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Simulation platform for pattern 
recognition based on reservoir 
computing with memristor 
networks
Gouhei Tanaka1,2,3* & Ryosho Nakane2

Memristive systems and devices are potentially available for implementing reservoir computing (RC) 
systems applied to pattern recognition. However, the computational ability of memristive RC systems 
depends on intertwined factors such as system architectures and physical properties of memristive 
elements, which complicates identifying the key factor for system performance. Here we develop a 
simulation platform for RC with memristor device networks, which enables testing different system 
designs for performance improvement. Numerical simulations show that the memristor-network-
based RC systems can yield high computational performance comparable to that of state-of-the-art 
methods in three time series classification tasks. We demonstrate that the excellent and robust 
computation under device-to-device variability can be achieved by appropriately setting network 
structures, nonlinearity of memristors, and pre/post-processing, which increases the potential for 
reliable computation with unreliable component devices. Our results contribute to an establishment 
of a design guide for memristive reservoirs toward the realization of energy-efficient machine learning 
hardware.

Machine learning (ML) has been becoming a vital technology in many industries for promoting artificial intel-
ligence (AI) during the last decade. For further penetration and expansion of practical applications based on 
ML methods, it is often demanded to enhance their computational efficiency by reducing computational time 
and resources while maintaining desired performance. Reservoir computing (RC) is one of the ML frameworks 
that can meet such a demand1–4. An RC system is normally composed of an unadaptable dynamic reservoir 
for transforming input time series data (or sequential data) into a high-dimensional feature space and a train-
able readout for performing a pattern analysis with a simple learning algorithm. The reservoir needs to be well 
designed for achieving high computational performance in exchange for the simplicity and speediness of the 
learning process in the readout. For reservoirs constructed with recurrent neural networks5–7, there are some 
practical design guides which are mainly helpful in software computation8,9.

In the exploration of hardware implementation of the adaptability-free reservoirs, various physical reservoirs 
have been developed based on electronics, photonics, spintronics, mechanics, material engineering, robotics, 
and biology10. A unified viewpoint can be obtained by categorizing the reservoir architectures into the network 
type11–14, the single nonlinear node plus a delayed-feedback type15–18, and the excitable continuous medium 
type19–21. However, it is still challenging to derive a design guide for each type of physical reservoir. This is partly 
because of a difficulty in comprehensively understanding how the computational performance of physical RC 
systems depends on possible influential factors, such as the system architecture, the physical characteristics of 
system components, and the signal processing method.

In this study, we tackle the above-mentioned issue by focusing on memristive reservoirs. Memristive systems 
and devices (or memristors)22,23 are suitable for constructing physical reservoirs, because their dynamics can show 
inherent nonlinearity and their resistance, called memristance, can be time-varying based on the history of an 
applied voltage signal. The nonlinearity and the input history-dependent reaction of memristors are favorable in 
solving linearly inseparable problems with time series data3. Previous studies have demonstrated the potential of 
memristive reservoirs for temporal pattern recognition, which can be mainly divided into two types: memristor 
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networks14,24–26 and memristor arrays27–30. Memristor networks use complex dynamic behavior of interacting 
memristors as a reservoir state, whereas memristor arrays leverage a set of nonlinear responses of independent 
memristors with optional delayed feedback loops. Our target in this study is the network-type memristive res-
ervoirs which are more difficult to design and control compared with the array-type ones. We aim to develop a 
systematic approach for examining the effects of system components, such as the network architecture and the 
nonlinear characteristics of memristors, on the computational performance of the memristor-network-based RC 
systems toward establishing a practical design guide and facilitating their hardware implementation.

We mathematically formulate a general system of memristor networks and develop a simulation platform for 
performing temporal pattern classification in the RC framework. In temporal classification tasks, the dataset is 
given as a set of multiple time series data and the corresponding class labels. Our purpose is to construct a pattern 
classifier having a high generalization ability by using the memristor-network-based RC systems, which can well 
predict the true class label even for unknown time series data after learning. With our simulation platform, we can 
examine the effects of various system factors on the computational performance of the memristive RC systems. 
Numerical experiments are conducted to evaluate the classification performance of the RC systems composed 
of simple memristor models under different system conditions for three temporal pattern classification tasks: 
the waveform classification31, the electrocardiogram (ECG) classification32, and the spoken digit recognition33. 
In the waveform classification task with sine and triangular waves, a perfect classification is achieved at the 
best conditions. In the ECG classification task with normal and abnormal patterns, the classification accuracy 
reaches a maximum of 86%. In the spoken digit recognition task with the TI-46 Word corpus, the best classifica-
tion accuracy is 97.3%. These classification accuracies are comparable to those obtained by state-of-the-art ML 
methods. The results suggest that the RC systems with memristor networks are very promising as a building 
block of next-generation ML and AI hardware.

Results
RC systems with memristor networks.  A physical RC system with a memristor network is illustrated in 
Fig. 1a, which consists of a preprocessing part, an input part, a reservoir part, and a readout part. First, a given 
time series data is converted to a voltage signal in a preprocessing step, such as appropriate scaling and masking, 
depending on the type of data. Then, this voltage signal is fed into the voltage source of the memristor-network-
based reservoir. A dynamic response of the reservoir to the input signal is obtained as time evolutions of electric 
currents flowing through the individual memristors. In the readout part, the current signals are converted to a 
matrix through a collection of reservoir states and an optional postprocessing step, and then, used to produce a 
system output. Only the output weight matrix Wout is trainable, which is optimized by linear regression so as to 
minimize the error between the system output and the target output. We limit the pre/post-processing methods 
to matrix operations, in order to shed light on the nonlinear transformation effect of the memristive reservoir.

We consider a general memristor network consisting of Nm memristors, Nn circuit nodes, and Ni voltage 
sources (see Fig. 1a with Nn=8, Nm=11, and Ni = 1 ). By regarding the circuit nodes as vertices and the memristor 
branches as edges, the connectivity of the memristors can be represented as a directional graph, described by an 
incidence matrix Em ∈ R

Nn×Nm . The connectivity of voltage sources can be similarly described by an incidence 
matrix Ei ∈ R

Nn×Ni (see “Methods” section).
In this study, we assume that the individual memristors in the reservoir are described by the linear drift 

model34. When an electric voltage is applied to a metal-oxide memristor, the oxygen vacancies (i.e. dopants) 
drift in the device as charge carriers, and shift the boundary between a doped region with a low resistance and an 
undoped region with a high resistance. This is simply represented by the linear drift model composed of a series of 
a low resistance state (LRS) with resistance RON and a high resistance state (HRS) with resistance ROFF ( ≫ RON ) 
as illustrated in Fig. 1b (see “Methods” section for details). With a variation of the length of the LRS, the total 
memristance changes in time. The polarity of the memristor, related to its directionality, is determined depend-
ing on whether the drift of the dopants expands or contracts the LRS35. For a sinusoidal input voltage, the linear 
drift model can exhibit a pinched hysteresis loop in the I-V curve as shown in Fig. 1c. A variation in the ON/
OFF resistance ratio, r = ROFF/RON , changes the nonlinearity of the I-V characteristics. When micro/nano-scale 
memristor devices are fabricated, a device-to-device variation in their electrical properties is inevitable27,36–38. 
Therefore, RON and ROFF are assumed to follow a normal distribution with mean R̄ON and R̄OFF , respectively 
(see “Methods” section). Figure 1d shows a normal distribution of RON with mean R̄ON = 100� and standard 
deviation σ R̄ON for different values of σ controlling the degree of variability.

Figure 1e illustrates examples of four different types of network structures tested in our numerical simula-
tions, including a ring with unidirectional polarity (Ring-UP), a ring with random polarity (Ring-RP), a random 
network with unidirectional polarity (Rand-UP), and a random network with random polarity (Rand-RP). These 
networks are considered in order to clarify the effect of randomness in network connectivity and polarity. For 
instance, the difference between Ring-UP and Ring-RP lies in the polarities of the memristors indicated by the 
arrows. To avoid a disconnected graph, we construct networks of the Rand-UP and Rand-RP types by adding 
long-range memristor branches to those of the Ring-UP and Rand-RP types, respectively.

We explicitly formulated circuit equations of a general memristor network based on the new modified nodal 
analysis method39 as follows (see “Methods” section for derivation):

(1)EmW(E⊤m�n(t))E
⊤
m

d�n(t)

dt
+ Eiji(t) =0,
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where t represents continuous time, �n(t) ∈ R
Nn is a vector of nodal magnetic fluxes, W(·) ∈ R

Nm×Nm is a 
diagonal matrix of memductances (memory conductances) of the memristors as a function of fluxes, ji(t) ∈ R

Ni 
is a vector of currents at the voltage sources, vn(t) ∈ R

Nn is a vector of nodal voltages, vi(t) ∈ R
Ni is a vector of 

voltages at the voltage sources. This set of equations with respect to the state variables ( vn(t) , �n(t) , and ji ) are 
categorized into a differential-algebraic system of equations (DAEs), where differential and algebraic equations 
are mixed. In general, DAEs are more difficult to solve than ordinary differential equations (ODEs), because the 
Jacobian matrix (i.e. the first-order derivative) used for numerical integration becomes singular40. By setting Em , 
Ei , vi , and W depending on the reservoir network structure and the memristor models, concrete system equations 
can be obtained from Eqs. (1)–(3) (see “Methods” section). In our simulation platform on MATLAB41, these 
equations are derived by symbolic computation and solved by using the DAE solver. The dynamic state of the 
reservoir is represented by time courses of vector jm(t) ∈ R

Nm of electric currents flowing through the memris-
tors. The reservoir states are used to produce the system output in the readout processing (see “Methods” section).

(2)
d�n(t)

dt
− vn(t) =0,

(3)E⊤i vn(t)− vi(t) =0,
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Figure 1.   Memristor-network-based RC system. (a) System architecture composed of preprocessing, input, 
reservoir, and readout parts. An input time series data is preprocessed and then fed into the memristor network 
through the voltage source. The memristor network consists of Nm memristors, Nn circuit nodes, and Ni 
voltage sources. The current signals are measured as a reservoir state and processed in the readout part. The 
output weight matrix Wout is optimized by linear regression in the training process. (b) The linear drift model 
of a memristor34, which is equivalent to a series of a low resistance state (LRS) with resistance RON and a high 
resistance state (HRS) with resistance ROFF(≫ RON) . The ratio between the lengths of the LRS and HRS changes 
in time depending on an applied voltage. (c) Current–voltage (I–V) characteristics of a single memristor model 
in response to a sinusoidal voltage signal for different values of r = ROFF/RON . (d) Normal distributions of RON 
with mean R̄ON = 100� and standard deviation σ R̄ON for different values of σ controlling the degree of the 
device-to-device variation. (e) Examples of four types of network structures, including a ring with unidirectional 
polarity (Ring-UP), a ring with random polarity (Ring-RP), a random network with unidirectional polarity 
(Rand-UP), and a random network with random polarity (Rand-RP). The memristors indicated by the arrows 
in the Ring-UP and Ring-RP types have opposite polarities. The networks of the Rand-UP and Rand-RP types 
are generated by randomly adding non-local memristor branches to those of the Ring-UP and Ring-RP types, 
respectively.
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Waveform classification.  The waveform classification task has often been used as a benchmark task for 
evaluating computational performance of physical RC systems29,31,42–44. We consider a two-class classification 
problem with 100 sine and 100 triangular waves having the same amplitude and different frequencies. The fre-
quency of each waveform was randomly generated from a uniform distribution in a certain range (see “Meth-
ods” section). Some data were used for training and the other data were for testing. These waveform data were 
converted to voltage signals and then fed into the memristor-network-based reservoir. The parameter conditions 
used for numerical experiments are listed in Table 1.

Figure 2 demonstrates the responses of a memristor network of the Rand-UP type to sine and triangular input 
voltage signals when r̄ = R̄OFF/R̄ON = 50 and σ = 0.2 . Figure 2a–c show the sine wave input, the nodal voltages, 
and the currents on the memristor branches, respectively. Due to the random connectivity of the memristors 
and the device-to-device variation, the individual memristors exhibit different nonlinear I–V characteristics as 
shown in Fig. 2d,e. Figure 2f shows the relationship between the input voltage signal and the branch currents, 
indicating the input-output transformation realized by the reservoir. The corresponding figures for a triangular 
wave input are shown in Fig. 2g–l (see Supplementary Figs. 1–5 for other system conditions). The Nm current 
signals were converted to sequences of length Lout = 100 by sampling and then used to form a state collection 
matrix X for the readout processing (see “Methods” section).

Figure 3 shows the results of the waveform classification task. We tested the four network structures shown in 
Fig. 1b: Ring-UP with (magenta triangles), Ring-RP (green diamonds), Rand-UP (blue squares), and Rand-RP 
(red circles). We evaluated the classification accuracies for 10 random network realizations based on the 10-fold 
cross validation. Figure 3a–d plot the average value over the 100 trials together with the error bar indicating the 
standard error. Figure 3a shows the classification accuracies when the number of training data, Ntrain , is varied. 
It is remarkable that the networks of the Rand-UP and Rand-RP types achieve the 100% accuracy independently 
of Ntrain due to the rich variety in the reservoir states (see Fig. 2; Supplementary Fig. 3). The performances of the 
Ring-UP and Ring-RP types are inferior to those of the Rand-UP and Rand-RP types, but much higher than the 
baseline accuracy obtained by a linear classifier. This indicates the benefit of the nonlinear signal transformation 
by the physical reservoir. Figure 3b shows that the classification performance is not sensitive to the change in 
the variability parameter σ , suggesting a variability-tolerant property of the memristive RC system. Figure 3c 
demonstrates that the classification accuracy monotonically increases with the number of signals, Nx ( ≤ Nm ), 
used for the readout. In other words, a higher-dimensional reservoir state yields a better accuracy. The accuracy 
reaches the perfect level when Nx ≥ 14 . Figure 3d shows that the average ON/OFF resistance ratio r̄ related to 
the nonlinearity of the I–V characteristics is a key factor influencing the classification performance, which is 
maximized at the intermediate values around r̄ = 5× 102–103 . Figure 3e,f show the confusion matrices when 
r̄ = 50 and r̄ = 104 , respectively. The results imply that the misclassifications are linked to some failures in the 
training for r̄ = 50 whereas they are caused by over-training for r̄ = 104.

ECG classification.  An electrocardiogram (ECG) is an electric signal associated with heartbeats, which is 
often used for health checks and cardiac disease detections. In a normal state, the ECG signal shows a repetition 
of typical waveforms called the QRS complex45 due to depolarization and repolarization of the membrane poten-
tials of the cardiac muscle cells. Irregular ECG signals often correspond to abnormal cardiac behavior caused 
by diseases such as ischemia and myocardial infarction. An ECG-based heartbeat classification task is aimed at 
separating abnormal ECG signals from normal ones32,46. We used the ECG200 dataset formatted in the UCR 
Time Series Classification Archive47, which contains a total of 200 samples of ECG segment data, including 100 
samples for training and the other 100 samples for testing.

Figure 2.   Dynamical behavior of a memristor-network-based reservoir driven by waveform signals. The 
network structure is the Rand-UP type, the average ON/OFF resistance ratio is r̄ = 50 , and the degree of 
variability is σ = 0.2 . (a) A sine wave input. (b) The nodal voltages. (c) The currents on the memristor branches. 
(d) The I–V curves. (e) The same as (d), but the absolute current on a semi-log plot. (f) The currents plotted 
against the nodal voltages. (g)–(l) The same as (a)–(f), but for a triangular wave input.
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Figure 4a shows a preprocessing step for each ECG data of length Ldata(= 96) . The one-dimensional vec-
tor representing the original data was transformed into a 2D masked data by using a random mask of size 
Smask(= 50) , each element of which is −1 or 1. This randomization process corresponds to a multiplication of 
input data by random input weights in echo state networks3,5. The masked data was separated into Ldata column-
wise sequences, each of which was converted to a voltage signal and then fed into the memristor-network-based 
reservoir in the order of the column index sequentially. After the injection of each sequence, we reset the reservoir 
state. Figure 4b demonstrates a dynamic response of the reservoir to an input time series. The Nm(= 20) cur-
rent signals were transformed into the sequences of length Lout(= 50) for constructing a state collection matrix 
X in two possible ways as shown in Fig. 4c. In Case (i), the transposed matrices of size Nm × Lout were stacked 
vertically for all the inputs to yield a state collection matrix X ∈ R

NmLdata×Lout . In Case (ii), the Nm sequences 
were concatenated into a one-dimensional sequence and those for all the inputs were further concatenated to 
form a state collection matrix (vector) X ∈ R

NmLdataLout×1. The parameter conditions for numerical experiments 
are listed in Table 1.

Figure 5 shows the results of the ECG classification task. Each plot corresponds to the average accuracy over 
10 random network realizations and the error bar indicates the standard error. Figure 5a plots the classification 
accuracies for the four types of reservoir structures combined with the postprocessing in Case (i) (monochrome 
marks) and Case (ii) (colored marks) when r̄ is varied. The baseline accuracy (gray crosses) obtained by a lin-
ear classifier is 64%, meaning that all the testing data were classified as normal patterns. We can see that the 
performance with the postprocessing in Case (ii) are much better than those in Case (i). If the postprocessing 
method in Case (ii) is employed, the classification performance is kept at a high level against the variation of r̄ , 
indicating the robustness against the device-to-device variation as shown in Fig. 5b. The effect of the number of 
signals used for the readout processing, Nx(≤ Nm) , on the performance is shown in Fig. 5c. By increasing Nx , 
the performance is significantly improved in Case (i) but only slightly in Case (ii) (see Supplementary Fig. 6). 
We observe that the maximum input voltage Vmax significantly influences the classification performance in Case 
(ii) as shown in Fig. 5d. The classification accuracy reaches 86% when the network structure is the Rand-RP type 
and Vmax = 0.02 V. This performance is comparable to that of the other ML methods, ranging between 77 and 
92%49. We note that the number of trained weights is 1920 in Case (i) and 96,000 in Case (ii). The difference in 
the number of trainable weights is a potential cause of the gap in the classification performance. These results 
indicate that the classification performance can largely depend on the postprocessing method even when the 
same reservoir states are used. It is a future issue to fully understand the influence of the postprocessing on the 
performance, which is linked with a tradeoff between classification accuracy and computational time for learning.

Spoken digit recognition.  The isolated spoken digit recognition has been widely used as a benchmark 
task for testing the classification ability of RC systems10,33,43. The sound dataset from the NIST TI-46 Word 
corpus50 contains 500 sound waveform data corresponding to 10 utterances of 10 digits (“zero” to “nine”), spo-

b c

d � = 0.2, Ntrain = 100

a r = 103, � = 0.2, Ntrain = 100

e f
r = 50, ��= 0.2, Ntrain = 100 r = 104, � = 0.2, Ntrain = 100

= 103, � = 0.2 = 103, Ntrain = 100

Figure 3.   Results of the waveform classification task. (a) The classification accuracies for the four different 
network types when Ntrain is varied. (b) The classification accuracies plotted against the variability parameter σ . 
(c) The classification accuracies when Nx signals out of Nm(= 20) current signals were used for the readout. (d) 
The classification accuracies plotted against the average ON/OFF resistance ratio r̄ . (e) The confusion matrices 
for r̄ = 50 . (f) The confusion matrices for r̄ = 104.
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ken by 5 different speakers (ID: 1,2,5,6,7)51. The aim of this 10-class classification problem is to correctly predict 
the true digit from a sound signal.

Each sound data was converted to a cochleagram by using the Lyon’s passive ear model after an elimination 
of silence periods48 as shown in Fig. 6a (see “Methods” section for details). The data length Ldata ranges from 48 
to 102. The cochleagram was transformed into a masked data with a random binary mask of size Smask × Nf  . 
Each of the Nf  column-wise sequences is given to the reservoir after an appropriate scaling. An example of the 
dynamic behavior of the reservoir is shown in Fig. 6b. The Nm (=20) currents from the reservoir are transformed 
into the sequences of length Lout (=100) by sampling. They are concatenated into a one-dimensional vector of size 
NmLout as shown in Fig. 6c. These column vectors are collected for all the inputs to construct a state collection 
matrix X ∈ R

NmLout×Ldata. The parameter conditions for numerical experiments are listed in Table 1.
Figure 7 shows the results of the spoken digit recognition task. Each plot is the average classification accu-

racy over 10 random network realizations, evaluated based on the 10-fold cross validation, and the error bar 
indicates the standard error. Figure 7a demonstrates the classification accuracies when the number of training 
data, Ntrain , is varied. The results obtained by the memristive RC systems with Smask = 100 are indicated by the 
colored marks for the four different structure types, i.e. Ring-UP, Ring-RP, Rand-UP, and Rand-RP. For com-
parison, the performance of linear classifiers (LCs) applied to the masked data are plotted for different mask size 
Smask = 10, 25, 50, 100 . The classification accuracies for all the tested methods are improved by increasing Ntrain . 
The performance of the LCs increases with the mask size, but peaks out at around Smask = 100 (see Supplemen-
tary Fig. 7). The memristive RC systems produce better accuracies than the LC in the case of Smask = 100 , which 
highlights the benefit of the nonlinear transformation by the memristive reservoir52. The network structures of 
the Rand-UP and Rand-RP types yield better accuracies than those of the Ring-UP and Ring-RP types, owing 
to the diversity in the reservoir dynamics. Figure 7b shows that a smaller average ON/OFF ratio r̄ , correspond-
ing to a stronger nonlinearity of I-V characteristics on average, leads to better classification performance for the 
Rand-UP and Rand-RP types when Ntrain = 450 . The best accuracy reaches 97.3% when the ON/OFF ratio is 

Figure 4.   Signal processing for the ECG classification task. (a) The preprocessing method. An original ECG 
data is transformed with a binary mask of +1 and −1 into a masked data. Each of the Ldata (=96) column-wise 
sequences is fed into the memristive reservoir. (b) A dynamic response of the memristive reservoir of the 
Rand-UP type when r̄ = 50 and σ = 0.2 . (c) The postprocessing method. The Nm (= 20) sequences of length 
Lout (= 50) are obtained from the reservoir for each input sequence. In Case (i), the reservoir outputs of size 
Lout × Nm are rotated and stacked for all the reservoir inputs to form a state collection matrix. In Case (ii), the 
reservoir outputs are transformed into a one-dimensional sequence and concatenated for all the reservoir inputs 
to form a state collection matrix.
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r̄ = 50 and the network type is Rand-RP, which is comparable to that achieved by other physical RC systems10. 
For a specific separation between the training and testing datasets among the 10 cases for the cross validation, 
we obtained 99.8% accuracy on average over 10 different memristor networks. This is the first report that the 
memristor networks can yield such high performance in this task. Figure 7c indicates that the classification 
performance is kept at a high level irrespective of a change in the variability level σ of the memristors. Figure 7d 
demonstrates the results when Nx signals out of Nm signals were used for the readout process, indicating that 
a higher dimensional reservoir state contributes more to increasing the classification accuracy and Nx ∼ 10 is 
enough for obtaining the maximum accuracy. Our analysis on the confusion matrix shown in Fig. 7e reveals 
that a majority of misclassifications occur when the sound data of digit 2 is incorrectly classified as digit 1 or 
8. By overcoming this issue through modifications in the signal processing parts, the performance could be 
further improved.

Discussion
In this study, we have provided the explicit mathematical formula of the general memristor networks and devel-
oped the simulation platform for performing temporal pattern classifications with the memristor-network-based 
RC systems. The platform enables a considerable search of various system conditions and an identification of 
the key system component for improving classification performance. The results on the three classification 
tasks indicate that the randomness of the network connectivity (i.e. Rand-UP and Rand-RP) is favorable for 
generating diverse nonlinear responses to the input signal and achieving the excellent classification performance 
compared to the other two (i.e. Ring-UP and Ring-RP). The results have also lead to a new finding that the ON/
OFF resistance ratio, controlling the nonlinearity of memristors, can have a large impact on the classification 
accuracy. Although the best ON/OFF ratios are different depending on the task (see Figs. 3d, 5a, and 7b), all of 
them ( ̄r ∼ 50 to 500) are within the feasible range reported for real memristor devices53.

The memristor network model that we formulated is quite general, and therefore our simulation platform is 
easily extendable. In this study, we have used at most 20 memristors in the reservoir to test many different system 
designs while saving the simulation time. Tackling a more complex pattern recognition task with a larger number 
of memristors is one of the future works. For this purpose, it is an option to inject multiple different input signals 
into multiple nodes in the memristive reservoir. Any network connectivity of the memristors, including the 
four types investigated in this study, can be examined conveniently by setting the incidence matrices. We have 
assumed the ideal linear drift model for the individual memristors. It can be replaced with any other model by 
deriving or approximating its memductance as a function of the magnetic flux39. In the tested cases, the device-
to-device variability following a normal distribution does not cause a degradation in the classification accuracy, 
implying a reliable computation with heterogeneous units. As far as we checked, the network topology seems to 
play a decisive role in the input transformation by the reservoir rather than the device-to-device variability. If the 
shapes and the ranges of the distributions of RON and ROFF are estimated through measurements with specific 
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c

��= 0.2, Vmax = 0.05
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r = 100, Vmax = 0.05

r = 100, ��= 0.2r = 100, Vmax = 0.05

Figure 5.   Results of the ECG classification task. (a) The classification accuracies for a variation of the average 
ON/OFF ratio r̄ = R̄OFF/R̄ON . (b) The classification accuracies plotted against the variability parameter σ . The 
meanings of the marks are the same as those in (a). (c) The classification accuracies when Nx signals out of 
Nm(= 20) current signals were used for the readout. (d) The dependence of the accuracy on the maximum input 
voltage Vmax.
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devices, they can be easily incorporated into the memristor network model and the simulation platform. We have 
leveraged appropriate pre/post-processing methods for each task to get high classification accuracies comparable 
to those obtained by the other ML methods. It would be possible to further improve the classification accuracy 
by adding more advanced operations in the readout part, but our signal conversion methods limited to matrix 
operations are reasonable for maintaining the merit of low learning cost.

The memristive reservoir of the network type is an attractive option for hardware implementation, because the 
number of possible network structures producing different dynamic responses to input signals can be drastically 
increased by scaling up the network size. This structural diversity is the major advantage of the network-type 
reservoir over the array-type and single-node-type reservoirs10. Since only a part of system components are 
controllable in real memristive devices and materials, it is a significant issue to find better system settings under 
practical constraints54. From a scientific perspective, our final goal is to comprehensively understand the relation-
ship between dynamical properties and information processing capacity of memristor networks. The dynami-
cal properties can be investigated through spectral analysis21 and nonlinear time series analysis55. The features 
related to information processing can be evaluated by computing relevant measures such as memory capacity56, 
kernel quality57, and other capacity scores58. Our simulation platform can contribute to both these purposes. A 
target for the future is to integrate numerical and experimental approaches for establishing a design principle 
of memristive reservoirs, thereby accelerating the development of energy-efficient RC-based ML hardware.

Methods
Memristor networks and incidence matrices.  The physical reservoir in this study is a general mem-
ristor network consisting of Nm memristors, Nn circuit nodes, and Ni input voltage sources (see Fig. 1a). By 
regarding the circuit nodes as vertices vn for n = 1, . . . ,Nn and the memristor branches as edges em for 
m = 1, . . . ,Nm , a network structure of memristors can be represented as a directional graph with an incidence 

Figure 6.   Signal processing for the spoken digit recognition task. (a) The preprocessing method. A sound data 
is transformed into a cochleagram of size Nf (= 78)× Ldata(= 48) by using the Lyon’s passive ear model48 and 
then multiplied by a random binary mask of size Smask(= 100)× Nf . The masked data is separated into Ldata 
column-wise sequences. (b) An example of the dynamic response of the memristive reservoir of the Rand-UP 
type when r̄ = 50 and σ = 0.2 . (c) The postprocessing method. The Nm current signals are transformed into 
the sequences of length Lout(= 100) for each input, which are concatenated into one-dimensional vector of size 
NmLout . The vectors for all the Ldata inputs are concatenated to make the state collection matrix.
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c

� = 0.2, Ntrain = 450 

d e

a br = 50, � = 0.2

r = 50, Ntrain = 450 r = 50, � = 0.2, Ntrain = 450
r = 50, � = 0.2, Ntrain = 450

Figure 7.   Results of the spoken digit recognition task. (a) The classification accuracies when the number 
of training data Ntrain is varied. The results with the linear classifier (LC) include the four cases with 
Smask = 10, 25, 50, 100 . The results with the memristive RC systems include the four cases with Ring-UP, 
Ring-RP, Rand-UP, and Rand-RP, where Smask = 100 . (b) The classification accuracies plotted against the 
average ON/OFF ratio r̄ . (c) The classification accuracies plotted against the variability parameter σ . (d) The 
classification accuracies when Nx signals out of Nm(= 20) current signals were used for the readout. (e) The 
confusion matrix for testing data.

Table 1.   List of system parameters and their values.

Parameter Symbol Values

Number of memristors Nm 20

Number of circuit nodes Nn 10 (Ring-UP/RP), 20 (Rand-UP/RP)

Number of voltage sources Ni 1

Device length D 10−8 m34

Average ion mobility µv 10−14 m2s−1V−134

Mean resistance (Doped) R̄ON 100 �34

Mean resistance (Undoped) R̄OFF 5 k–1M �

Device variation degree σ 0–0.2

Waveform ECG Spoken digit

Number of classes Nc 2 2 10

Length of time series data Ldata 100 96 48–102

Maximum voltage level Vmax 0.5 V 0.05 V 0.5 V

Mask size Smask – 50 100

Length of inputs Lin 100 50 100

Length of outputs Lout 100 50 100

Time length for relaxation �trelax 3 s 3 s 0.05 s

Time length for main signal �tmain 3 s 3 s 0.05 s
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matrix Em ∈ R
Nn×Nm . If a memristor branch em ( m = 1, . . . ,Nm ) connects a starting node vk and an ending 

node vl , then the incidence matrix is defined as follows:

In a similar way, an incidence matrix Ei ∈ R
Nn×Ni for the positions of the voltage sources can be defined. If a 

voltage source i connects a starting node k and an ending node l, then

Single memristor model.  The linear drift memristor model34 was adopted for our simulations. It is 
assumed that a memristor device consists of a doped region (or LRS) with low resistance RON and an undoped 
region (or HRS) with high resistance ROFF (see Fig. 1c). The memristance M at time t is written as follows:

where D and w(t) represent the lengths of the memristor device and the doped region, respectively. When a volt-
age signal v(t) is applied to the memristor, the current j(t) flowing through the memristor and the time evolution 
of the internal variable w(t) are described as follows:

where µv represents the average ion mobility. Since the memristance can be written as M(q) = d�(q)/dq using 
the charge q and the magnetic flux � , the memductance W(q) = dq(�)/d� is represented as follows59:

where M(w(0)) is the memristance at the initial condition. The constant parameter a is obtained as follows:

where r is the ON/OFF resistance ratio.

Variability of memristors.  The device-to-device variation can be represented as parameter distributions 
in the single memristor model. In our study, the resistance RON of the LRS was generated from a normal distribu-
tion with mean R̄ON and standard deviation σ R̄on . The resistance ROFF of the HRS was generated from a normal 
distribution with mean R̄OFF(= r̄R̄ON) and standard deviation 2σ R̄OFF . It was assumed that ROFF has larger 
variability than Ron38. The average ON/OFF resistance ratio r̄ controls the nonlinearity of the I-V characteristic 
(see Fig. 1d). The variability parameter σ controls the degree of device-to-device variation (see Fig. 1e). The 
initial condition w(0) was generated from a normal distribution with mean D/10 and standard deviation σD/10.

Formulation of memristor networks.  A general memristor network can be formulated as Eqs. (1)–(3) 
by using the new modified nodal analysis39. First, the Kirchhoff ’s current law gives a set of Nm equations as fol-
lows:

where jm(t) ∈ R
Nm is the vector of currents flowing on the Nm memristors and ji(t) ∈ R

Ni is the vector of cur-
rents flowing on the Ni voltage sources at time t. The current vector can be expressed as follows:

where qm ∈ R
Nm and �n ∈ R

Nn denote the vectors of the charges and fluxes, respectively. By substituting Eq. (12) 
into Eq. (11), Eq. (1) is derived. Using the first-order linearization, Eq. (1) can be rewritten as follows:

where Wm ∈ R
Nm×Nm denotes the diagonal matrix whose elements are the memductances of the memristors. For 

the linear drift model, the diagonal elements are given by Eq. (9). Second, the Faraday’s law gives Eq. (2) which is a 
set of Nn differential equations. Third, the Kirchhoff ’s voltage law gives Eq. (3) which is a set of Ni algebraic equa-
tions. As a result, the network of the linear drift memristor models is formulated as a set of differential-algebraic 

(4)Em(n,m) =

{

−1 (n = k)
1 (n = l)
0 (n �= k, l)

.

(5)Ei(n, i) =

{

−1 (n = k)
1 (n = l)
0 (n �= k, l)

.

(6)M(w(t)) =

(

RON
w(t)

D
+ ROFF

(

1−
w(t)

D

))

,

(7)j(t) =v(t)/M(w(t)),

(8)
dw(t)

dt
=µv

RON

D
j(t),

(9)W(�) = (M(w(0))2 − 2a�)−1/2,

(10)a =
µvRON(ROFF − RON)

D2
= µvRON(r − 1)/D2.

(11)Emjm(t)+ Eiji(t) = 0,

(12)jm =
d

dt
qm(E

⊤
m�n(t)),

(13)EmWm(E
⊤
m�n(t))E

⊤
m

d�n(t)

dt
+ Eiji(t) = 0,



11

Vol.:(0123456789)

Scientific Reports |         (2022) 12:9868  | https://doi.org/10.1038/s41598-022-13687-z

www.nature.com/scientificreports/

equations (DAEs) consisting of Eqs. (13), (2), and (3). The DAE was numerically solved with the DAE solver 
ode15i in the software package MATLAB41. For a technical reason, a null signal in time period [0,�trelax] for 
relaxation was added to the main input voltage signal in time period [�trelax,�trelax +�tmain] in our simula-
tions. The main input signal with a maximum absolute voltage Vmax was generated from an input time series of 
length Lin after scaling and interpolation. The parameter values are listed in Table 1.

Readout.  The vector jm(t) of Nm currents is measured from the memristor network in time period 
[�trelax,�trelax +�tmain] . All the Nm currents (or partial Nx currents) are used to construct a state collection 
matrix X for the readout through a task-specific postprocessing (see “Methods” section for specific tasks). Once 
the state collection matrix Xk corresponding to the k-th input time series data is obtained for k = 1, . . . ,Ntrain , 
the overall state collection matrix is obtained as follows:

Correspondingly, the overall teacher collection matrix is set as follows:

where Dk is the teacher matrix for the k-th input data. The column count of Dk is the same as that of Xk and 
its row count is the same as the number of classes, Nc , in the classification task. If the k-th input data has label 
ck ∈ {1, . . . ,Nc} , then each column of Dk is given by a one-hot vector [0, . . . , 1, . . . , 0]⊤ ∈ R

Nc where only the ck
-th element is 1 and the others are 0.

In the training (i.e. learning) phase, the error between the system output Ytrain = WoutXtrain and the target 
output Dtrain is minimized by linear regression. An optimal solution is obtained as follows:

where D†
train represents the pseudoinverse matrix of Dtrain.

In the testing (i.e. inference) phase, the classification ability of the trained system is evaluated for 
Ntest unknown time series data in the testing dataset. For the testing dataset, Xtest and Dtest are composed 
in a similar way to Eqs. (14) and (15), respectively. The system outputs for the testing data are computed as 
Ytest = [Y1, . . . ,Yk , . . . ,Ytest] = ŴoutXtest . From each column of Yk , the row index that gives the largest value 
is recorded. The predicted class ĉk is determined as the most frequent value in the recorded row indices for all 
the columns of Yk . By comparing the true class ck and the predicted class ĉk for all the Ntest testing data, the clas-
sification accuracy is computed.

Waveform classification.  The sine and triangular waveform data were generated with the following equa-
tions:

where the “sawtooth” is a function in MATLAB and the frequency f was randomly drawn from the uniform dis-
tribution in [f0(1− δ), f0(1+ δ)] . The parameter values were set at f0 = 5 and δ = 0.4 . The whole dataset includes 
100 sine and 100 triangular waveform data, all of which have length Ldata(= 100) . It was separated into Ntrain 
training data including randomly chosen Ntrain/2 data from each class and the remaining Ntest(= 200− Ntrain) 
testing data.

In the postprocessing step, the current signals were converted to sequences of length Lout via sampling, and 
then to positive-valued sequences by taking their absolute values. The state collection matrix X ∈ R

Nm×Lout is 
constructed by concatenating those sequences for each input time series. The 10-fold cross validation was used 
to evaluate the classification accuracy.

ECG classification.  This task was performed with the ECG200 dataset from the UCR Timeseries Classifica-
tion Archive47, which was originally formatted by Olszewski60. The dataset contains a total of 200 ECG signal 
data having class labels corresponding to normal and abnormal heartbeats. The dataset consists of Ntrain(= 100) 
training data and Ntest(= 100) testing data, all of which have length Ldata(= 96) . The training dataset includes 31 
abnormal and 69 normal data. The testing dataset includes 36 abnormal and 64 normal data.

Spoken digit recognition.  This task was performed with the NIST TI-46 Word corpus collected at Texas 
Instruments in a quiet acoustic enclosure using an Electro-Voice RE-16 Dynamic Cardioid microphone at 12.5 
kHz sample rate with 12-bit quantization50. From each time series data, the main sound signal of length Ldata 
were extracted by removing the silence part with the VOICEBOX, a Speech Processing Toolbox for MATLAB61. 
The length Ldata differs depending on the data, ranging from 48 to 102. As shown in Fig. 6a, each sound signal 
was transformed into a cochleagram based on the Lyon’s passive ear model48 implemented with the Auditory 
Toolbox in MATLAB62. The cochleagram is represented as a matrix P ∈ R

Nf×Ldata where Nf  is the number of 
frequency channels. It was converted to a masked data Pmask = QP ∈ R

Smask×Ldata , where Q ∈ R
Smask×Nf rep-

resents a binary mask of elements 0 and 1. We set Nf = 78 . Each of the Ldata column-wise sequences of length 
Lin(= Smask) was converted to a voltage signal by scaling and interpolation, and then fed into the memristive 
reservoir.

(14)Xtrain = [X1, . . . ,Xk , . . . ,XNtrain
].

(15)Dtrain = [D1, . . . ,Dk , . . . ,DNtrain
],

(16)Ŵout = D†
trainXtrain,

ssin(t) = sin(2π ft) for t ∈ [0, 1],

stri(t) = sawtooth (2π ft + π/2, 1/2) for t ∈ [0, 1],
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Data availability
The data that support the findings of this study are available from the authors upon reasonable request. The 
ECG200 dataset is available from the UCR Timeseries Classification Archive (https://​www.​cs.​ucr.​edu/​~eamonn/​
time_​series_​data_​2018/). The TI-46 word corpus is available from the Linguistic Data Consortium (https://​catal​
og.​ldc.​upenn.​edu/​LDC93​S9).

Code availability
A MATLAB code for simulating memristor networks and reproducing some results will be made publicly availa-
ble upon publication in the following link: [https://​github.​com/​GTANA​KA-​LAB/​Memri​stor-​Netwo​rk-​Reser​voir].
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