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Abstract: Integrins contribute to cancer progression and aggressiveness by activating intracellular
signal transduction pathways and transducing mechanical tension forces. Remarkably, these adhesion
receptors share common signaling networks with receptor tyrosine kinases (RTKs) and support their
oncogenic activity, thereby promoting cancer cell proliferation, survival and invasion. During the
last decade, preclinical studies have revealed that integrins play an important role in resistance to
therapies targeting RTKs and their downstream pathways. A remarkable feature of integrins is
their wide-ranging interconnection with RTKs, which helps cancer cells to adapt and better survive
therapeutic treatments. In this context, we should consider not only the integrins expressed in cancer
cells but also those expressed in stromal cells, since these can mechanically increase the rigidity of
the tumor microenvironment and confer resistance to treatment. This review presents some of these
mechanisms and outlines new treatment options for improving the efficacy of therapies targeting
RTK signaling.

Keywords: integrin; focal adhesion kinase; therapy resistance; tyrosine kinase inhibitors;
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1. Introduction

Many tumors initially respond to targeted therapies before resistance appears. The mechanisms
that sustain tumor cells between initial response and disease progression are not well understood.
Understanding drug resistance is urgently needed in cancer therapy. The interaction between
cancer cells and the microenvironment (the extracellular matrix (ECM), fibroblasts, endothelial cells,
and immune cells) is essential to cell survival, proliferation and migration [1,2]. Be it through
physiological mechanisms or remodeling after therapy, the tumor microenvironment provides a safe
haven that promotes the emergence of resistance.

The ECM alone can induce tumor cell resistance to treatment [3]. Integrins, a family of cell surface
receptors, play an important role in the interaction with the ECM. The integrin family comprises
24 different receptors made up of heterodimers of 18 alpha (α) and 8 beta (β) subunits, each of
which binds to one or more ECM ligands. Integrins are involved in cellular adhesion to the ECM
and in intercellular cohesion. Integrin biochemical and mechanical signaling regulates cell survival,
proliferation, differentiation, migration, adhesion, apoptosis, anoikis, polarity and stemness [4–6].
Since integrins do not have enzymatic activity, once they bind to a ligand, they recruit cytoplasmic
kinases such as focal adhesion kinases (FAKs). These, once recruited, autophosphorylate and present
a docking site for the proto-oncogene tyrosine-protein kinase Src [7]. The FAK/Src complex activates the
NF–kB (nuclear factor–kappa B), MAPK (mitogen-activated protein kinase) and PI3K (phosphoinositide
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3-kinases) pathways. These signaling pathways are redundant with the receptor tyrosine kinase (RTK)
signaling pathways. RTKs are families of surface receptors with tyrosine kinase activity that bind to
growth factors, cytokines and hormones. RTK signaling pathways regulate cell growth, differentiation,
metabolism and apoptosis in response to growth factor stimulation of cross-activation by co-receptors
such as integrins. In normal cells, RTK function is tightly regulated. However, in cancer, mutations,
overexpression, autocrine/paracrine stimulation and aberrant degradation lead to RTK constitutive
activation and consequently to tumor formation and progression [8,9].

Integrins cooperate with several RTKs, such as epidermal growth factor receptor (EGFR), c-Met,
platelet-derived growth factor receptor (PDGFR), insulin-like growth factor receptor (IGFR) and vascular
endothelial growth factor receptor (VEGFR). This cooperation promotes solid tumor progression and
aggressiveness as well as contributing to therapy resistance, be it to chemotherapy, radiotherapy or
targeted therapy. Integrin/RTK crosstalk has been well described in several reviews [4,5]. In recent
decades, integrins have emerged as new players in resistance to RTK-targeted therapies. The purpose
of this review is to present a synthesis of the literature and to explore the diversity of the mechanisms
by which integrins are able to counteract RTK-targeted therapies (Table 1). New promising therapeutic
approaches resulting from these discoveries will be also discussed.
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Table 1. Cases of integrin-mediated resistance to RTK-targeted therapies cited in this review.

RTK Therapies
Targeting RTK Type of Tumor Experimental Model Patient Data Integrin Modulation Mechanisms of Resistance Ref

β1 integrin

EGFR Cetuximab
Head and neck
squamous cell

carcinoma
A549 cells -

Cetuximab-induced
fibronectin overexpression.

siRNA-mediated depletion of
β1 and α5

Cetuximab enhances p38/ATF2-dependent
fibronectin production and the activation of the

focal adhesion kinase (FAK)/Erk pathway.
siRNA-mediated depletion of β1 and α5 integrin

decreases the cell survival of cetuximab-treated cells.

[10]

EGFR Cetuximab Pancreatic cancer
Miapaca-2, Capan-2,

SW1990
AsPC-1, BXPC-3, PANC-1

-

-Endogenous overexpression
of β1 integrin in resistant cells
-siRNA-mediated depletion

of β1

β1 overexpression in resistant cells stimulates Src
and Akt pathways. Extracellular matrix

(ECM)-independent activation of β1 is mediated by
its interaction with neuropilin-1. siRNA-mediated

depletion of β1 or inhibition of β1/neuropilin-1
interaction increases cetuximab cell toxicity.

[11]

EGFR mAb225 Colon cancer Caco-2 - Plasmid-induced α5
overexpression

Fibronectin stimulation of α5-expressing cells
overrides mAb225-mediated cell growth inhibition.
Integrin activates epidermal growth factor receptor
(EGFR) kinase and the mitogen-activated protein

kinase (MAPK) pathway.

[12]

EGFR Gefitinib Erlotinib Lung cancer PC-9 and 11-18 Patient samples

-Endogenous overexpression
of β1 integrin in resistant cells

and tumors
-siRNA-mediated depletion

of β1

siRNA-mediated silencing of β1 restores Erlotinib
potency to inhibit cell proliferation and the Src and

Akt pathways.
[13]

EGFR PD1530335
(AG1517) Glioma

Glioma stem-like cells
(GSCs) isolated from
glioblastoma (GBM)

surgical pieces

- Lentiviral-mediated β1
overexpression

Delocalization of β1 integrin from lipid raft
sensitizes GSC to tyrosine kinase inhibitor

(TKI)-induced apoptosis. β1 overexpression protects
GSC from apoptosis in a FAK-dependent manner.

[14]
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Table 1. Cont.

RTK Therapies
Targeting RTK Type of Tumor Experimental Model Patient Data Integrin Modulation Mechanisms of Resistance Ref

HER2 Trastuzumab
Lapatinib Breast cancer HER2+ cells (BT474,

HCC1954) -

-Endogenous overexpression
of β1 integrin in resistant cells.
-siRNA-mediated depletion of

β1 and
function-blocking mAb

Overexpression of β1 enhances FAK and Src phosphorylation.
Silencing or functional inhibition of β1 integrin sensitizes

cells to HER-2 inhibition (cell proliferation, apoptosis,
clonogenic assays) in a FAK-dependent way.

[15]

HER2
TPB (trastuzumab
+ pertuzumab +

burparlisib)
Breast cancer

Tumors cells derived from
HER2+/PIK3CAH1047R

mice, MDA-MB453,
HCC1954 cell lines

Patient samples
and data

-Endogenous overexpression
of collagen II in resistant

tumors
- β1 function-blocking mAb

Resistance to anti-HER2 tritherapy activates β1 integrin and
Src pathways. Inhibition of β1/Src blocks coll II-induced

resistance to TPB (cell growth, cell survival)
[16]

VEGFR Bevacizumab Glioma

U87,
bevacizumab-resistant cell

lines derived from
surgical pieces (in vitro

and xenografts)

Patient samples
and data

-Endogenous overexpression
of β1 integrin in resistant cells.
-shRNA-mediated depletion

of β1 and
function-blocking mAb

Bevacizumab induces hypoxia that is associated with
increased β1 and FAK expression. β1 inhibition

(function-blocking mAb) results in increased cell apoptosis
and in disrupted tumor mass formation in the treated tumor

[17]

VEGFR Bevacizumab Glioblastoma
breast cancer

PDX for
bevacizumab-resistant

human GBM
GBM and breast cancer

cells

Patient samples
Increased β1/c-Met complex

formation in
bevacizumab-resistant tumors

Vascular endothelial growth factor receptor (VEGFR)-2
activation impedes β1/cMet complex formation. Resistance to
antiangiogenic therapy increased β1/cMet complex formation

and cross-activation of both receptors.

[18]

β 3 integrin

EGFR Erlotinib
Lapatinib Lung cancer A549 and H23 xenograft Patient samples shRNA-mediated depletion

of β3

EGFR TKI treatment induces selection of β3-positive cancer
stem cells. Integrin β3 (in a ligand-independent way)
interacts with galectin-3 to promote KRAS/RalB/NFkB

activation, thereby promoting cell survival.

[19]
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Table 1. Cont.

RTK Therapies
Targeting RTK Type of Tumor Experimental Model Patient Data Integrin Modulation Mechanisms of Resistance Ref

IGFR Linsitinib Pancreatic cancer Panc-1 and FG xenograft -

EGFR Gefitinib Lung cancer HCC827 -

-Epigenetic silencing of
β3-targeting miR-489-3p in

resistance cells
-Lentivirus-mediated

expression of β3
-Inhibitor or mimic of

miR-489-3p

Hypermethylation of miR-483-3p in resistant cells activates
the β3-dependent FAK/Erk pathway to promote cell survival

and EMT
[20]

IGFR Cixutumumab

Head and neck
squamous cell

carcinoma
Several cell lines Patient samples shRNA-mediated depletion

of β3 and
function-blocking mAb

Upon cixutumumab treatment, insulin-like growth factor
(IGF)-1 directly binds to integrin ανβ3, increasing

Src/Akt-dependent proliferation and survival.

[21]

Lung cancer
686LN, UMNSCC38,

H226B, A549 In vitro and
xenograft

-

PDGFR, VEGFR,
FGFR Sorafenib Acute myeloid

leukemia MV4-11 Patient samples
and data

-Endogenous overexpression
of β3 integrin in resistant cells
- β3 function-blocking mAb

Activation of β3/PI3K/Akt/GSK3β/β-catenin pathway
reduces apoptotic level and increases cell proliferation in

resistant cells
[22]

PDGFR, VEGFR,
FGFR Sorafenib Hepatic cancer Huh-7, Hep3B, SK-Hep-1,

HepG2, PLC/PRF/5 - -shRNA-mediated depletion
of β3

Forced expression of galectin-1 elevates β3 expression and
activates the FAK/PI3K/Akt pathway to trigger EMT. This is

correlated with an increased resistance to sorafenib in
galectin-1 expressing cells.

[23]

β4 integrin

HER2 Gefitinib Breast cancer Murine model mammary
gland MMTV-Neu (YD) -

-Forced expression of β4
mutant (depleted from its

signaling domain)

α6β4/ErbB2 complex activates transcription factor STAT3 and
c-Jun to promote cancer progression. The signaling domain of
β4 is required to trigger gefitinib resistance by an unknown

mechanism, whereas ErbB2, C-Jun and STAT3
phosphorylation is still inhibited by gefitinib.

[24]

HER2 Trastuzumab
Lapatinib Breast cancer BT474, ZR-75-1, SKBR3,

MD-MB-453 -
shRNA-mediated depletion

of α6β4 and
function-blocking mAbs

Integrin-mediated adhesion to laminin-5 promotes resistance
to anti-ERB2 therapies. Removal of CD151 (an integrin

co-receptor) or FAK sensitizes cells to drugs (cell
proliferation)

[25]

EGFR Gefitinib Gastric cancer SGC7901 Patient samples

-Endogenous overexpression
of α6β4 integrin in

resistant cells
-siRNA-mediated depletion

of α6β4

Endogenous or forced expression of β4 integrin promotes
gefitinib resistance (cell proliferation and apoptosis). β4

expression is correlated with a decrease in p-EGFR
protein levels.

[26]

EGFR Gefitinib Hepatic cancer HLF, Alexander, HepG2,
Sk-Hep1 - Laminin-332 expression

Lm-332-dependent activation of integrin dampens gefitinib
effectiveness in cell proliferation survival and apoptotis

assays. Lm-332 potentiates the activation of Akt in
gefitinib-treated cells.

[27]
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Table 1. Cont.

RTK Therapies
Targeting RTK Type of Tumor Experimental Model Patient Data Integrin Modulation Mechanisms of Resistance Ref

FAK

EGFR Erlotinib Lung cancer
A549, H1299, H1975,
HCC827, HCC4006
Xenograft of A549

- FAK inhibitors

Combination of FAK inhibitors and erlotinib is more potent
than a single agent to reduce cell viability (2D and 3D

models), to increase the apoptosis pathway and cell cycle
arrest in resistant cells, and to reduce tumor growth in vivo.
The sensitization of erlotinib by FAK inhibitors is associated

with a strong inhibition of Akt.

[28]

EGFR Erlotinib
Osimertinib Lung cancer

PC-9, H1975, HCC827,
HCC4006, H3255, 11-18

cell lines PC-9 xenografts
- FAK inhibitor

Activation of FAK and Src family kinases (SFK) pathways
attenuates the efficiency of EGFR therapies presumably via

the sustained activation of MAPK and Akt pathways.
Concomitant inhibition FAK, Src and EGFR inhibitors

potently inhibit MAPK and Akt pathways and
cell proliferation.

[29]

EGFR
Afatinib
Erlotinib

Osimertinib
Lung cancer PC-9, HCC827 Established

TKI-resistant cells - siRNA-mediated depletion of
FAK and inhibitor

Compensatory activation of SFKs, FAK and Akt is observed
in TKI- resistant cells. FAK inhibition increased afatinib

efficacy to inhibit cell survival and cell migration.
[30]

EGFR Erlotinib Lung cancer
H1299, H1650 cell lines

H358 cell line and
xenograft

- siRNA-mediated depletion of
FAK and inhibitor (PF-562271)

Mass spectrometry analysis revealed an aberrant
phosphorylation of FAK in erlotinib-resistant cells. Inhibition

of FAK led to a decrease in cell survival in
erlotinib-treated cells.

[31]
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2. β1 Integrins

β1 integrins form heterodimers with no less than 12 of the 18 known alpha subunits,
and thus represent the largest integrin subgroup. β1 integrins are overexpressed in solid
tumors such as breast carcinoma, lung carcinoma and head and neck squamous cell carcinoma
(HNSCC) [32–34]. In cancer cells, β1 integrins are associated with proliferative signaling, trigger cell
death resistance, induce angiogenesis and activate cell migration and the metastatic cascade [35–39].
β1 integrins contribute to chemotherapy resistance [38,40–50] and promote radiotherapy resistance
in HNSCC [51–54], breast carcinoma [55,56], laryngeal carcinoma [57,58], and glioma [59,60].
Based on these observations, β1 integrin antagonists such as small molecules (ATN-161, JSM6427) or
function-blocking antibodies (volociximab, OS2966) have been considered as potential therapeutic
approaches [32].

2.1. β1 Integrins Promote Resistance to EGFR-Targeted Therapies

2.1.1. Cooperation between β1 Integrin and EGFR in Cancer Cells

EGFR was the first growth factor receptor reported as being activated in normal cells by
β1 integrin adhesion to fibronectin, with or without the presence of EGF [61,62]. In cancer cells,
β1 integrin potentiates EGF-mediated EGFR autophosphorylation in vitro and in vivo [38]. β1 integrin
also regulates EGFR membrane trafficking and so modulates its oncogenic signaling activity [63].
In human ovarian carcinoma cells, α5β1 coordinates EGFR recycling to the plasma membrane in
a way that enhances EGFR-Tyr845 phosphorylation and the serine kinase Akt downstream pathway,
thus promoting cell invasion [64]. In lung carcinoma cells, the level of β1 integrin expression
regulates the cell surface expression of EGFR and sustains its endocytic pathway [38]. It should
be noted that although the literature has mostly described β1 integrins as positive regulators of
EGFR, the relationship between integrin and EGFR appears to be far more complex. For instance,
α5β1 has been described as restricting EGFR membrane localization and responsiveness to EGF
stimulation [65], while α1β1 inhibits EGFR signaling by activating the protein phosphatase TCPTP
(T-cell protein tyrosine phosphatase) [66]. β1 integrin/EGFR interaction was initially suggested by
co-immunoprecipitation and confocal experiments, and FRET analysis revealed potential direct physical
interaction between β1 integrin and either EGFR [59,67] or HER2 (ErbB2) [68]. Studies on β1 integrin
cooperation with EGFR have revealed new avenues for improving the effectiveness of radiotherapy.
Indeed, EGFR/β1 complex formation is a prognostic factor for radiotherapy resistance in glioma [59].
The importance of EGFR/β1 integrin cooperation in radiotherapy resistance has been confirmed by
experiments which have shown that co-targeting the two of them radiosensitizes cancer cells [10,53].
Whole exome analysis has identified mTOR and KEAP1 as potential genetic biomarkers and molecular
targets for radiosensitizing HNSCC [69]. By contrast, concomitant inhibition of β1 integrin and EGFR
in HNSCC spheroids [70] and colon carcinoma [71] does not improve radiotherapy efficacy.

2.1.2. Molecular Mechanism of β1 Integrin-Mediated Resistance to EGFR-Targeted Therapies

The most common type of lung cancer is non-small cell lung carcinoma (NSCLC), and it is
characterized by EGFR overexpression. Several oral tyrosine kinase inhibitors (TKIs) targeting EGFR
are used in clinical practice for treating NSCLC, including gefitinib, erlotinib, afatinib, dacomitinib and
osimertinib. These drugs show some efficacy, but NSCLC eventually relapses. Resistance to treatment is
caused either by T790M EGFR mutation, which impedes TKIs (except osimertinib) from binding to EGFR
by increasing its affinity to ATP, or by the activation of alternative or downstream signaling pathways [72].
Several groups independently report that acquired resistance to gefitinib has correlated with β1 integrin
overexpression in NSCLC cells [13,73,74] or in lung tumor samples from patients refractory to gefitinib
or erlotinib [13]. Interestingly, these studies revealed that β1 integrin overexpression occurs in NSCLC
cells that do or do not harbor EGFR T790M mutations, irrespective of EGFR-phosphorylation level.
Both antibody-mediated functional inhibition and siRNA-mediated silencing of β1 integrin sensitize
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NSCLC to TKIs in vitro and in vivo [13,38,73], demonstrating that β1 integrin is instrumental in TKI
resistance. Conversely, the vector-mediated overexpression of β1 integrin protects cancer cells from
TKI-induced cell growth inhibition [14,38]. Downstream of the β1/PI3K and β1/Src/FAK pathways,
the serine kinase Akt plays a pivotal role in resistance to gefitinib or erlotinib (Figure 1) [13,38,73,75].
FAK is an essential protein in integrin/growth factor receptor crosstalk and could be a valuable target
for sensitizing cancer cells to TKIs [76]. Integrin-dependent FAK activation decreased cancer cells’
sensitivity to anti-EGFR drugs [10,14]. A series of studies confirmed the importance of FAK signaling in
resistance to first- (erlotinib), second- (afatinib) and third-generation (osimertinib) EGFR TKIs [28–31].
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Figure 1. β1 integrin induces EGFR- or HER (ErbB2)-targeted therapy resistance. In sensitive cells,
the inhibition of the ErbB receptor family by either antibodies or tyrosine kinase inhibitors (TKIs) blocks
Erk and Akt pathway activation leading to cell death and cell growth inhibition. In resistant cells,
β1 integrin or its associated extracellular matrix (ECM) proteins are often overexpressed, leading to the
activation of β1-downstream pathways such as PI3K or FAK/Src. These pathways converge to activate
the serine kinase Akt that promotes cell survival and cell growth. Alternatively, β1 integrin can be
activated by coreceptors such as neuropilin-1 (NRP-1) to trigger EGFR-targeted therapy resistance
independently of integrin-mediated cell adhesion.

β1 integrins can also trigger resistance to antibody-mediated EGFR inhibition. In colon carcinoma
cells, the fibronectin/α5β1 axis overcomes the inhibition of EGFR-mediated cell growth by mAb225,
the murine form of the chimeric anti-EGFR antibody cetuximab [12]. In lung carcinoma cells,
cetuximab activates the p38/ATF2 pathway. This enhances fibronectin synthesis, which in turn
dampens cetuximab’s cytotoxic effect both in vitro and in xenografted mice. α5β1 integrin-silencing
sensitized NSCLC cells to cetuximab monotherapy, showing that α5β1 integrin-mediated adhesion
to fibronectin plays an essential role in reducing cetuximab activity in lung carcinoma cells [10,53].
In pancreatic ductal adenocarcinoma cells, the overexpression of β1 activates the FAK/Src/Akt pathway,
triggering EGFR ligand-independent cell growth and thus bypassing cetuximab antagonist activity [11].

2.2. B1 Integrins Promote Resistance to Therapies Targeting HER2

HER2 (ErbB2) is another member of the EGFR family with intrinsic tyrosine kinase activity and is
devoid of a ligand-binding domain. Overexpressed in nearly 30% of breast cancers, HER2 plays an
important role in cancer progression. It is a highly attractive target for treatment with trastuzumab
or pertuzumab, two humanized HER2− targeted antibodies, or for treatment with lapatinib, a TKI.
Despite the radical improvement in the prognosis of HER2+ breast cancer brought about by these
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drugs, most patients with HER2+ tumors relapse and progress within a few years [77]. Using a genetic
approach in mice, β1 integrin expression has been shown to play a critical role in HER2− induced breast
tumor progression but is not required for tumor formation [78]. An immunochemical analysis of clinical
samples revealed thatβ1 integrin overexpression is a negative prognostic factor for patients with HER2+

breast cancer being treated with trastuzumab [68]. In vitro, β1 integrin is overexpressed in HER2+

breast tumor cells with de novo resistance to trastuzumab. β1 integrin knockdown by siRNA silencing
or inhibition by function-blocking antibody therapy enhanced drug efficacy by inhibiting the Erk1,2
and Akt pathways [79]. In contrast, another report showed that HER2+ breast cancer cell lines with de
novo resistance to trastuzumab were not sensitized by β1 integrin inhibition, presumably because
they maintain HER2 hyperphosphorylation. However, in the same study, β1 integrin was shown to
promote resistance to lapatinib/trastuzumab treatment via an upregulation of FAK and Src. In that
setting, antibody-mediated inhibition of β1 integrin decreased the 3D-growth and survival of the
resistant cells being treated [15]. HER3, a kinase-dead member of the EGFR family, regulates HER2
signaling by initiating ligand-induced HER2 activation in the HER2-HER3 heterodimer. Co-targeting
HER3 (via siRNA-mediated silencing) and β1 integrin (via a function-blocking antibody) is more
effective in controlling tumor growth in mice than the dual inhibition of HER2 (lapatinib) and β1
integrin (antibody) [80].

The tumor microenvironment may markedly affect the response to HER2− targeted therapy [3].
Laminin-332, a ligand of integrins α6β4, α6β1 and α3β1, is lost during the malignant transformation
of breast cancer but remains expressed by normal tissue and may thus support the initial transition
to invasive cancer. Integrin-dependent adhesion to laminin-332 elicits lapatinib and trastuzumab
resistance in HER2+ human breast tumor cell lines [25]. Recently, Hanker and colleagues used
genetic engineering of HER2+/PIK3CAH1047R mice to generate tumors resistant to TPB treatment
(trastuzumab + pertuzumab + burparlisib, a PI3K inhibitor). Whole genome sequencing did not
reveal any acquired mutation that could explain the acquired resistance to TPB. RNA-seq analysis did
reveal the upregulation of several ECM genes, including Col2a1, which codes for the collagen type II
alpha 1 chain. Collagen II activates the β1 integrin/Src pathway, promoting tumor resistance to TPB.
In clinical settings, collagen II expression on immunohistochemical analysis correlates with a poor
response to HER2− targeted therapies [16]. Antibody-drug conjugates (ADCs) are a promising novel
class of therapeutic agents that combine a cytotoxic agent with the antigenic selectivity of an antibody.
Ado-trastuzumab emtansine (T-DM1) is an ADC consisting of trastuzumab and DM1, a microtubule
inhibitor [81]. Despite a good initial response to the drug, most patients eventually relapse due to
acquired resistance. Recent reports have documented alterations in the ECM/integrin pathway in
T-DM1-resistant cancer cells [82,83], which represent promising new approaches to enhancing T-DM1
toxicity against cancer cells.

2.3. β1 Integrin Expression Confers Resistance to Anti-Angiogenic Therapies Targeting VEGFR or c-Met

Tumor neo-angiogenesis is the formation of new blood vessels from those pre-existing in the
tumor. Neo-angiogenesis is a critical step in tumor progression as it enhances tumor growth and
cancer cell metastasis. The concept of anti-angiogenic therapy, i.e., inhibiting pro-angiogenic factors,
has remained disappointing, in part due to acquired resistance [84]. The role of integrin in endothelial
cell migration and survival and in angiogenesis has been widely described [85]. Several reports indicate
that β1 integrin plays a part in anti-angiogenic therapy resistance [35,86]. Bevacizumab, a humanized
antibody against VEGF-A, was the first anti-angiogenic drug used in clinical practice [87]. Micro-array
analysis revealed that a subset of bevacizumab-resistant glioblastomas (GBMs) harbor α5 integrin
and fibronectin overexpression [88], likely due to hypoxia provoked by bevacizumab treatment [17].
The inhibition of β1 integrin could become a treatment avenue in the future, as β1 integrin knockdown
in bevacizumab-resistant glioma cells prevents in vivo growth while OS2966, a β1 function-blocking
antibody, potentiates bevacizumab therapy [17].
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The hepatocyte growth factor (HGF)/c-Met pathway plays an important role in tumor angiogenesis
as well as in the development of resistance to VEGFR inhibition by TKIs [89]. β1 integrin and c-Met are
able to form a complex and drive mutual ligand-independent cross-activation [18,90], indicating that
β1 integrin and c-Met crosstalk may represent an adaptive mechanism to anti-angiogenic therapies.
C-Met and β1 integrin membrane trafficking are closely related. In vascular endothelial cells,
HGF stimulatesβ1 integrin recycling to promote cell spreading, focal adhesion formation, cell migration
and tumor angiogenesis [91]. Moreover, c-Met can induce β1 integrin endocytosis [92], and integrin
can transmit cell survival signaling from early endosomes [93]. The serine–threonine kinase MAP4K4
activates β1 integrin and mediates the accumulation of activated c-Met in cytosolic vesicles [94].
Thus, β1 integrin/c-Met ligand-independent cooperation is not restricted to the cell surface and can
occur in autophagy-like endosomal compartments [95]. Because VEGFR-2 activation sequesters
β1 integrin from c-Met in patients, the β1 integrin/c-Met complex is associated with bevacizumab
resistance in GBM. It is interesting to note that OS2966 can reduce the formation of the β1 integrin/c-Met
complex [18], which could explain its anti-angiogenic activity in bevacizumab-resistant tumors [17].
Targeting β1 integrin/c-Met complex formation may open up new treatment options for overriding
resistance to targeted therapy and so limiting tumor angiogenesis as well as c-Met-mediated cell
growth [75].

It seems clear that β1 integrins play a pivotal role in resistance to RTK-targeted therapies both
in vitro and in vivo. The pharmacological manipulation of integrins [14,15,18,79,80] or downstream
signaling molecules such as FAK or Akt [51–54,58–61] has shown some efficacy in preclinical models
and may offer promising new avenues to sensitizing cancer cells to anti-RTK therapies. β1 integrin
expression levels could also represent a potent biomarker for stratifying patients likely to derive greater
benefit from anti-RTK therapy, but the search for a molecular complex such as β1/EGFR, β1/HER2 or
β1/c-Met could lead to even more promising strategies (Figure 2) [18,59,68].
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Figure 2. Hypothetical model presenting how β1/c-MET molecular complexes provide cancer cell
resistance to anti-angiogenic therapies. In untreated cells, ligand-activated VEGFR-2 engages both α5β1
integrin and c-MET, impeding their physical contact. In α5β1 integrin-expressing cells, anti-angiogenic
therapeutic intervention with bevacizumab decreases VEGF/VEGFR-2 binding. β1/c-MET complex
formation is thus promoted, which leads to the cross-activation of both receptors and the activation of
the downstream AKT signaling pathway (adapted from [18]).

In solid tumors, resistance to targeted therapies can be mediated by β1 integrin via a wide
diversity of mechanisms that may require ligand-dependent or -independent integrin functions, or β1
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integrin interaction with RTKs or with other co-receptors. The clinical relevance of the in vitro and
vivo studies was mainly evident in glioma and breast cancers. Even with the promising therapeutic
role of β1 integrin, it is important to keep in mind the complexity of integrin functions and the fact
that the α subunits involved in the process remain indeterminate most of the time, although we know
their importance in integrin function. The present data could also benefit from a patient stratification,
allowing decreased doses of targeted therapy and consequently fewer secondary effects.

3. αvβ Integrins

αvβ integrins are a large family of integrins (αvβ3, αvβ5, αvβ6 and αvβ8). αv integrins drive
cancer progression and are upregulated either by cancer cells or endothelial cells in many solid tumors,
including colon carcinoma, melanoma, and breast, lung, pancreatic and brain cancers. αvβ integrins
are characterized by their capacity to recognize the RGD (arginine-glycine-aspartate) peptide sequence
in a large variety of ligands (such as vitronectin, fibronectin and osteopontin) [96]. αvβ integrin
expression and activation drive the intracellular signaling that promotes cancer cell survival, invasion,
metastasis, angiogenesis, and self-renewal [5,97], as well as chemotherapy resistance [98,99] and
radiotherapy resistance [100–104]. Extensive preclinical studies have established αvβ3 inhibitors as
potential new therapeutic tools [103,105–107], with several trials evaluating their efficacy in clinical
settings as a result [108–110]. Cilengitide (EMD121974, Merck), a cyclic pentapeptide derived from
the RGD sequence, was the most promising drug and was evaluated in clinical trials in newly
diagnosed GBM. Unfortunately, these trials revealed that cilengitide did not improve the outcomes
of patients receiving chemo- and radiotherapy [111–113], making it necessary to re-evaluate the
treatment conditions or improve the molecular-based selection of patients who could benefit from
cilengitide. Recently, Cosset and colleagues have shown that in GBM, αvβ3 integrin enhances the
expression of the high-affinity glucose transporter GLUT3 via PAK4 (P21 Activated Kinase 4)/YAP
(Yes-associated protein) pathway activation. The overexpression of GLUT3 increased tumor cell
survival in a glucose-depleted environment. Furthermore, using genomic analysis the authors
identified a subset of αvβ3/GLUT3-expressing tumors that were addicted to GLUT3 as well as highly
sensitive to cilengitide and function-blocking anti-αv antibodies [114].

3.1. αv Integrin Triggers Resistance to Anti-EGFR Therapies

The work of Seguin and colleagues paved the way for the demonstration of a pivotal role
for αvβ3 integrin in resistance to EGFR-targeted therapy [19]. They first established that αvβ3
integrin was selectively expressed by tumor-initiating cells from lung and pancreatic carcinoma
patient-derived-xenografts (PDXs). More strikingly, β3 expression drove lung and pancreatic
cancer cell resistance to TKIs targeting EGFR (erlotinib and lapatinib) both in vitro and in mice.
Conversely, the short hairpin RNA-mediated depletion of β3 sensitized cells to the TKIs. In fact,
TKI treatment of human PDX tumors led to the selection of β3-positive cells that acquired stem cell-like
and resistant phenotypes. Mechanistically, β3 integrin activates the KRAS (V-Ki-ras2 Kirsten rat
sarcoma viral oncogene homolog)/RalB (Ras-like proto-oncogene B)/NF-kB pathway. It is important
to note that the activation of this pathway is independent of the canonical FAK pathway and of
integrin/ECM interaction. While this is surprising at first glance, the same group had already observed
that αvβ3 integrin could promote tumor progression independently of ligand binding and FAK
activation [115]. The authors discovered that the recruitment of KRAS and the consequent activation
of RaIB by β3 required β3 binding to galectin-3, a cell adhesion protein with a specific affinity for
β-galactoside glycoconjugates (Figure 3). β3 integrin may also play a pivotal role in mutant KRAS
oncogenic function [116]. In a subset of lung and pancreatic adenocarcinomas addicted to mutant
KRAS, the disruption of galectin-3/β3 interaction by GCS-100, a galectin-3 antagonist currently under
clinical development [117], released mutant KRAS from β3 and inhibited tumor growth in mice.
While these results may suggest that GCS-100 could sensitize lung cancer cells to TKIs, the authors
have not yet explored this possibility. A growing body of data indicates that microRNA (miRNA)
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dysregulation modulates gefitinib resistance in lung carcinoma [118–124] In gefitinib-resistant cells,
a miRNA targeting the 3′-UTR of β3 integrin (miR-483-3p) is silenced by epigenetic methylation.
The forced overexpression of β3 integrin can restore gefitinib resistance in miR-483-3p-expressing
cells through the activation of a β3/FAK/ERK pathway and epithelial to mesenchymal transition
induction [20].Cancers 2019, 11, x 12 of 25 
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Figure 3. β3/KRAS/RalB/NFkB pathway mediates EGFR-targeted therapy resistance. In EGFR
TKI-treated tumors, cells overexpressing αvβ3 integrin are selected, leading to a resistant tumor.
By binding to oligosaccharide moieties of β3 integrin, galectin-3 promotes integrin/KRAS interaction
independently of integrin-mediated adhesion to ECM proteins. KRAS activates the downstream
RalB/NFkB pathway that leads to therapy resistance by promoting a stem cell-like phenotype (adapted
from [19]).

The role of αv integrin in resistance to anti-EGFR therapy has been assessed in clinical settings.
Cilengitide has been evaluated in combination with cetuximab in two phase II clinical trials on HNSCC
and NSCLC [125]. Cilengitide did not improve patient outcomes. However, ex vivo experiments
on patient-derived samples showed that a subset of sensitive tumors could be selected based on the
inhibition of colony formation or cytokine release [126,127]. The phase I/II Poseidon trial explored
the efficacy of a combination treatment using abituzumab, an αv integrin inhibitor, and cetuximab
in KRAS wild-type metastatic colorectal cancer. Again, the trial did not reach the primary phase
II endpoint, but the authors did observe that patients overexpressing αvβ6 integrin might benefit
from the abituzumab/cetuximab plus irinotecan combination treatment compared to cetuximab plus
irinotecan alone [128]. In the future, therefore, reliable biomarkers may emerge for selecting patients
likely to benefit from the synergy between αv integrin and EGFR inhibition.

3.2. αvβ3 Integrin Involvement in Resistance to Drugs Targeting Other RTKs

Insulin-like growth factors and their cognate receptors are important in cancer progression [129].
Antibody-based therapy against IGF-1R has shown limited efficacy in phase II/III clinical trials [130].
αvβ3 integrin enhances IGF-1R signaling activity through the joint ligand-dependent activation of
both receptors. However, another model of crosstalk has been proposed in which the IGF-1R ligand,
IGF-1, directly binds to the β3 integrin subunit and promotes the anchorage-independent formation of
a β3/IGF-1/IGF-1R ternary complex [131–134]. αvβ3 integrin significantly contributes to resistance to
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IGF-1R-targeted TKIs [19]. In HNSCC and NSCLC, during treatment with cixutumumab, a humanized
anti-IGF-1R antibody, the Src/Akt pathway is activated by IGF-1/β3 integrin interaction independently
of cell/ECM interaction. The molecular targeting of β3 integrin increased cixutumumab’s efficacy both
in vitro and in mice [21]. While these preclinical data are encouraging, the role of the β3/Src pathway
in resistance to anti-IGFR treatment has not yet been evaluated in clinical settings.

Sorafenib is a multikinase inhibitor for treating hepatocellular, kidney and thyroid carcinomas [135].
According to KINOMEscan data from the Library of Integrated Network-based Cellular Signatures
project (http://lincs.hms.harvard.edu/), among the numerous kinases inhibited by sorafenib are the
receptors for PDGF, VEGF and fibroblast growth factor. In acute myeloid leukaemia, αvβ3 integrin
expression is a negative prognostic factor and is associated with a decrease in sorafenib activity.
Mechanistically, αvβ3 integrin is activated by osteopontin and stimulates the PI3K/Akt/GSK3
pathway [22]. In hepatocellular carcinoma, galectin-1, a β-galactoside-binding protein, is a negative
prognostic factor [136], whose expression increases sorafenib resistance [23]. Galectin-1 stimulates
αvβ3 expression and hyperactivation of the β3/FAK/PI3K/Akt pathway to potentiate EMT, but a clear
demonstration of a role of β3 in resistance to sorafenib is missing in this study [23]. Galectin-1 has been
shown to interact with other integrins, including β1 [136–138]. Thus, given their ability to regulate
both β1 and β3 integrin function, dysregulation of galectin-1 and galectin-3 expression in the tumor
microenvironment may have a profound impact on the efficacy of therapies targeting RTKs.

In vitro and vivo data revealed that αvβ3 integrin may support resistance to therapies targeting
several RTKs (EGFR, IGFR, PDGFR, FGFR, VEGFR). Furthermore, mechanisms of resistance to EGFR
and IGFR TKIs have been identified and found to be independent of αvβ3 binding to ECM ligands,
via recognition of the RGD sequence [19,21]. Given the clinical failure of cilengitide to improve
the outcomes of cetuximab-treated patients [122,123], the time may have come for the development
and use of integrin-targeted drugs that do not target integrin binding to ECM proteins such as
RGD-derived peptide.

4. α6β4 Integrins

As a nucleator of hemidesmosomes, α6β4 integrin, a laminin-332 (also named laminin-5) receptor,
is a master regulator of epithelium integrity and homeostasis. Hemidesmosomes are junctional
structures that mediate the firm adhesion of epithelial cells to the basement membrane by linking
intermediate filaments to laminin-332. Dysregulation of α6β4 leads to aberrant hemidesmosomal
and epithelial dysfunction [139,140]. It has been reported that hemidesmosomal α6β4 integrin is not
fully competent for signal transduction, suggesting that epithelium/basement membrane attachment
remains its main function in healthy tissue [24,141].

4.1. Crosstalk between α6β4 Integrin and Growth Factor Receptors

Hemidesmosomes are dynamic adhesive structures that must be dismantled to allow epithelial cell
migration during wound healing. α6β4 interaction with hemidesmosomal proteins is tightly regulated
by EGFR signaling pathways [142–147]. EGFR activation promotes the phosphorylation of serine
residues in the signaling domain of β4, which disrupts its interaction with plectin, a linker between
integrin and intermediate filaments. The phosphorylated β4 cytoplasmic domain serves as a docking
platform to stimulate signaling pathways (such as Src, PI3K, Rho GTPases) and synergize with RTKs.
The clinical significance and roles of α6β4 in carcinoma development and progression have been
extensively reviewed [148,149]. In mice, the ablation of α6 integrin in intestinal epithelial cells has led to
hemidesmosomal disruption and a loss of epithelial/basement membrane junction integrity. These mice
spontaneously developed long-standing colitis and subsequent colorectal carcinoma [150]. This may
suggest that α6β4 acts as a tumor suppression gene. However, except in basal carcinoma and prostate
carcinoma, α6β4 is overexpressed in epithelial tumors and largely contributes to cancer progression
and poor prognosis [148]. In these tumors, over-activation of the EGFR, HER2 or c-Met pathways
disrupted plectin/α6β4 integrin coupling and hemidesmosomal disassembly [151,152]. α6β4 becomes
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fully competent for signal transduction and cooperation with RTKs [24,153], and can promote cancer
cell proliferation and survival, tumor invasion, metastasis and angiogenesis [149].

4.2. α6β4 Integrin and Resistance to Anti-HER2 Therapies

Although α6β4 integrin is a pertinent therapeutic target in most forms of carcinoma, few studies
have evaluated its potential to trigger RTK-targeted therapy resistance. Using an in vitro knock-in
system, Guo and colleagues established a murine model in which endogenous β4 integrin was replaced
by signaling-defective β4 integrin (lacking the carboxyterminal moiety of its intracellular domain)
in the mammary gland of MMTV-Neu(YD) mice [24]. In this model, wild-type (WT) β4 integrin,
but not the mutant form, synergized with HER2 to increase mammary carcinoma tumorigenicity.
Interestingly, the therapeutic activity of gefitinib was dampened in WT-β4 mice compared to mutant-β4
mice, indicating that β4 signaling function can promote resistance to anti-HER2 drugs. The molecular
pathway eliciting this resistance is independent of HER2 phosphorylation and remains unknown.
Small molecules or antibodies capable of disrupting the integrin/HER2 heterocomplex may improve
HER2-targeted therapies. In human breast cancer cells, the expression of laminin-332 or α6β4 integrin
triggers a notable resistance to trastuzumab and lapatinib [25]. Gefitinib-mediated cell toxicity was
substantially reduced when hepatocarcinoma cells were exposed to laminin-332 but not to other ECM
proteins such as collagen or fibronectin [27]. More recently, high β4 integrin expression was associated
with a gefitinib-resistant phenotype in gastric cancer cells [26]. The resistant phenotype could be
reverted by RNA-mediated β4 silencing, whereas sensitive cells became more resistant to gefitinib
after β4 overexpression. A clinical study in 38 patients has indicated some correlation between β4
expression and gefitinib resistance. However, given the small sample size, it is far too early to draw any
conclusion about the potential repercussions of this observation [26]. Another clinical study showed
that β4 integrin polymorphism expression was associated with resistance to therapy. The authors
examined the expression level of three different β4 polymorphisms in HER3-negative/KRAS WT
metastatic colorectal cancer from patients receiving irinotecan/cetuximab. Although conducted in
a small cohort of patients, the study showed a significant decrease in progression-free survival and
overall survival in patients harboring the β4 rs8669 G polymorphism [154].

It is clear that α6β4 can unleash the oncogenic potency of RTKs in cancer cells. Data obtained
from cell lines, murine models and patient samples are the first insight into the role of α6β4 integrin in
resistance mechanisms to TKIs and antibodies against members of the HER family. Further investigation
is required to assess the clinical relevance of these observations. Targetingα6β4 integrin/RTK interaction
could be a promising strategy for overcoming resistance. Another strategy could be to use integrin β4
expression and polymorphism to stratify patients to EGFR-targeted therapies.

5. Integrins and Carcinoma-Associated Fibroblasts

Tumor progression relies on close interaction and communication between cancer cells and
cancer-associated fibroblasts (CAFs) through several mechanisms, including paracrine signals
(transforming growth factor-β, IGF-1, exosomes), cell-to-cell contact and ECM remodeling [155,156].
Emerging data indicating that CAFs can decrease therapeutic response (including to anti-RTK drugs)
have been extensively reviewed [157]. We will restrict our analysis to research incriminating integrin
involvement in CAF-mediated therapy resistance.

In breast cancer cells, physical interaction between cancer cells and stromal cells (mesenchymal
stem cells or CAFs) strongly protects against lapatinib or trastuzumab [158,159]. In those two
studies, no experimental data could attest to any role for integrin in CAF-mediated resistance.
However, CAF/breast cancer cell interaction requires the synthesis of hyaluronic acid by CAFs [159].
Hyaluronic acid can bind to and activate CD44, a known partner and regulator of integrins [160].
Alternatively, integrin may also be involved in CAF/cancer cell interaction. For instance, we showed that
α5β1 integrin can promote cell/cell interaction during tumor spheroid formation [161]. This particular
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integrin can mediate CAF interaction with a highly aggressive subset of ovarian carcinoma cells.
Heterotypic CAF/cancer cell spheroids promote the metastasis of ovarian cells in mice [162].

In vitro assays have revealed that collagen fiber synthesis and assembly by CAFs promote lung
cancer cell resistance to gefitinib and osimertinib [163]. Another study showed that collagen-mediated
resistance to TKIs requires the activation of the Akt/mTOR pathway [164]. Interestingly, the inhibition
of collagen synthesis or β1 integrin function suppresses this resistance, offering new therapeutic
options [163]. These observations may be clinically relevant as increased collagen deposition has
been observed in erlotinib-resistant xenografts [163], and as progression-free survival has been seen
to decrease in gefitinib-treated patients with collagen-rich lung tumors [164]. Another group used
genetically modified mice expressing inducible RAF-driven tumors to model melanoma development in
the ear. For the longitudinal monitoring of tumor development, the authors used intravital two-photon
microscopy of fluorescently tagged melanoma cells. Upon MEK inhibition, the tumors transiently
responded but returned to their original size after 12 weeks of treatment. It was noted that the
cells that survived MEK inhibition co-localized with collagen bundles (imaged by second harmonic
generation) [165].

Hirata and colleagues have shown that melanoma-associated fibroblasts can drive resistance to
the BRAF (v-Raf murine sarcoma viral oncogene homolog B) inhibitor vemurafenib by stimulating
fibronectin production and remodeling, and subsequently promoting β1/Src/FAK pathway signaling
in melanoma [166]. Another study confirmed the crucial role of fibronectin/β1 integrin signaling in
melanoma adaptation to BRAF inhibition [167]. In both studies, following vemurafenib treatment,
increases in fibrous ECM were observed in xenograft tumors and in several excised human melanomas.
The concomitant inhibition of BRAF and FAK to suppress PDX growth in mice has been advanced
as one way of improving therapy [166]. The efficacy of this therapeutic option was recently
confirmed through the screening of a kinase inhibitor library [168]. Matrix stiffening generates
mechanical forces that are transduced through the plasma membrane by integrin adhesome and
stimulate YAP and TAZ (transcriptional coactivator with PDZ-binding motif) nuclear translocation
and activation [169,170]. Cancer cells that express the activating mutant of Ras (RASG12D) are
addicted to this oncogene. Studies from two different laboratories conjointly established that
YAP and TAZ activation drive mutant KRAS-independent tumor growth and progression [171,172].
Therefore, increased matrix stiffness is sufficient to protect BRAF-mutant melanoma cells from BRAF
inhibition [166], while YAP/TAZ activation induces resistance to therapy targeting the RAS/RAF
pathway [173,174]. Additionally, several concurrent reports confirmed that matrix stiffening modulates
cancer cell response to TKIs [175–177]. As mechanotransducers, integrin and FAK play key functions
in tension generation by CAFs [178–182]. In turn, ECM stiffening enhances integrin signaling in cancer
cells [183] and contributes to cancer progression [184]. Hence integrin mechanosensing plays multiple
roles in the microenvironment (both in stromal and cancer cells) that promote tumor growth and therapy
resistance [185,186]. It can be hypothesized that YAP/TAZ regulation by integrin mechanotransduction
provides a safe haven that protects cells from therapies targeting the RTK pathway (Figure 4).
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Figure 4. Hypothetic model showing how integrins may trigger therapy resistance in stiff
micro-environmental niches. Therapy-resistant tumors are often characterized by an increase in matrix
stiffness. Cancer-associated fibroblast (CAF) integrins (mainlyα5β1 integrin) generate mechanical forces
that increase ECM protein assembly and matrix rigidity. In cancer cells, the sensing of CAF-generated
tension by integrins activates transcriptional co-regulators YAP and TAZ and their translocation to the
nucleus. The transcriptional response leads to therapy resistance (adapted from [186]).

6. Conclusions

As shown in this review, integrin interacts with several RTKs such as the HER family, c-Met, PDGFR
and others. These interactions can give cells an intrinsic ability to better adapt to and resist targeted
therapies. Several integrin inhibitors were described and are being tested in clinical settings, albeit with
no strong benefit, not even in combination with RTK inhibitors. It should be noted that, although in
clinical practice integrin-targeted therapies are based on the inhibition of their adhesive function by
small antagonist molecules or monoclonal antibodies, several studies have shown that integrin/RTK
interactions and integrin-mediated resistance to therapies targeting RTK can be elicited by unbound
integrins [19,95,115,153]. The ability of integrins to form functional molecular complexes with RTKs
makes the situation much more difficult to understand. But it also makes new treatment approaches
possible, be it predicting the efficacy of anti-RTK therapies in subpopulations of patients based on
their level of heterocomplex expression [18,59] or developing treatments for disrupting integrin/RTK
complex formation [17,18]. Aptamers, small nucleic acids used in treatment [187], can disrupt EGFR/β3
integrin interaction to inhibit tumor growth [188]. Meanwhile, targeting EGFR/uPAR using an integrin
antagonist confers sensitivity to vemurafenib [189]. Finally, Kim and colleagues created an antibody
that co-targets EGFR and neuropilin-1, a receptor that physically interacts with active β1 integrin.
This antibody enhanced β1 integrin internalization and so led to the inhibition of β1 signaling,
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reducing tumor volume in in vivo experiments [11]. All these examples illustrate the strong potential
of this new therapeutic concept.

New functions of integrins are continually being discovered, proving their importance in therapy
resistance. A better understanding of the molecular mechanisms underlying the integrin/RTK
relationship could one day make it possible to improve the efficacy of therapies targeting RTKs.
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