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Abstract: Dominant Optic Atrophy (DOA) is one of the most common inherited mitochondrial
diseases, leading to blindness. It is caused by the chronic degeneration of the retinal ganglion
cells (RGCs) and their axons forming the optic nerve. Until now, DOA has been mainly associated
with genes encoding proteins involved in mitochondrial network dynamics. Using next-generation
and exome sequencing, we identified for the first time heterozygous PMPCA variants having a
causative role in the pathology of late-onset primary DOA in five patients. PMPCA encodes an
α subunit of the mitochondrial peptidase (MPP), responsible for the cleavage and maturation of
the mitochondrial precursor proteins imported from the cytoplasm into mitochondria. Recently,
PMPCA has been identified as the gene responsible for Autosomal Recessive Cerebellar Ataxia
type 2 (SCAR2) and another severe recessive mitochondrial disease. In this study, four PMPCA
variants were identified, two are frameshifts (c.309delA and c.820delG) classified as pathogenic and
two are missenses (c.1363G>A and c.1547G>A) classified with uncertain pathological significance.
Functional assays on patients’ fibroblasts show a hyperconnection of the mitochondrial network
and revealed that frameshift variants reduced α-MPP levels, while not significantly affecting the
respiratory machinery. These results suggest that alterations in mitochondrial peptidase function can
affect the fusion-fission balance, a key element in maintaining the physiology of retinal ganglion cells,
and consequently lead to their progressive degeneration.

Keywords: dominant optic atrophy; mitochondrial peptidase; mitochondrial dynamic; heterozygous
variants; retinal ganglion cell degeneration
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1. Introduction

Dominant optic atrophy (DOA, MIM *605290) is an inherited optic neuropathy with a
prevalence estimated at 1 in 25,000 [1–4]. DOA affects visual acuity by altering the central
visual field and color vision, due to a progressive loss of retinal ganglion cells (RGCs)
and their axons that form the optic nerve, ensuring the transmission of visual information
from the retina to the brain. Most patients have an age of onset in the first decade of life,
some may experience functional blindness and others can be relatively asymptomatic [5].
DOA can be also a part of a syndromic condition called DOAplus in 20% of cases, with
secondary symptoms affecting auditory, neuronal and muscular functions. Sixty to seventy
per cent of DOA cases harbor pathogenic variants in the nuclear OPA1 gene [6], which
was the first gene identified to cause DOA [7,8]. But recently, an increasing number of
novel DOA genes were identified through the introduction of next-generation sequencing
technologies [9], including OPA3, MFN2, SPG7, AFG3L2, DNM1L and SSBP1 [10–17]. These
genes are all involved directly in mitochondrial function, mostly mitochondrial dynamics,
with the exception of SSBP1, which is involved in mitochondrial DNA (mtDNA) replication.
In addition, the WFS1 gene, responsible for Wolfram syndrome, is also responsible for
DOA associated with neuro-sensorial deafness [18] and for isolated recessive isolated optic
atrophy [19].

In mitochondria, the mitochondrial processing peptidase (MPP) plays the most im-
portant role in preprotein processing compared to other mitochondrial peptidases [20].
PMPCA (MIM * 613036), a nuclear gene localized on human chromosome 9q34.3, encodes
the a-subunit of mitochondrial processing peptidase (a-MPP), a protein that participates
in the cleavage of the mitochondrial targeting peptide of nuclear-encoded mitochondrial
precursor proteins upon their import into mitochondria [21]. Without its function, abnor-
mal nuclear-encoded mitochondrial precursor proteins accumulate inside mitochondria,
disrupt mitochondrial functions and halt cell growth. In 2015, PMPCA has been identified
as the gene responsible for Autosomal Recessive Cerebellar Ataxia type 2 (SCAR2), a severe
mitochondrial disease and later for a Leigh-like syndrome with spastic ataxia [22–25].

In the present study, we identified for the first time, heterozygous variants of PMPCA
in five families with primary DOA. Fibroblasts characterization shows a tendency to mito-
chondrial network hyperconnection in PMPCA patient fibroblasts and revealed decreased
levels of PMPCA protein.

2. Materials and Methods
2.1. Consent for Genetic Investigations

Written informed consent to perform genetic analyses was obtained from each subject
involved in this study, according to protocols approved by the Ethical Committees of the
different Institutes involved in this study, and in agreement with the Declaration of Helsinki
(Institutional Review Board Committee of the University Hospital of Angers, Authorization
number: AC-2012-1507).

2.2. Genetic Analysis

Genomic DNA was extracted from peripheral blood cells from cohorts of DOA and
sporadic cases of optic atrophy initially screened for OPA1, OPA3 and WFS1 exonic se-
quences and all pathogenic variants in the mitochondrial DNA responsible for Leber
hereditary optic neuropathy (LHON). Negative cases were analyzed using a resequencing
gene panel dedicated to the clinical molecular diagnosis of inherited optic neuropathies
(ION). Further negative samples, among which was the first patient with a PMPCA vari-
ant (family 3), were analyzed using whole-exome sequencing. Then PMPCA molecular
screening was included in the ION panel and led to the discovery of families 1, 2, 4 and 5.
Library preparation, sequencing, bioinformatics and variants analysis were carried out as
previously described [10,12].
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2.3. Fibroblasts Study

Fibroblasts from PMPCA individuals P1: II:1 and P2: II:2 from families 1 and 3
respectively, were generated from skin biopsies and cultured in 2/3 Dulbecco’s Minimum
Essential Medium (DMEM, Gibco) supplemented with 1/3 AmnioMAX (Gibco, Thermo
Fisher, Waltham, MA, USA), 10% fetal calf serum (Lonza, Portsmouth, NH, USA) and 1%
Penicillin-Streptomycin-Amphotericin B (Lonza). Respiratory chain enzymatic activities
and western blots were assessed as described [12,25], using the following antibodies:
PMPCA (Novus Biologicals, CO, USA, #NBP1-89126; 56kD), PMPCB (Novus Biologicals,
#NBP1-92120; 56kD); OPA1 (Abcam, Cambridge, England, ab42364; 95 and 85kD); Citrate
Synthase (Abcam ab96600; 52kD).

2.4. Time Lapse and Deconvolution Microscopy

To assess the mitochondrial network dynamic [26], cells were incubated for 20 min
with MitoTracker Green FM (Invitrogen™, Thermo Fisher, Waltham, MA, USA) to visualize
mitochondria (green). Coverslips were mounted in a housing and placed on the stage of
an inverted wide-field microscope ECLIPSE Ti-E (Nikon, Tokyo, Japan) equipped with
a 100× oil immersion objective (Nikon Plan Apo100×, Tokyo, Japan, N.A. 1.45) and a
NEO sCOMS camera controlled by Metamorph7.7 software (Molecular Devices, Sunny-
vale, CA, USA). A precision, piezoelectric driver mounted underneath the objective lens
allowed faster Z-step movements, keeping the sample immobile while shifting the objective
lens. 35-one image planes were acquired along the Z-axis at 0.1 mm increments. For
mitochondrial network characterization, acquired images were iteratively deconvolved
using Huygens Essential 14.06 version software (Scientific Volume Imaging, Hilversum,
The Netherlands), with a maximum iteration score of 50 and a quality threshold of 0.01.
Imaris 8.0 ® software (Oxford Instruments Brand Bitplane AG, Zurich, Switzerland) was
used for 3D processing and morphometric analysis. Time-lapse images of 90 ms duration
(5-sec interval) were acquired at a fixed temperature of 25 ◦C.

2.4.1. Immunofluorescence

Human skin fibroblasts were seeded at a density of ~90,000 cells per well in a six-
well plate containing 20-mm coverslips and incubated overnight. Cells were fixed with
4% paraformaldehyde (PFA) in PBS for 15 min. After fixation, cells were quickly washed
3 times in PBS and then incubated in the blocking buffer (BF; PBS with 5% BSA) for 15 min.
Coverslips were then washed in PBS three times and incubated overnight with primary
antibody diluted in the BF at 4 ◦C on a rocking platform providing a gentle “wave” effect.
Coverslips were then washed in BF three times for 5 min and subsequently incubated for
90 min at room temperature with goat anti-mouse Alexa 647 IgG (H+L) secondary antibody
diluted in BF in a dark chamber. Finally, coverslips were washed in PBS twicefor 5 min and
kept in PBS at 4 degrees up to the assembly for the STORM acquisition.

Immunodetection of nucleoids was achieved on fixed fibroblasts using antibodies
against DNA (clone AC-30-10) Progen GmbH and co-stained with Citrate synthase antibod-
ies. Image treatment was performed using Imaris spot detection software (Imaris 8.0 ®) to
visualize and quantify mtDNA/nucleoid number per cell and mtDNA/nucleoid spacing
within mitochondria. For mitophagy exploration, co-staining with autophagosome marker
anti-microtubule-associated protein 1 light chain 3α (LC3, ab48394, 1:500; Abcam) and
mitochondrial marker citrate synthase was performed. Images acquisitions were performed
using deconvolution microscopy.

2.4.2. STORM Acquisition

For super-resolution imaging, the cavity of a clean single depression slide (Paul
Marienfeld, Lauda-Königshofen, Germany) was filled with 50 µL of switching buffer
(Abbelight, Paris, France) and covered by the coverslip, the sample side facing downward.
The device was placed on the stage of an inverted motorized microscope NIKON ECLIPSE
Ti-E (Nikon Instruments Europe, Amsterdam, The Netherlands) equipped with a CFI SR
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APO TIRF 100X ON1.49 objective, a Perfect Focus System and a total internal reflection
fluorescence (TIRF) ILas2 module (Roper Scientific, Martinsried, Germany).

Acquisition of images was performed using Metamorph 7.7 software (Molecular
Devices, CA, USA). Image sequences were acquired with a single-photon sensitive camera
Evolve 128TM EMCCD 512 × 512 imaging array, 16 × 16 µm pixels (Photometrics, Tucson,
AZ, USA). Acquisitions were performed at a fixed temperature of 25 ◦C in a dark heating
chamber (Okolab NA, Pozzuoli, Italy). Phase contrast was first used for orientation and
focus adjustment. Prior to STORM imaging, a multichannel TIRF fluorescence microscopy
image was acquired for subsequent comparison with the STORM image. Images were
acquired with an integration time of 60 ms per frame. The total acquisition time points for
each sequence were adapted to the observed structure and to the labelling density (5000 to
20,000 frames). Images were analyzed and reconstructed using the WaveTracer module
integrated into Metamorph software [27].

3. Results
3.1. Identification of PMPCA Variants in Individuals with Primary Dominant Optic Atrophy

Using whole-exome sequencing, we screened for variants in unrelated patients present-
ing inherited optic neuropathies (ION) with a negative molecular diagnosis after analyzing
OPA1, OPA3, WFS1, SPG7, AFG3L2, DNM1L, MFN2 exonic sequences, and pathogenic
variants in the mitochondrial DNA responsible for LHON. After eliminating frequent
(>1/10.000) and non-pathogenic variants, according to the Sift, Polyphen and Mutation-
Taster prediction tools, a first heterozygous pathogenic variant was identified in PMPCA,
which led to the inclusion of this gene in the ION panel. Three additional heterozygous
PMPCA (NM_015160.3) variants were identified in four families (Figure 1A), two unre-
ported and two being referenced with an allele frequency of 4.01 × 10−6 and 8.01 × 10−6

(Figure 1B, Table 1). Two variants (c.309delA and c.820delG) are pair base deletions causing
a frameshift (p.(Lys103AsnfsTer74) and p.(Val274SerfsTer27)); and two are missense vari-
ants (c.1363G>A and c.1547G>A) causing the p.(Ala455Thr) and p.(Arg516His) amino-acid
changes, respectively (Table 1), which are evolutionary well conserved throughout animal
PMPCA sequences (Figure 1C). These variants were confirmed by Sanger sequencing
and analyzed for segregation, whenever DNA samples were available (Figure 1A). The
pathogenicity of the two missense PMPCA variants was assessed in silico using multiple
prediction software, with results strongly supporting their deleterious and damaging ef-
fect (Table 2), although they were classified as class 3 variants by the ACMG prediction
program (Table 1).

3.2. Clinical Manifestations of PMPCA Patients

All individuals included were referred to ophthalmology departments due to poor
visual acuity. All patients were males aged between 30 and 69 years, who were primarily
diagnosed with isolated dominant optic atrophy; three had normal brain MRI imaging.
Patients II.1 from family 1 and II.1 from family 4 disclosed severe optic atrophy with
visual acuities ranging from 0.5/10 to counting fingers (Table 1). Additional associations or
problems were observed: multiple sclerosis for patient II.1 from family 4 and peripheral
neuropathy for patient II.1 from family 2 (Table 1).

3.3. Functional Effects of PMPCA Variants

To evaluate the consequences of PMPCA variants on mitochondrial physiology, two
fibroblast cell lines were derived from individuals P1: II:1 and P2: II:2 from families 1 and 3.
Mitochondrial network overlaid on phase-contrast revealed hyperconnected structures in
cells from PMPCA patients, compared to control (Figure 2A). Western blots experiments,
using PMPCA, PMPCB, OPA1 and citrate synthase (CS) antibodies revealed a 25% re-
duction in PMPCA level, lower than expected for frameshift variants, and equal levels
of PMPCB and OPA1 proteins (Figure 2B). Enzymatic activities of the respiratory chain
complexes did not reveal a significant difference between control and mutated fibroblasts
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(Figure 2C). In addition, no alteration was noticed in the analysis of PMPCA distribution in
the mitochondrial network (Figure 2D).

Figure 1. PMPCA pedigrees and amino acid change localization. (A): Description of the pedigrees
with PMPCA (NM_015160.3) variants and their segregation among the families. (B): The structure of
the PMPCA protein with the amino acid changes associated with DOA on the top, and associated with
Spinocerebellar ataxia, autosomal recessive 2 (SCAR2) and a progressive mitochondrial encephalopa-
thy, on the bottom. (C): Evolutionary conservation of the p.Ala455 and p.Arg516 residues (in red) and
their neighbor amino acids in eukaryotic PMPCA protein sequences of metazoans and invertebrates.

Table 1. Clinical and Molecular Data of the PMPCA Patients.

Family Patient Sex Age VA Other Symptoms Brain MRI ORF Change Protein Change rs # Gnomad Freq. ACMG
Classification

1 (II.1) M 30 counting fingers - normal
c.309delA p.(Lys103AsnfsTer74) unknown - PVS1 and PM2

Class 5
2 (II.1) M 53 peripheral neuropathy normal

3 (II.2) M 45 4/10 - normal c.820delG p.(Val274SerfsTer27) rs777445198 4.01 × 10−6 PVS1 and PM2
Class 5

4 (II.1) M 35 0.5/10 multiple sclerosis ND c.1363G>A p.(Ala455Thr) unknown - PM2 and BP4
Class 3

5 (II.1) M 69 6/10 - ND c.1547G>A p.(Arg516His) rs768196711 8.01 × 10−6 PM2
Class 3

Abbreviations: VA: visual acuity; M: male; rs #: reference sequence number; gnomAD Freq.: Frequency in the
Genome Aggregation Database; ACMG: American College of Medical Genetics and Genomics PVS1: Null variant
(nonsense, frameshift, canonical ±1 or 2 splice sites, initiation codon, single or multiexon deletion) in a gene where
LOF is a known mechanism of disease. (Pathogenic, Very Strong). PM2: Absent from controls (or at extremely low
frequency if recessive) in Exome Sequencing Project, 1000 Genomes Project, or Exome Aggregation Consortium.
(Pathogenic, Moderate). BP4: Multiple lines of computational evidence suggest no impact on gene or gene product
(conservation, evolutionary, splicing impact, etc.) (Benign, Supporting).
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Table 2. In Silico Analysis of PMPCA Missense Variants.

Variant Polyphen SIFT MutationTaster FATHMM-MKL LRT PROVEAN DANN

c.1363G>A
(p.Ala455Thr)

0.568
possibly damaging

0.492
tolerated

0.9999
disease-causing

0.9334
damaging

0
deleterious

−2.46, −2.42, −2.78
damaging

0.9956
damaging

c.1547G>A
(p.Arg516His)

0.017
benign

0.025
damaging

0.9999
disease-causing

0.9669
damaging

9.9999 × 10−7

neutral
−2.83, −2.53

damaging
0.9982

damaging

Figure 2. Mitochondrial dynamic and PMPCA distribution studies of fibroblasts from control and
PMPCA mutated patients. (A): Representative fluorescent images of mitochondrial network structure
overlaid on phase-contrast (on the left) showed a mitochondrial network hyperconnection in PMPCA
fibroblasts. Mitochondrial volume (in purple on black background in the middle) was assessed
using the Mitotracker Green fluorescent signal by Imaris software and color-coded on the right.
The inset illustrates the classification code. To present the changes in mitochondrial morphology
in patients’ cells, types of mitochondria were classified into 5 groups according to mitochondrial
length: blobs < 1 µm; fragmented < 5 µm; tubular < 10 µm; filamentous < 20 µm; mitochondrial
network > 20 um. Bar graphs show the distribution of the mitochondrial population of Control, P1
and P2. Mean ± SEM. Scale bar: 10 µm. (B): Western blots (left) against PMPCA, PMPCB, OPA1 and
citrate synthase (CS) on control (C1) and two patients’ (P1 and P2) fibroblasts reveal decreased levels
of PMPCA and equal levels of PMPCB and OPA1 in the pathological conditions, as shown on the
histogram (right). (C): Enzymatic activities of the respiratory complexes (CI to CV) from the control
and the PMPCA mutated fibroblast strains related to the citrate synthase (CS) enzymatic activity,
did not reveal a significant difference between control and mutated fibroblasts. Biochemical data
were generated using the two-tailed paired t-test. Results are Mean ± S.E.M. from four independent
experiments. (D): Single-molecule localization microscopy dSTORM was used to analyze PMPCA
distribution, correlated to total internal reflection fluorescence TIRF microscopy for mitochondrial
staining. Using Imaris 8.0 ® software, the dSTORM PMPCA immunofluorescence signal was used to
quantify their mitochondrial surface protein distribution.
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4. Discussion

Dominant optic atrophy is a heterogeneous group of diseases caused by selective
loss of retinal ganglion cells (RGCs) and ascending degeneration of the optic nerve. In
this study, we identified four heterozygous variants in PMPCA as a cause of DOA in five
unrelated families. These variants are either novel or referenced with a very low frequency
in the gnomAD database. The two missense variants are classified by the ACMG guidelines
as variants of uncertain significance, although in silico analysis using the most common
tools shows that these variants are probably damaging (Table 2) and were evolutionary
well conserved in different animal species (Figure 1C). However functional studies are
necessary to ascertain their full contribution to the disease.

Recessive pathogenic variants in PMPCA have been described in the context of non-
progressive cerebellar ataxia and severe Leigh-like syndrome associated with spastic
ataxia [22–25]. Thus, except for OPA1, all other DOA genes were initially identified as
causing severe, essentially recessive, mitochondrial diseases, while dominant variants in
these genes are causing DOA. Again, this is the case for PMPCA, for which we disclosed
the involvement of heterozygous variants in a rather late-onset optic atrophy. Because, of
the four variants identified, two were frameshifts classified as likely pathogenic, it should
be advised to examine the parents of SCAR2 patients who are carriers of other frameshift
variants. A similar situation has been observed for the SPG7 gene, with the initial iden-
tification of rather mild optic atrophy in recessive SPG7 patients with spastic paraplegia,
followed later by the identification of dominant SPG7 variants in patients with restricted
Dominant Optic Atrophy [10].

Interestingly, of the five patients identified with PMPCA variants, two had additional
neurological symptoms, such as peripheral neuropathy for the index case of family 2
and multiple sclerosis for the index case from family 4. This is supported by previous
observations that multisystemic manifestations, including neurological symptoms, are
reported in up to 20% of OPA1 pathogenic variant carriers and in LHON patients [28–32].
Thus, functional alterations of PMPCA might predispose patients to the emergence of
neurological symptoms, in addition to jeopardizing RGC function and survival.

PMPCA encodes the α subunit of the mitochondrial processing peptidase (MPP),
which cleaves the targeting peptide of nuclear-encoded mitochondrial precursor proteins
upon their import into mitochondria [21]. Our observation of PMPCA fibroblasts revealed
a decreased level of PMPCA protein, although not reaching a 50% decrease, as would be
expected for cells with a frameshift variant and deeply contrasting with the observation of a
severe PMPCA depletion in SCAR2 patient lymphoblasts, associated with impaired frataxin
production and processing [23,25]. In addition, a hyperconnected mitochondrial network
was observed in PMPCA conditions, as already reported in fibroblasts from DNM1L and
OPA3 patients affected by DOA [12,15]. Conversely, we did not disclose the alteration
of the respiratory chain, nor the PMPCA distribution in the mitochondrial network, but
some rare events at mitochondria-autophagosome contact sites are suggestive of increased
mitophagy (data not shown).

In summary, we suggest heterozygous variants in PMPCA gene as new candidates for
DOA. We also present a novel pathophysiological mechanism responsible for retinal gan-
glion cell degeneration, most likely milder than the one responsible for SCAR2 presentation,
caused by bi-allelic PMPCA pathogenic variants.

5. Conclusions

In conclusion, we report the first DOA patients with heterozygous PMPCA variants,
confirming the genetic heterogeneity of autosomal inherited optic neuropathies and the
important role of mitochondrial import in the maintenance of retinal ganglion cell integrity.
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