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Fragnostic: walking through protein structure space
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ABSTRACT

The Fragnostic (http://ffas.burnham.org/Fragnostic)
web tool implements a novel and useful view of
protein structure space. We mined a non-redundant
subset of the PDB for common fragments shared
between proteins inhabiting different SCOP folds.
Subsequently, we formulated an inter-fold similarity
measure based on fragment sharing. Fold space is
described as a graph whose nodes are folds between
which the edges are drawn depending on the extent of
fragment sharing. In this fashion, Fragnostic helps
discover meaningful relationships between proteins
belonging to different folds, based on sharing similar
fragments in the proteins comprising those folds.
Distant fold similarity information is supplemented
by annotations taken from Gene Ontology, SCOP
and CATH. Overall, Fragnostic is a tool which helps
discover structural and functional relationships
between proteins which are distantly related or seem-
ingly unrelated.

BACKGROUND

The two popular protein classification schemes, CATH (1)
and SCOP (2), partition the protein structure universe hier-
archically, proceeding from coarse-grained to fine-grained
partitions. The initial, coarse-grained partitioning of structure
space is based on the secondary structure content. Because
there are two well-ordered secondary structure elements, we
have four possible classes as the topmost partitioning rank in
those databases (SCOP and CATH actually use a few more,
ad hoc classes). Classes are then more finely partitioned into
folds (SCOP) or topologies (CATH), based on manual assign-
ment. There may be between 100 and 200 folds per class. We
know from experience that many proteins which are assigned
to different folds share a structural/functional similarity.
When proteins are categorically assigned to different folds,
we lose important information about possible similarities
between individual proteins assigned to different folds. Fur-
thermore, because fold assignment is manual and sometimes

arbitrary, there are cases where a fold—fold similarity bet-
ween proteins inhabiting two different folds is glaringly
obvious. These anomalies arise from the categorical assign-
ment of proteins in a hierarchical classification scheme.
We named the gap between the few classes and the many
folds the ‘granularity gap’. This granularity gap acts as a
barrier preventing us from seeing obvious and not-so-
obvious similarities between proteins from different folds,
as was elaborated upon in studies conducted by Harrison
et al. (3) and Choi et al. (4).

BRIDGING THE GRANULARITY GAP

One way of bridging the granularity gap is to re-establish the
relationships between fold populations using similarities in a
sub-domain level. We have chosen to address this problem
using short fragments shared between populations of proteins
in different folds. In another place (I. Friedberg and A. Godzik,
submitted for publication) we describe in detail the generation
and analysis of a fragment dataset. Briefly, we used a non-
redundant set of solved structures, PDB-SELECT25 (5), to
generate a dataset of 2.5 x 107 fragments of lengths 5, 10,
15 and 20 residues. Fragments were generated using a sliding
window along each protein’s sequence. Those fragments were
aligned using FFASO3 (6), a sensitive profile—profile align-
ment program. The high scoring profile-based alignments
were then screened by aligning them structurally, and only
the alignments with a C-o. RMSD of <1 A were retained. After
this two-step screening process, we had a dataset of 1.25 x 10°
fragment pairs. The fragments were derived without any
assumptions regarding their secondary structure content, an
‘agnostic’ approach; hence, ‘Fragnostic’. We proceeded to
implement a distance measure between folds, fragment
based fold similarity (FBFS), based on fragment sharing.

e Given n folds, indexed (1,..., n).

* Each fold will have a set of fragments shared with other folds:
X1, X2, ..., X))

® X;being the set of all fragment pairs which are shared in fold .
|X;| is the number of those pairs.

* X;;is the set of all fragment pairs shared between fold i and
fold j and |X; | is a number of such pairs.
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Figure 1. Part of a Fragnostic graph for fragment length 10, FBFS threshold of 0.2 and number of fragment threshold of 1. Circles are the SCOP fold populations,
color coded according to SCOP class. Red, all alpha; blue, all beta; orange, alpha/beta; green, alpha + beta; and purple, small.

e FBFS is then defined as follows:

[l

.. i #j: max Xijl 1Xi.j]
FBFS(i,j) = - |Xi Xj
i=j:1

Having FBFS as a distance measure, we generated four
weighted graphs, using fragment lengths of 5, 10, 15 and
20 residues. Each vertex represents a population of PDB-
SELECT2S5 proteins in a given fold. Two vertices may be
connected by a weighted edge, with the weight determined
by the FBFS score.

IMPLEMENTATION

The Fragnostic web tool lets the user examine the relationship
between fold populations, based on the graph representation
outlined above. The user enters a fragment length, an FBFS
threshold level and a number of shared fragments threshold
level. The latter was entered to correct a positive bias which
may exist in the case of folds with small populations. Frag-
nostic then generates a graph. Each vertex is shown as a circle,
color-coded according to the SCOP class. The SCOP concise

classification scheme code (SCCS) is shown in the vertex.
SCCS is a four-position code assigned by SCOP to a family,
with the first position (a letter) denoting the class, the second
the fold, the third the superfamily and the fourth the family.
Positions 2—4 of the SCCS are numbers, e.g a.4.3.23. As each
vertex is composed of a population of proteins with a common
fold, only the first two positions of the SCCS are shown (a.4).
Placing the cursor over the vertex will show its fold’s SCOP-
assigned title. Two vertices are connected by an edge if the
FBFS score between the two connected vertices is higher than
the threshold provided by the user. Figure 1 shows a part of
such a graph. Clicking on a vertex will display a table showing
the SCOP domains from PDB-SELECT25 which belong to the
vertex’s fold. The table entry is linked to a 3D model of that
domain, viewed using the Rasmol program (7). The model is
displayed as a cartoon, and the regions which are covered by
fragments shared with other folds are colored. Colors range
from blue to red, the ‘hotter’ (redder in spectrum) the color, the
more fragments are shared in that region with other folds
(Figure 2). Using Rasmol—a simple yet powerful protein
visualization tool—the user can further analyze the protein.
The page is linked to the folds which are connected to
the current one and to their connecting edges (see below).
Clicking on an edge will produce a table of all the fragment
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Figure 2. Coagulation factor X, light chain (PDB: IFAX:L), which belongs to
the knottins SCOP fold. The non-white areas are composed of length-10 frag-
ments, shared with other folds.

alignments making up this edge. Whenever so annotated,
a table entry will have Gene Ontology (GO) (8) terms asso-
ciated with it, and/or Enzyme Commission (EC) classification
number. The GO terms were taken from the PDB to GO
mapping provided by The European Bioinformatics Institute
(EBI). There may be multiple mappings between the chains
and GO terms. This is because some protein chains have
multiple functions, participate in more than one metabolic
pathway, or are found in more than one cellular compartment.
Care was taken, however, not to enter two GO terms when one
clearly subsumes the other in an ‘is-a’ relationship. Thus if the
term ‘phosphodiesterase’ appears associated with a given
chain, ‘esterase’ will not be mentioned.

CONCLUSIONS

We present Fragnostic as novel method for walking through
protein structure space. Rather than replacing SCOP with
a new classification, it complements the existing classifica-
tion by showing connections between known SCOP folds.
Fragnostic is a powerful tool for revealing hidden inter-fold
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connections based on shared fragments. Fragnostic is also
suitable for confirming hypotheses of structural or functional
connections between proteins from different folds. In the
future, we aim to permit querying using any SCOP entry,
not only those in PDB-SELECT25. We are currently devel-
oping a fragment-to-structure matching method, so that the
fragments—or rather a clustered library thereof—can be used
as a structural motif library. Fragnostic was written using Zope
(zope.org) for web content management and GraphViz
(AT&T Laboratories) for displaying the graphs. The fragment
dataset and associated information were generated using
Biopython (biopython.org) and are maintained in a MySQL
(MySQL AB) database.
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