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Iridium-catalysed regioselective borylation
of carboranes via direct B–H activation
Ruofei Cheng1, Zaozao Qiu1 & Zuowei Xie1,2

Carboranes are carbon–boron molecular clusters, which can be viewed as three-dimensional

analogues to benzene. They are finding many applications in medicine, materials and

organometallic chemistry. On the other hand, their exceptional thermal and chemical

stabilities, as well as 3D structures, make them very difficult to be functionalized, in particular

the regioselective functionalization of BH vertex among ten similar B–H bonds. Here

we report a very efficient iridium-catalysed borylation of cage B(3,6)–H bonds of

o-carboranes with excellent yields and regioselectivity using bis(pinacolato)diboron (B2pin2)

as a reagent. Selective cage B(4)–H borylation has also been achieved by introducing a bulky

TBDMS (tert-butyldimethylsilyl) group to one cage carbon vertex. The resultant

3,6-(Bpin)2-o-carboranes are useful synthons for the synthesis of a wide variety of

B(3,6)-difunctionalized o-carboranes bearing cage B–X (X¼O, N, C, I and Br) bonds.
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I
cosahedral carboranes are carbon–boron molecular clusters,
sharing many features with benzene such as aromaticity, high
thermal and chemical stability1,2. On the other hand,

carboranes have their own unique characteristics such as
spherical geometry and hydrophobic molecular surface1,2,
which make them attractive building blocks for boron neutron
capture therapy agents in medicine3–6, functional units in
supramolecular design/materials7–17 and versatile ligands in
coordination/organometallic chemistry18–23. These research
activities have drawn growing interests in the selective
functionalization of carboranes1,2,24–26.

Classic routes to functionalized carboranes rely on the polarized
cage C–H/B–H bonds: the weakly acidic C–H proton (pKa B23)
and basic B–H hydride1. Accordingly, cage C–H bonds can be
deprotonated by strong bases, followed by reactions with
electrophiles to give carbon-substituted carboranes1,2, and cage
B–H bonds are subjected to electrophilic substitution reactions,
leading to the formation of cage boron-substituted carborane
derivatives with the reaction rate B(9,12)–H4B(8,10)–H4
B(4,5,7,11)–H (refs 1,27). However, the B(3,6)-disubstituted
o-carboranes cannot be prepared by electrophilic substitution
reactions. They are generally achieved via multistep reaction of
deboration–capping–deboration–capping (Fig. 1)1,28,29.

Very recently, we have developed –COOH guided
transition metal-catalysed regioselective B(4)-alkenylation30,
-alkynylation31, -amination32 and -hydroxylation33, as well as
B(4,5)-dialkenylation34 and -diarylation35 of o-carboranes. In
contrast, transition metal-catalysed B(3,6)-difunctionalization of
o-carboranes is much less studied36,37, although transition metal
promoted B(3)–H activation in o-carboranes has been well
documented38–44.

Encouraged by transition metal-catalysed C–H borylation
and application of the resultant boronate esters/boronic acids
in C–C/C–O/C–N/C–halogen bond forming process45–47, we
initiated a research program to study transition metal-catalysed
direct cage B–H borylation of o-carboranes and the results are
reported in this study (Fig. 1).

Results
B(3,6)-diborylation of o-carboranes. The optimization of
reaction conditions for the following reactions was summarized
in Supplementary Tables 1 and 2. The initial reaction of

o-carborane (1a) with B2pin2 ([B(OCMe2CMe2O)]2) in the
presence of 3.5 mol% [(cod)IrCl]2 (cod¼ 1,5-cyclooctadiene) in
tetrahydrofuran (THF) gave 3-Bpin-1,2-C2B10H11 (2a) in 60% gas
chromatography (GC) yield. It was later found that the ligands
played an important role in the reaction48,49. Addition of 0.21
equiv. of pyridine (Py) significantly increased the reaction
efficiency, leading to the formation of 2a and 3,6-(Bpin)2-1,2-
C2B10H10 (3a) in 23% and 67% GC yields, respectively.
Replacement of Py by 2-Me- and 4-Me-Py resulted in 98% and
95% GC yields of 3a. Increasing the steric hindrance of Py
derivatives led to much lower yields of 3a. It was noted that
bipyridine ligands commonly used in C–H borylation led to the
formation of inseparable geometrical isomers of mono-, di- and
tri-borylated products (see Supplementary Table 2). Other Ir(I)
complexes such as [(cod)Ir(OMe)]2, (cod)Ir(acac), (cod)2IrBF4

and (cod)2IrB[3,5-(CF3)2C6H3]4 also worked well, giving very
good to excellent yields of 3a, whereas the Ir(III) complexes such
as [Cp*IrCl2]2 and IrCl3, as well as [(cod)RhCl]2 and Pd(OAc)2

showed poor or no catalytic activity. On the other hand, HBpin
did not give any borylation product. Extensive screening of
solvents, catalyst loadings, reaction temperatures and molar ratios
of ligand/B2pin2 led to the optimal reaction conditions shown
entry 6 of Supplementary Table 1.

The substrate scope was then examined under the optimized
reaction conditions and the results were compiled in Table 1. The
borylation efficiency was generally very high regardless of the
nature of substituents on cage B(9,12) of o-carboranes (3a–3m).
It was noted that the double bond in 9-vinyl-o-carborane (1k)
underwent hydroboration with HBpin, a byproduct of B–H
borylation (vide infra), to afford 3k in 91% isolated yield with
excellent regioselectivity, probably owing to steric effect of
o-carboranyl moiety. The B(3,6)-diborylation efficiency of
4-I-o-C2B10H11 (1n) was lower than other substrates likely to
be due to steric effect of vicinal iodo group. In fact, both the
mono- and diborylation products 2n and 3n were observed by
GC–mass spectrometry with a molar ratio of 25:75. The bulkier
substituents at the B(4) position such as 4-Ph and 4-(Ph)CH¼
(Ph)C or at B(4,7) positions such as 4,7-I2 can block the
B(3)-borylation, giving 2o, 2p and 2q in 76–89% isolated yields,
respectively. For 3-Ph-o-C2B10H11, the expected monoborylation
product 2r was isolated in 89% yield. It was noteworthy that
substituents on cage C had a significant impact on the borylation
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Figure 1 | Functionalization of B(3,6)-H bonds in o-carboranes (Bpin¼B(OCMe2CMe2O), B2pin2¼ pinB-Bpin). (a) Known methods for B(3) and B(3,6)

functionalization. (b) This work: Iridium-catalysed regioselective borylation of carboranes via direct B�H activation. (c) Numbering system of o-carborane.
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reaction. For example, 1-Me-o-C2B10H11 gave an inseparable
mixture of geometrical isomers and no borylation with 1,2-Me2-
o-C2B10H10 was observed.

We also examined the gram-scale borylation reaction. Under
the optimal reaction conditions, treatment of 1a (1.44 g, 10 mmol)
with B2pin2 (10.16 g, 40 mmol) in THF (50 ml) afforded 3.75 g of
3a (95% isolated yield).

In a similar manner, reaction of m-C2B10H12 (4) with 1.5 equiv.
of B2pin2 in the presence of 3.5 mol% [(cod)IrCl]2 and 21 mol%
2-methylpyridine (2-MePy) in THF at 80 �C for 5 h gave 2-Bpin-
m-carborane (5) in 74% isolated yield (see Supplementary Table 3
and Supplementary Fig. 6). On the other hand, under the same
reaction conditions, p-carborane afforded an inseparable mixture
of mono-, di- and triborylated products.

B(4)-borylation of o-carboranes. The aforementioned results
clearly show that bulky substituents such as Ph (2o in Table 1)
and C(Ph)¼CH(Ph) (2p in Table 1) can completely block the
borylation of ortho-BH vertices, suggesting the importance of
steric factors. We wondered whether Ir-catalysed regioselective

cage B(4)–H borylation in o-carboranes could be achieved by
introducing a bulky substituent at the cage C position. Accord-
ingly, 1-trimethylsilyl-o-carborane was chosen as the model
substrate for initial screening and the results were compiled
in Supplementary Table 4. It was found that 2,20-bipyridine
(2,20-bipy) derivatives were better ligands than monodentate Pys
as the latters caused partial desilylation of 1-trimethylsilyl-o-
carborane. The screening results indicated clearly that substrates
with bulkier silyl groups can efficiently block the ortho-B–H
activation, resulting in higher regioselectivity. If 2-TBDMS-o-
carboranes 6 (TBDMS¼ tert-butyldimethylsilyl) were used as
starting materials and 2,20-bipy as the ligand, the desired product
4-Bpin-2-TBDMS-o-carboranes 7a–c were isolated in 89–92%
yields. Subsequently, the TBDMS group can be easily removed by
caesium fluoride (CsF) under very mild condition to give the
corresponding compound 8 in ca. 94% isolated yield (Fig. 2).

Transformation of 3a. Although it has been well documented
that Bpin can be replaced by a wide variety of functional
groups45–47, the chemical properties of cage B–Bpin bonds have

Table 1 | Substrate scope for selective cage B–H borylation of o-carboranes*,w.
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not been explored thus far. To illustrate the synthetic applications
of B-borylated-o-carboranes, various transformations of 3 in an
example of 3a were studied and the results were outlined in Fig. 3.
Suzuki–Miyaura cross-coupling of 3a with PhBr in the presence
of 20 mol% Pd(PPh3)4 and 3 equiv. of Cs2CO3 gave 3,6-diphenyl-
o-carborane (9) in 81% isolated yield. Treatment of 3a
with CH2¼CHCH2Cl in the presence of Pd(dba)2 (dba,
dibenzylideneacetone) at room temperature afforded 10 in 87%
yield. Surprisingly, replacement of Cs2CO3 by tBuOK, reaction of
3a with PhBr in the presence of Pd(PPh3)4 produced 3,6-Br2-o-
C2B10H10 (11a) in 73% yield. Similarly, 3,6-I2-o-C2B10H10 (11b)
was prepared in 78% isolated yield if PhI was used as coupling
agent. It is not clear at this stage why tBuOK can alter the
coupling partner in these cross-coupling reactions. The two Bpin
moieties in 3a were readily replaced by acetoxy groups using
Cu(OAc)2/KF in CH3CN under 1 atm of O2. 3,6-(NH2)2-o-

C2B10H10 (13) was prepared in 90% isolated yield by treatment of
3a with in situ generated MeONH- in THF. Reaction of 3a with
TMSN3 in the presence of KF and CuCl gave 3,6-(N3)2-o-
C2B10H10 (14) in 83% yield. Double click reaction of 14 with
EtO2CC�CCO2Et afforded 3,6-ditriazolyl-o-carborane (15) in
83% yield. In addition, carboranylboronic acid 3,6-[B(OH)2]2-o-
C2B10H10 (16) was also synthesized from 3a in 85% isolated yield.

Compounds 2, 3, 5 and 7–16 were fully characterized by 1H,
13C and 11B nuclear magnetic resonance (NMR) spectroscopy, as
well as elemental analyses. The molecular structures of 2a, 2p, 2q,
3a, 3l, 5, 7c, 8a and 15 were further confirmed by single-crystal
X-ray analyses.

Mechanistic study. To shed some light on the reaction
mechanism of the first Ir-catalysed regioselective cage B–H bor-
ylation, NMR reactions (Fig. 4) were carried out in d8-THF,
which were monitored by 1H and 11B NMR spectra (see
Supplementary Figs 12–16 for detail). The following results were
observed: (1) dissociation of [(cod)IrCl]2 in the presence of
2-MePy generated a monomeric species (cod)IrCl(2-MePy) (A)
(Fig. 4, eq. a). (2) B2pin2 underwent rapid oxidative addition
reaction on Ir(I) species in the presence of 2-MePy to generate a
Ir(III) species50,51 and release ClBpin that was trapped by THF to
form ROBpin (see Supplementary Fig. 14)52,53. However, no
reaction was observed by treatment of [(cod)IrCl]2 with 1a or
HBpin under the same reaction conditions (Fig. 4, eq. b and d).
(3) Under the optimal reaction conditions, both 2a and HBpin
were observed by 1H and 11B NMR at the initial stage. As the
reaction proceeded, 3a gradually appeared at the expense of 2a.
These results suggested that the borylation proceeded stepwise
(Fig. 4, eq. e). (4) The Ir(III) complex (Z6-MesH)Ir(Bpin)3

(ref. 54) was found to catalyse the diborylation of 1a equally well
as [(cod)IrCl]2 did to give 3a in 98% GC yield (Fig. 4, eq. f). (5)
B(3,6)–H bonds were more reactive than B(4,5,7,11)–H ones in
the above borylation, suggesting that the activation of cage B–H
bond may proceed via oxidative addition pathway1,36–39,55–57,
instead of electrophilic substitution mechanism30–35 as the
electron density in o-carborane follows the trend:
B(3,6)oB(4,5,7,11)oB(8,10)oB(9,12)1,27.
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On the basis of the aforementioned experimental results
and literature work30,36,45–57, a proposed mechanism for the
borylation reaction is shown in Fig. 5. Dissociation of [(cod)IrCl]2

in the presence of 2-MePy ligand generates a monomeric active

species (cod)IrCl(2-MePy) (A), which undergoes oxidative
addition with B2pin2, followed by reductive elimination to form
Ir(I)-Bpin B and release ClBpin50,58,59, entering the catalytic
cycle. Oxidative addition of B2pin2 on B gives the Ir(III)
intermediate C48, followed by another oxidative addition of the
most electron-deficient cage B(3)–H bond1,36,37 to afford D (path
a). Reductive elimination yields the intermediate E and HBpin.
Alternatively, electrophilic substitution of Ir(III) species in C on
cage B–H yields the intermediate E and release one equivalent
of HBpin (path b)30. Reductive elimination generates cage
boron-borylated product 2 (ref. 48). Compound 2 undergoes
another catalytic borylation cycle to afford cage B(3,6)-
diborylated product 3. As the electron-deficient cage B(3,6)–H
bonds preferentially undergo oxidative addition reaction
with transition metal species over other more electron-rich cage
B–H bonds1,36,37, path a is believed to be more favourable over
path b.

In summary, a very efficient and regioselective Ir-catalysed
diborylation of cage B(3,6)–H bonds in carboranes has been
developed. This serves as a new methodology for the regioselec-
tive generation of a series of B(3,6)-diborylated- or B(3)-
borylated-o-carboranes. Selective B(4)-borylation of cage
B(4)–H bond has also been achieved by introducing a TBDMS
group to the cage carbon position. The resultant B-borylated
carboranes can be conveniently converted to a variety of
functionalized carboranes bearing cage B–X (X¼Br, I), B–O,
B–C(sp2), B–C(sp3), B–NH2 and B–N3 bonds that otherwise
cannot be prepared by other known methods. This work opens
up a new way for efficient and regioselective functionalization of
carboranes, which may be extended to other boron cluster
systems.

Methods
Preparation of B(3,6)-diborylated- or B(3)-borylated-o-carboranes (3 or 2).
An oven-dried Schlenk flask was charged with o-carborane (1) (0.5 mmol), B2pin2

(508 mg, 2.0 mmol), [(cod)IrCl]2 (12 mg, 0.0175 mmol) and 2-MePy (10.3 mg,
0.105 mmol), followed by dry THF (5 ml). The flask was closed under an
atmosphere of nitrogen and stirred at 110 �C (bath temperature) for 5 h. After
hydrolysis with water (10 ml) and extraction with diethyl ether (10 ml� 3), the
ether solutions were combined and concentrated to dryness in vacuo. The residue
was subjected to flash column chromatography on silica gel (230–400 mesh) using
n-hexane and ethyl acetate (10/1 in v/v) as eluent to give a mixture of product and
B2pin2. Removal of B2pin2 via sublimation at 90 �C under vacuum (0.1 torr) gave a
pure product 2o–r or 3a–n.

B(4)-borylated-carboranes (8). Compound 7 was prepared from 1-TBDMS-o-
carboranes 6 (0.5 mmol), B2pin2 (254 mg, 1.0 mmol), [(cod)IrCl]2 (12 mg,
0.0175 mmol) and 2,20-bipy (22 mg, 0.07 mmol) in THF (5 ml) at 110 �C (bath
temperature) for 3 h, using the same procedure reported for 3. To a solution
(2 ml) of 7 (0.3 mmol) (acetone for 7a and 7b; MeOH/DCM (2/1 in v/v) for 7c)
was added CsF (182 mg, 1.2 mmol). The mixture was stirred at room temperature
(for 1 h for 7a and 7b, and 20 min for 7c). After filtration and removal of the
solvent under vacuo, the residue was subjected to flash column chromatography
on silica gel (230–400 mesh) using n-hexane/Et3N (5/1 in v/v) as eluent to give
product 8.

For NMR spectra and single-crystal X-ray structures of the compounds in this
study, see Supplementary Figs 1–5,7–11 and 17–178.

Data availability. X-ray crystallographic data for compounds 2a, 2p, 2q, 3a, 3l, 5,
7c, 8a and 15, and complex A have been deposited at the Cambridge
Crystallographic Data Centre as CCDC 1500326–1500335, respectively
(http://www.ccdc.cam.ac.uk/pages/Home.aspx). The authors declare that the
data supporting the findings of this study are available within the article (and
Supplementary Information files) and also are available from the corresponding
author on request.
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