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In this review we discuss recent developments in psychiatric

genetics: on the one hand, studies using whole genome

approaches (genome-wide association studies (GWAS) and

exome sequencing) are coming close to finding genes and

molecular variants that contribute to disease susceptibility; on

the other candidate genes, such as the serotonin transporter,

continue to dominate in genetic studies of brain imaging

phenotypes and in protracted searches for gene by

environment interactions. These two areas intersect, in that

new information about genetic effects from whole genome

approaches, should (but does not always) inform the single

locus analyses.
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GWAS and exome sequencing
Whole genome approaches address the vexed question of

the genetic architecture of psychiatric disease: that is to

say, how many loci are involved, how common are the

variants, and what is the distribution of their effect sizes?

A very practical concern drives this seemingly arcane

question, namely, will it be possible to find genes in

which mutations are the main, if not the sole, predispos-

ing genetic cause? Finding even one such gene would

provide a starting point for investigating disease patho-

genesis because it is now relatively straightforward to

model highly penetrant alleles, whereas it is not clear how

to model a small effect locus that acts as part of a

polygenic system to exert its effect on a phenotype.

Using linear mixed models (an increasingly popular meth-

odology), Visscher and colleagues recently estimated the

proportion of variance in liability to schizophrenia attribu-

table to single nucleotide polymorphisms (SNPs) geno-

typed on commonly used arrays [1��]. These SNPs are

chosen for typing because they are relatively common
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(allele frequencies greater than 5%). The researchers were

able to put a lower limit on the genetic contribution: about

one-quarter of the variance in liability was explained by

common variants, refuting claims that common variants

have only a small role in the genetic cause of schizophrenia.

Conversely this means the remaining variation in suscepti-

bility could be attributable to rare variants.

Studies that have sequenced the exomes of patients with

schizophrenia and autism provide a bottom up answer to

the same question: rather than assessing the impact of

common variants, they search for rare coding variation.

Two studies of schizophrenia, one of 14 trios (two unaf-

fected parents and one affected child) [2�], the other of 53

sporadic cases, 22 controls and their parents, both

reported de novo mutations in patients [3�]. The smaller

study reported 4 non-sense mutations (out of a total of 15),

significantly higher than the expected rate, while the

larger study identified a ratio of 32 non-synonymous

mis-sense mutations to 2 synonymous mutations, again

significantly elevated over expectations.

Four papers recently reported exonic mutations in autism

[4�,5�,6�,7]. Rates of non-sense mutations were elevated,

though only modestly so. More autism patients were

sequenced than in the schizophrenia studies, so an

important question was whether mutations ever occurred

in the same gene. This is a different question from that of

asking whether coding mutations are more common in

patients than controls. And it is an important question,

because finding recurrent mutations could lead to the

identification of a gene, or genes, causally implicated in

the disease. Taken together, in all three studies, 18 genes

with two functional mutations were found. However, by

chance about 12 genes would be expected to have more

than one mutation, and the enrichment was not quite

statistically significant (P = 0.063) [5�].

Taking this observation further, Daly and colleagues

pointed out that the results are consistent with a poly-

genic model in which spontaneous coding mutations

increase risk between 5 and 20 fold [5�]. This finding

is important because it demonstrates how the genetic

architecture of psychiatric disease consists of a conti-

nuum. As Visscher argues, the dichotomy of rare variant

of large effect versus common variant of small effect is

specious, since the frequency and effect size of the alleles

that increase susceptibility range across a continuum [8�].

One important conclusion that emerges from both GWAS

and sequencing studies is that there are no common

variants of large effect. To be precise, common variants
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that increase the chance of disease 1.3 fold or more are

extremely unlikely to exist [9]. Similarly, for quantitative

phenotypes, the expected effect sizes are less than 0.5%

of phenotypic variance (for example, between 0.02 and

0.2% for each variant that contributes to variation in

height [10]).

Four papers reinforce the generality of this conclusion

[11�,12�,13�,14�]. All four deal with a field known as

imaging genetics, that is the study of association between

genetic variants and phenotypes obtained from structural

and functional imaging of the brain (almost all studies are

of human brains and the majority employ magnetic

resonance imaging modalities). An important conclusion

to emerge from these papers is that the genetic loci

influencing imaging genetic phenotypes ‘‘have compar-

able effect sizes to those observed in other genome-wide

association studies of complex traits’’ [11�]. To take one

example, the rs10784502 marker is associated with 0.58%

of intracranial volume per risk allele [11�]. The implica-

tions of this finding, and the other insights into the

genetic architecture of behavior we have discussed,

become clear when we turn to look at the second focus

of our review.

Candidate gene studies: brain imaging and
G � E
In this section we discuss developments in two areas, first

brain imaging and then gene by environment interactions

(G � E for short). For many years psychiatric geneticists

have had difficulties establishing robust associations be-

tween disease phenotype and allelic variant, leading some

to argue that it would be better to work with phenotypes

where the genetic architecture consists of loci of larger

effect. Proponents of this uncontroversial proposition

have suggested that neuroimaging phenotypes have the

requisite property: that genetic effects on brain structural

and functional variation are necessarily larger. The claim

is based on the assumption that some phenotypes (often

called endophenotypes) are biologically closer to the site

of genetic variation (measures of mRNA would be an

extreme example) and therefore the impact of genetic

variation must be larger. Thus one study of just twenty-

eight subjects reported an association between variation

in amygdala activation and variation in a length poly-

morphism of the serotonin transporter gene (5-

HTTLPR) [15]. The ‘short’ allele at this frequently

typed polymorphism has a frequency of about 30% in

European populations, and is thus a typical common

variant, whose effect size on complex phenotypes we

would expect to be small (explaining less than one

percent of the variation in a quantitative measure).

The short allele is reported to lower transcriptional ef-

ficacy (hence reduce levels of serotonin transporter

protein). To obtain the degree of significance reported

in the 2002 paper, the locus must explain about 28% of

phenotypic variance (95% confidence intervals 15–53%).
Current Opinion in Neurobiology 2013, 23:57–61 
This effect size is indeed much higher than anything

reported from genetic analyses of disease phenotypes, but

is it likely to be true? Given the results of the imaging

GWAS [11�,12�,13�,14�], the answer is that it is almost

certainly not.

This finding needs emphasizing since it contradicts the

results of a meta-analysis of the effect of a functional

Val158Met (rs4680) polymorphism in catechol-O-meth-

yltransferase (COMT) on neural endophenotypes [16].

That paper tested the hypothesis that ‘‘neural intermedi-

ate phenotypes are indeed more penetrant than beha-

vioral ones’’ and reported a significant association

between the COMT variant and test of ‘prefrontal acti-

vation’. The size of the effect was Cohen’s d = 0.73. For

those not familiar with this measure of effect size, it is the

approximately the same as 12% of the variance, much

larger than that found in the GWAS mentioned above.

Why the discrepancy? Is it really possible that many of the

studies are false positives? Now this hypothesis can be

tested, by determining whether the rate of positive find-

ings is consistent with the reported effect sizes [17]: in

other words, we can ask, given what the literature tells us

about the effect size, how many positive reports should

we expect to find? Ioannidis applied this test to structural

brain imaging findings and observed 142 statistically

significant findings among 461 studies, while the average

power of these studies indicated that we should expect

only 78.5 significant findings. This difference was itself

significantly different [18�]. A recent meta-analysis inves-

tigating the effect of the serotonin transporter on amyg-

dala activation provides the necessary data to test for the

excess of false positives in imaging genetics studies [19].

Applying this, we find 11 statistically significant findings

when 5.5 are expected (P = 0.027).

We turn next to discuss developments in the field of gene

by environment interaction, focusing on publications

involving the serotonin transporter. For those unfamiliar

with this story, a brief reminder that the most highly cited

paper in neuroscience in 2003 was the observation from a

longitudinal study that possession of the ‘short’ allele of

the 5-HTTLPR only increased the risk of developing

depression in the presence of adverse life events [20].

This is an example of a gene by environment interaction

(G � E), which opened the door to detecting many more

such effects in studies that measured both environmental

and genetic predisposition. While quantitative genetic

studies indicated strongly that G � E existed in aggregate

[21], this was the first demonstration that it could be

detected at a single locus.

The hope was that studies of G � E, using carefully

phenotyped individuals, might yield robust results that

could be replicated. Unfortunately, the field has not

developed in this way. In the last few years three
www.sciencedirect.com
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meta-analyses of the literature have been published, and

they reach opposite conclusions: two found no evidence for

an interaction [22,23] while one concluded that there was

an effect [24]. The view taken by the authors of the positive

G � E meta-analysis is that the effect of G � E is broad:

‘‘rather than focus on a specific class of studies, we sought

to perform a meta-analysis on the entire body of work

assessing the relationship between 5-HTTLPR, stress,

and depression’’. In other words they incorporate more

environmental effects and outcomes than envisaged even

by the authors of the original study.

Additional findings over G � E at the serotonin transpor-

ter continue to accumulate, developing in two directions.

One is the incorporation of additional sequence variants

at the locus itself. Following the discovery that a single

nucleotide polymorphism within one of the long alleles of

the repeat means there is an ‘Lg’ allele with lower

transcriptional efficacy (functionally therefore behaving

like the ‘short’ allele) researchers now report G � E with

additional alleles. However, justification for testing these

additional alleles is weak. There has been no systematic

investigation of the variants that contribute to expression

variation in the transporter gene, but testing the effect of

55 SNPs distributed in a 100 kb window surrounding the

serotonin transporter locus, as well as the length poly-

morphism made two important observations [25]. First,

two SNPs in linkage disequilibrium explained 50% of

variation in transcript abundance; the 5-HTTLPR con-

tributed only 20%. Second, the Lg allele did not signifi-

cantly contribute to variation. Thus we still lack

comprehensive analysis of the relationship between func-

tional variants at the 5-HTTLPR locus and phenotypic

variation.

The second development is the increasing diversity of

phenotypes that are being tested: these include quality

of maternal parenting [26], affective state during marriage

[27], risky sexual behavior [28], childhood emotionality

[29], job satisfaction [30], perceived racial discrimination

[31], adult unresolved attachment [32], and gaze bias [33]. A

common feature of all these studies is the relatively small

sample size: all except one [30] use samples of less than a

thousand, and sometimes less than one hundred subjects

[32]. Given the now well established main effect sizes

discussed above, it seems unlikely, even allowing for the

large effects observed in an interaction analysis, that any of

these studies is sufficiently well powered to detect an effect.

The debate over G � E at the serotonin transporter locus

is now considerably polarized [34�,35�,36�] but two recent

papers are worth highlighting. First, Duncan and Keller

used the pattern of publications to infer an excess of

positive findings in the G � E literature [37�]. Their

argument is that publication bias can be detected as a

higher rate of positive results among novel findings com-

pared to replication attempts, since journals preferentially
www.sciencedirect.com 
publish positive findings for a novel genetic association.

Second, one study replicated the design of the 2003

paper: a longitudinal study of a birth cohort of 1265

children born in New Zealand and studied from birth

to the age of 30 [38]. The authors point out that ‘‘both

studies have been conducted in the same geographic

region (the South Island of New Zealand) over a similar

historical period (1970–2010); both have gathered

repeated-measures data on multiple sources of stress

and adversity over the life course including: stressful life

events, child abuse and trauma, exposure to inter-parental

conflict, unemployment, violence victimisation and

similar measures; and both have gathered measures of

mental disorders using DSM criteria from adolescence

into adulthood.’’ After testing 13 stress measures and 4

outcomes for G � E effects between number of 5-

HTTLPR short alleles, the authors find ‘‘5 of the 52

results were statistically significant’’ (none become so if a

correction for multiple testing is taken into consideration)

but noted that ‘‘all significant tests of gene � environ-

environment interactions suggested that increasing num-

bers of ‘s’ alleles led to reduced sensitivity to stressful

events’’ (i.e. the opposite direction to that predicted from

the original study).

It is unlikely that either finding will dampen the enthu-

siasm for studies of G � E involving the serotonin trans-

porter. Panagiotou and Ioannidis recently reported that

the authors of primary studies are more likely to believe

that a strong association exists than methodologists (refer-

ring here to the authors of meta-analyses) [39]. Evidence

alone seems not be enough to change people’s minds. In a

careful presentation of the statistical difficulties inherent

in the detection of small effects, Gelman and Weakliem

[40] discuss what transpires when a theory can explain

findings in any direction. They quote Jeremy Freese who

describes this sort of argument as ‘‘more ‘vampirical’ than

‘empirical’—unable to be killed by mere evidence.’’
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