynamics), it
is possible to discern between episode and remission phase in
MDD (9), besides accurate detection of depression. Other groups
of researchers demonstrated that it is possible to detect who
is the responder to transcranial magnetic stimulation (rTMS),
since this therapy has repeatedly been shown to be effective
even in treatment resistant depression (TRD) (29, 30). Another
non-invasive brain stimulation technique (NIBS), transcranial
direct current stimulation (tDCS), has shown to be effective in

MDD treatment (31, 32). We demonstrated how this modality
of stimulation leaves a detectable impact on the brain lasting
longer than half an hour after the stimulus was presented (9).
In another publication, we explained why NIBS techniques
might work in depression treatment, based on the physiological
complexity approach (32). By connecting earlier findings coming
from fMRI research (33), observed increased complexity in EEG
(34, 35) and already mentioned decreased complexity after the
therapy (29, 30), we concluded that the feature of successful
therapy for depression, must be connected to its ability to
decrease said aberrated complexity, that represents the distinct
internal dynamic.

The key concept to understand here is the so-called
physiological complexity (or complex variability in physiology),
an analytical approach to electrophysiological signal analysis
stemming from electrical engineering, statistical physics and
complex systems dynamics theory (chaos) (36–40). A more
familiar name for this approach is fractal and nonlinear analysis
(41). Despite the fact that many medical professionals are
labeling this approach “novel” it is not novel by any standard;
seminal work by Mandelbrot from 70’s, Pincus, Hausdorf, Peng,
and Goldeberger from 80’s and 90’s last century made that
possible. They all built on early mathematics work of Cantor
(Cantor’s set, 1893), Peano (1890), Sierpinski (Triangle,1907),
Koch (Snowflake, 1909), Lucia (Lucia’s set, 1917) and others
who could not generalize their findings before the advent of
modern computers.

If a researcher in any medical field wants to explore the
effect of a certain factor, the most probable way to do it is to
calculate the means, standard deviations, p-values, and other
measures coming from frequentist statistics that dominates the
field. Irregularity statistics, like any entropy-based measure, for
example, quantify the changes in physiological systems in a much
more accurate and practically meaningful way (42). These two
approaches (standard or conventional vs. non-linear) are simply
measuring different information contained in the data, but as
repeatedly shown physiological signals are far more complicated
that we previously thought (43). Knowing that human physiology
is not linear (in essence, not additive) and has many fractal
dependencies in its control mechanisms, a better approach to
analyzing signals from such a complex systems dynamics would
be non-linear analysis (38, 39). Wouldn’t it be logical to apply
analytics that is better suited for non-stationary, non-linear, and
noisy signals, than to just focus on how smeared are the data
around the means?

From the existing literature, coming mainly from engineering
and technical background, it is clear that fractal and non-linear
analysis is much better suited for this task (38, 41).

Just to mention some of the facts important in research of
depression (and mood disorders in general), to improve the
understanding of the above-mentioned research. Cortico-vagal
control (CVC) is connected to heart rate variability (HRV), which
showed to be a robust marker of depression, anxiety, and several
other psychiatric conditions (44–46). Cortico-vagal control (as
well as many structural and functional physiological phenomena)
is proven to have fractal nature (40, 44). Heart dynamics also
has a fractal structure (40). There is much research evidence
on the connection between autonomous nervous system (ANS)
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and heart dynamics in depression, obtained by use of non-linear
analysis approach (47–51). There is also evidence that non-linear
measures are much more effective in detecting this relationship
with a much larger effect size in publications in the last two
decades [(52) in review].

What we know now, from the analytical perspective and
possible application in clinical practice, is that by the mere
addition of that specific non-linear characterization of signal,
possible in real-time, one can: detect depression (10, 11, 34, 53,
54), detect the subtypes of depression—melancholic vs. non-
melancholic (49), detect comorbidities (48), discern episode
and remission phase (9), detect cardiovascular risks early (55),
differentiate between unipolar and bipolar depression (56) and
even detect existing but unreported suicidal ideation (57). As
we already know that small sample sizes jeopardize the overall
accuracy of the ML models, the only solution to generalize and
effectively arrive at real-life translation to clinical practice of
those promising methods of detection/classification is to collect
more data. The only way to go, is to organize large collaborative
projects with identical protocols of data collection, similar to
STAR∗D. Like many things in life we should try to keep it simple:
base our research on already successful research based on small
samples, but increase the size of a sample; add some form of
electrophysiological data and non-linear feature extraction; keep
dimensionality of a problem as low as possible; always perform
external validation and once we deploy the model developed
in lab, keep monitoring its performance. In order to make the
research reproducible, we might preregister the protocols and

methods, and publish our negative results. Collaborative data
sharing (anonimizied data are a good practice but time series

required here are already GDPR compliant) can also contribute
to the solution of this problem.

With todays’ technology that made possible Telehealth &IoT
(portable monitoring devices, with medical-grade signal quality),
as a reliable way of remote monitoring of outpatients, we can
support clinicians with objective additional information that
might largely improve the effectiveness of therapy for depression.
It might be close to previously envisaged personal medicine,
increasing the ability of every clinician to better navigate
many diagnostic decisions. Revisiting some not-so-well-known
mathematical concepts that can thrive with cloud technology,
would pay off in improved psychiatric diagnostics and treatment.

Although the citation is coming from the economy, it
effectively applies to the adoption of these innovations in
psychiatry: The difficulty lies not in the absence of new ideas, but
an escape from the old ones (58).
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