
A Novel Dictionary Based Computer Vision Method for
the Detection of Cell Nuclei
Jonas De Vylder1*, Jan Aelterman1, Trees Lepez2, Mado Vandewoestyne2, Koen Douterloigne1,

Dieter Deforce2, Wilfried Philips1

1 Department of Telecommunications and Information Processing, iMinds, Ghent University, Ghent, Belgium, 2 Laboratory for Pharmaceutical Biotechnology, Ghent

University, Ghent, Belgium

Abstract

Cell nuclei detection in fluorescent microscopic images is an important and time consuming task in a wide range of
biological applications. Blur, clutter, bleed through and partial occlusion of nuclei make individual nuclei detection a
challenging task for automated image analysis. This paper proposes a novel and robust detection method based on the
active contour framework. Improvement over conventional approaches is achieved by exploiting prior knowledge of the
nucleus shape in order to better detect individual nuclei. This prior knowledge is defined using a dictionary based approach
which can be formulated as the optimization of a convex energy function. The proposed method shows accurate detection
results for dense clusters of nuclei, for example, an F-measure (a measure for detection accuracy) of 0.96 for the detection of
cell nuclei in peripheral blood mononuclear cells, compared to an F-measure of 0.90 achieved by state-of-the-art nuclei
detection methods.
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Introduction

Cell nuclei are extensively studied objects in microscopic

biology. This is because they are easily visualized independent of

the type of cells, typically using a fluorescent staining, and contain

relevant biological information for a wide range of applications,

e.g. cell division in tumors, root growth in plants, embryonic

development, fetal microchimerism in autoimmune (thyroid)

diseases etc. [1–5]. In the case of fetal microchimerism in

autoimmune diseases, automatic detection of fetal peripheral

blood mononuclear cells (PBMCs) in the maternal circulation can

shed light on the potential role of fetal cells in these diseases [6]. It

is very labour-intensive to locate one or more fetal cells in a

population of millions of maternal cells. Staining of the male fetal

cells using Fluorescence in Situ Hybridization (FISH) with

subsequent 49,6-diamidino-2-phenylindole dihydrochloride

(DAPI) staining and automatic detection of all cell nuclei on a

slide, can facilitate the detection of fetal cells.

Due to the biological importance of cell nuclei, several

automated detection methods have been proposed in the past.

These methods can generally be categorized into two groups: edge

based and intensity based. The first group starts by detecting edges

and fits a specific shape model to them [7–10]. Both the use of

binary edge detectors and edge strength maps have been

proposed. The performance of these methods strongly depends

on the quality of the edge maps, which is not always sufficient to

detect individual nuclei in case of clustered nuclei. The second

group first segments any fluorescent staining from the background.

In contrast to isolated nuclei which can be detected using

connected component labeling, detection of an individual nucleus

in a cluster of touching nuclei requires an extra step. This is mainly

done by requiring the detected segments of the cell nuclei to have

a convex shape [3,11–13]. To overcome this problem, joint

segmentation of cell nuclei and cell wall or cytoplasm was

proposed, assuming each cell can only contain a single nucleus

[14,15]. However, this approach limits the application area since

multiple staining is necessary. Moreover, the methodology was

only validated for specific cell networks. A different approach is to

assign a confidence measure for each detected nucleus, thus only

analyzing ‘‘reliable’’ nuclei detections. This however has the risk of

rejecting specific subpopulations of cells or specific phenotypes [5].

Both approaches, edged based and intensity based, are non

optimal since the detection and recognition steps are treated

independently: the second step can only use the result of the first

step, instead of all available information, i.e. the complete image.

Thus, incorrectly segmented pixels or edges can have a big

influence on the final detection of individual nuclei. Because both

tasks can be mutually beneficial [16,17], we propose a novel

method which jointly optimizes the foreground, i.e. pixels of

interest, classification and the separation of segments into

individual nuclei. The decision of segmenting a pixel as

foreground is based both on intensity and on the likelihood that

the pixel is part of a nucleus. Such a joint optimization has been

proposed in [16,17], where individual circular objects are modeled

using Markov random fields. The approach shows good results for

circular objects of the same size, but analyzing objects with
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different sizes is non-trivial. Furthermore, their joint model is

optimized using meta-heuristics such as simulated annealing, so it

is dependent of the initialization of the optimization process. In

this work we propose a different model which also jointly optimizes

the detection of relevant pixels and the detection of individual

nuclei. The proposed method fits within the general active contour

framework, but with a novel shape prior specifically developed for

the detection of cell nuclei. We propose a shape regularization

term that exploits the regular shape of cell nuclei, penalizing

segments which strongly deviate from the expected shape. In this

work, we model a nucleus as a disk. This allows us to build a

dictionary consisting of binary images that correspond to the

segmentation result of a single nucleus with a predefined radius

and location, called atoms. Any segmentation result of an image

containing multiple nuclei, can be approximated linearly as a

superposition of atoms. We will use this approximation as a new

regularization term in the active contour framework. The

segmentation result is calculated by minimizing a convex energy

function, such that the active contour is invariant to initialization

[18,19]. The proposed joint convex optimization approach results

in more accurate nuclei detection, especially for realistic segmen-

tation problems, where cell nuclei can have different sizes.

Materials and Methods

0.1 Ethics Statement
This study was approved by the Ethics Committee of Ghent

University (B67020095877), Belgium, and written informed

consent was obtained from all participants.

0.2 Cell Culture and Transfection
The proposed method was tested on the detection of peripheral

blood mononuclear cells (PBMCs). PBMCs were isolated from a

healthy volunteer’s EDTA blood sample by density gradient

centrifugation on Ficoll-Paque Plus (GE Healthcare, Diegem,

Belgium) according to the manufacturer’s instructions. 300.000

PBMCs were cytospun on a Poly-L-lysine coated slide (DAKO) as

previously described [20]. The slides were air dried and fixated for

1 minute in 70% EtOH. After air-drying, the slides were mounted

with antifade Vectashield mounting solution (Vector Labs,

Burlingame, CA, USA) containing 49,6-diamidino-2-phenylindole

dihydrochloride (DAPI, 400 ng/ml, Sigma-Aldrich) to counter-

stain all nuclei on the slide. A coverslip was applied.

0.3 Image Acquisition
Image acquisition was carried out with the AxioVision

multichannel fluorescence module and the AxioCam MRm

camera (Carl Zeiss). Cell nuclei were visualized using Zeiss filter

set no. 49 (G 365 nm, FT 495, BP 445/50). Slides were scanned at

206 magnification using a Carl Zeiss short distance Plan-

Apochromat H objective [4]. Images were acquired and were

stored as tiff-files.

0.4 Image Analysis
0.4.1 Notations and Definitions. In this paper we will use

specific notations and definitions. We briefly summarize the

notations and symbols used in this work.

Let f (x) : V.½0,256� represent the image intensities, with

V~½0,m�|½0,n�, and m|n the dimension of the image. Let S be

the set of all functions of the form V.½0,1�, We will represent the

segmentation result as a function u(:)[S: A pixel x that

corresponds to a nucleus, will be represented by one, whereas

background pixels are represented by zero, i.e.

u(x)~
1 xrepresents a nucleus pixel

0 otherwise

�
ð1Þ

The details on how to calculate this segmentation result, u(:),
will be thoroughly described in the segmentation subsection.

Furthermore we will use the following gradient operator, inner

product and norm notations:

(+f )(x,y)~(F (xz1,y){F (x,y),F (x,yz1){F (x,y))

Sf (:),g(:)T~
X
x[V

f (x)g(x)

f (:)kk 0~
X
x[V

1{d0,f (x)

Df (:)D~
X
x[V

Df (x)D

f (:)kk 2~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
x[V

f (x)2
r

where di,j represents the Kronecker delta, which is equal to one if i

and j are equal and is equal to zero in all other cases.

0.4.2 Preprocessing. Automatic cell nuclei detection is

hampered by a number of factors such as non-uniform lighting,

blur, clutter, etc. In order to improve the results of our method, we

propose two preprocessing steps to minimize the influence of these

degradations. First, the image is normalized in order to remove

any differences in intensity:

fn(x)~
f (x)

max f (y)

y[J(x)
ð2Þ

where J(x) represents all pixels within a distance r of the pixel (x).
The chosen distance depends on the image resolution and on the

nuclei density. r should be chosen in such a way that this disk

contains at least one nucleus, since this nucleus’ intensity is used as

an estimator of the local light intensity.

Furthermore, a gamma correction is applied, i.e.

fpr(x)~fn(x)
3
2 ð3Þ

This gamma correction suppresses low intensity dyeing due to

cell apoptosis. Figure 1 shows an example of the preprocessing

step. As can be seen in Fig. 1.b, gamma correction alone results in

lower intensity in specific regions, e.g. the nuclei in the top of the

micrograph are darker than those near the center. The

combination of normalization and gamma correction results in

good contrast, bright nuclei, while suppressing dye coming from

dead cells (Fig. 1.c).

0.4.3 Segmentation. In [18] a segmentation method was

proposed where the segmentation result is calculated by minimiz-

ing the following energy function:

E½u(:)�~D+u(:)DzbSu(:),c(:)T ð4Þ

Dictionary Based Detection of Cell Nuclei
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With

c(x)~(mf {fpr(x))2{(mb{fpr(x))2 ð5Þ

where mf , mb are respectively the expected foreground and

background intensity and b is a weighting parameter used to tune

the influence of the data-fit term in relation to the total variation

regularization. Note that if mf and mb are constant, e.g. calculated

from a training data set, this energy is convex. This allows to

calculate a global optimizer using efficient optimization techniques

such as Split Bregman or primal dual optimization [21]. Chan et

al. proved that the solution ûu(:) is well-defined as the solution of a

convex energy function if ûu(:)[S, i.e. if the co-domain of ûu(:) is

equal to the convex region ½0,1�. This results in the following

optimization problem:

ûu(:)~ arg min
u(:)[S

D+u(:)DzbSu(:),c(:)T ð6Þ

Furthermore, this formulation relates to the popular and widely

used active contour without edges (ACWE) [18,22]. The steady

state of the gradient flow corresponding to the energy function in

eq. (4) coincides with the steady state of the gradient flow of the

original ACWE model, i.e. an optimum of this convex energy is

also an optimum of the original ACWE energy function. Note that

ûu(:) is not necessarily unique, i.e. there can exist different ûu(:), that

minimize the energy function in eq. (4). The function ûu(x) can

have any value between 0 and 1, thus the found active contour

does not have to represent a crisp segmentation. A binary

segmentation result can be obtained by thresholding ûu(x), i.e.

h(ûu(x))~
1 if ûu(x)wa

0 otherwise

�
ð7Þ

for some a[½0,1�. In [19,23] it is shown that h(ûu(x)) itself is also a

global minimizer for the energy in eq. (4) and by extension for the

energy function of the ACWE model.

The energy function in eq. (4) aims to remove noisy

segmentation pixels by regularizing the energy function using

total variation. This regularization is useful if pixels are incorrectly

classified, i.e. background pixels detected as foreground or vice

versa, due to noise in the image. In microscopic images however,

incorrectly detected nuclei are often caused by clutter in the

image, e.g. dead cells or bleed-through from other fluorescent

channels. This is not solved using total variation since these

incorrectly detected nuclei are natural objects, i.e. they have

smooth boundaries. Therefore, a number of shape based

regularization terms have been proposed [24–28]. However these

shape priors are limited to images with only a single object of

interest with a specific shape. We propose a regularization term

that exploits the regular shape of cell nuclei, penalizing segments

which strongly deviate from the expected shape, while not

constraining the number of nuclei.

In this work, a nucleus is modeled as a disk. For a given radius,

r, and location, y, we can calculate the ideal u, i.e. a binary image

where the pixels within a distance r of y are equal to one and all

other pixels are equal to zero:

d(x; y,r)~
1 if x{yk k2vr

0 otherwise

�

This is of course under the assumption that there is only one

nucleus in the image. We will refer to each of these possible

segmentation results as atoms. In most applications however the

image does contain multiple nuclei. Even the number of nuclei is

typically not known. Therefore we model the unknown segmen-

tation u(:) as a superposition of disks, i.e.

u(:)&
X

y

t(y)d(:; y,r) ð8Þ

where t(y) represents a coefficient which expresses a nucleus

centered at location y. Note that this representation expects a

predefined diameter of a cell nucleus. However the size of a

nucleus is generally not fixed, but can be considered to an interval

½a,b�. Therefore we can extend eq. (8) to approximate u(:) using a

dictionary of atoms corresponding to discrete range of nuclei sizes:

u(:)&
Xb

r~a

X
y

t(y; r)d(:; y,r) ð9Þ

with t(y; r) corresponding to the presence of a nucleus of size r at

location y. Note that this linear combination penalizes overlapping

nuclei, which is desirable since a pixel can only correspond to a

single nucleus. A good segmentation is one which consists of a

small number of atoms. This sparsity constraint can be used as a

new regularization term:

(ûu(:),̂tt(:; :))~ arg min
u(:)[S

t(:; :)[Se

X
r

t(:,r)k k0zbSu(:),c(:)T s:t: u(:)

&
X

r

X
y

t(y; r)d(:; y,r)

ð10Þ

with e the number of disc sizes considered, i.e. e~b{a. The

energy term minimized by u(:) is based on a l0 norm which comes

down to calculating the number of nuclei, i.e. the number of non-

zero elements in t(:; :). The l0 norm is non-convex, hampering

optimization. Fortunately the l0 norm can be approximated by the

l1 norm which is the closest convex norm to l0. In [29] it is shown

that this approximation of an l0 norm gives good results for the

application of compressed sensing. This new prior results in the

following active contour:

Figure 1. An example of the preprocessing steps. (A) the raw
image (B) the image with gamma correction applied, (C) The full
prerprocessing applied, i.e. normalization+gamma correction.
doi:10.1371/journal.pone.0054068.g001
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(ûu(:),̂tt(:; :))~ arg min
u(:)[S

t(:; :)[Se

X
r

t(:,r)j jzbSu(:),c(:)T s:t: u(:)

&
X

r

X
y

t(y; r)d(:; y,r)

ð11Þ

In order to optimize the constrained problem in eq. (11) the

problem is approximated by adding the constraint in the form of a

quadratic term, resulting in the following unconstrained optimi-

zation problem:

(ûu(:),̂tt(:; :))~ arg min
u(:)[S

t(:; :)[Se

X
r

t(:,r)j jzbSu(:),c(:)T

zc u(:){
X

r

X
y

t(y; r)d(:; y,r)

�����
�����

2

2

ð12Þ

Where c is a weighting parameter. Note that this only

approximates the constraint in eq. (9). Although there exists

efficient techniques to enforce this constraint exactly, e.g.

augmented Lagrangian or Bregman methods, we propose to use

the approximation in eq. (12) instead. This allows the active

contour to detect nuclei whose shape slightly deviates from the

circular model or to detect partially overlapping nuclei. Given the

convexity of eq. (12), this problem can be solved by iteratively

optimizing for t and u independently, i.e.

t(:; :)~ arg min
t(:;:)[Se

X
r

Dt(:; r)Dzc u(:){
X

r

X
y

t(y; r)d(:; y,r)

�����
�����

2

2

ð13Þ

ûu(:)~ arg min
u(:)[S

bSu(:),c(:)Tzc u(:){
X

r

X
y

t(y; r)d(:; y,r)

�����
�����

2

2

ð14Þ

The problem in eq. (13) can be solved using Newton’s method,

which iteratively updates t(x; r) using the following scheme:

t2kz1(x; r)~t2k(x; r){

1
c{2(u(x){

P
r

P
y

t2k(y; r)d(x; y,r))
P

z

d(z; x,r)

Sd(:; y,r),d(x; :,r)T
ð15Þ

where the subscript index represents the iteration step. The constraint that

t(x; r)[½0,1� can be approximated by adding a barrier function to eq.

(13). For this purpose we propose the use of a piecewise linear

barrier function [21]:

b(x)~

{1000x if xv0

1000x{1000 if xw1

0 otherwise

8><
>: ð16Þ

This barrier function has the benefit of penalizing values out of

the interval ½0,1�, while not giving preference to any specific value

inside the interval. The piecewise linear barrier function is prone

to overshooting using the Newton-Raphson method, i.e. if tk is

greater than 1, then tkz1 would be equal to {?, whereas if tk is

less than 0, it would result in z?. However given the specific

nature of this barrier function, with the minima corresponding to

the roots of the function, it is possible to minimize this by searching

for the roots using the Newton-Raphson optimization scheme.

This results in the following updating step:

t2kz2(x; r)~t2kz1(x; r){b’(t2kz1(x; r)) ð17Þ

with

b’(i)~

{i if iv0

i{1 if iw1

0 otherwise

8><
>: ð18Þ

The optimal u(:) in eq. (14) can be found by solving a set of

Euler-Lagrange equations. For an optimal u(:), the following

optimality condition should be satisfied:

u(:)~{2
b

c
c(:)z

X
r

X
y

t(y; r)d(:; y,r) ð19Þ

The solution of eq. (19) is unconstrained, i.e. u(x) does not have to

lie in the interval ½0,1�. However minimizing eq. (14) in x is

equivalent to minimizing a quadratic function. So if u(x)=[½0,1�
then the constrained optimum is either 0 or 1, since a quadratic

function is monotonic in an interval which does not contain its

extremum. So the constrained optimum is given by:

ûu(x)~max(min(u(x),1),0) ð20Þ

0.4.4 Detection. By adding a sparsity constraint on t(:; :), we

penalize representations which use more atoms than necessary.

The function t(:; :) can be used to detect the centroids of the cell

nuclei. However by using the l1 norm as an approximation of the

l0 norm it is not possible to get the nuclei centroids explicitly from

t(:; :), a special detection algorithm is required. A schematic

overview of the detection method is shown in Fig. 2. Since disks of

multiple sizes can add to the representation of a nucleus in the

segmentation result, we first detect the dominant radius for each

pixel. Each pixel has a number of corresponding atoms, each

representing a nucleus of different size. The radius corresponding

with the atom with the highest value for a specific pixel is

considered the dominant radius of that pixel, i.e. arg maxrt(x; r).
Since the most important information is the location of a cell

nucleus, a merging step is applied such that all t(x; :) weights

corresponding to the same pixel location are combined by

summing them together. This is done in parallel with the

calculation of the dominant radius. The merging step results in

a new image, tm(x)~
P

r t(x; r), where high intensities occur at

the centers of nuclei (shown in Fig. 3(d)). In order to get crisp

detections, the new image is converted to a binary image by

thresholding it (Fig. 3(e)). Due to small deviations in the shape of

cell nuclei, it is possible that a single nucleus corresponds to

multiple connected components in this binary image. Since these

components are located in each other’s vicinity, it is possible to

overcome this problem by applying a morphological closing

(Fig. 3(f)). False detections due to noise and clutter are removed by

merging the binary image with a mask, i.e. all pixels which are

zero in the mask are set to zero (Fig. 3(g)). The mask itself is

Dictionary Based Detection of Cell Nuclei
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calculated from the segmentation result ûu(:) (Fig. 3(b)). First large

clutter such as apoptotic cell nuclei, i.e. dead nuclei, are removed

from ûu(:), by applying a morphological opening, and then using

the inverse of this opened image as a mask on ûu(:) (Fig. 3(c)).

Next, a set of potential nuclei are detected by applying the

connected component algorithm on the binary image. Finally, for

each potential nucleus, i.e. connected component, a score is

calculated. This score corresponds to the mean intensity in the

preprocessed image of the pixels corresponding to the connected

component in the tm(:) image (Fig. 3(h)). The potential nucleus

with the strongest score, p, is removed from the potential list and is

added to the list of detections. Since nuclei can only touch each

other (they can not occupy the same space), all potential nuclei

within a distance of the dominant radius of p can be removed from

the list of potential nuclei. The steps of adding the strongest

potential nucleus to the list of detections and removing ‘‘too close’’

potential nuclei are repeated until the list of potential nuclei is

empty.

0.5 Validation metrics
In order to validate the proposed method we use a number of

validation metrics. For the validation of cell nuclei detection we

use the following three metrics:

N Root mean squared error (RMSE) is an error measure on the

count of cell nuclei: RMSE~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M

PM
i~1 (D(i){C(i))2

q
, with

D(:) the number of detected nuclei in the ith image of the data-

set, whereas C(:) represents the real number of nuclei in the ith

image of the data-set.

N Precision (P) is the ratio of the number of correct detected

nuclei (TP), over the total number of detected nuclei, i.e.

including false positives.

N Recall (R) is the ratio of the number of TP’s in an image, over

the total number of nuclei in the ground truth.

N the F-measure takes both false positives and false negatives into

account by combining precision and recall: F~2 precision:recall
precisionzrecall

.

Figure 2. The work flow of the detection algorithm.
doi:10.1371/journal.pone.0054068.g002

Figure 3. The different steps in the detection algorithm. (A) the
original image, (B) the segmentation result, (C) large clutter removal, (D)
the merged values for t, corresponding to the centroids of the disks
used for the reconstruction of the segmentation result, (E) a binarization
of (D), (F) show the morphological processing of (E), (G) is the masked
version of (F) with (C) used as mask, (H) represents the intensity of each
connected component by it’s score, i.e. a measure of likeliness that that
component corresponds to the centroid of a nucleus.
doi:10.1371/journal.pone.0054068.g003
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All three measures have a value near one for good detection

results and a value near zero for bad detection results. A detected

nucleus is considered a true positive if there is a ground truth

centroid within a range of 3.2 mm. A ground truth nucleus can

only be matched with a single detection, if more nuclei detections

are within the range of 3.2 mm only the closest detection is

considered as correctly detected.

For the validations of the segmentation, the Dice coefficient is

used. Consider g(:), a binary image corresponding to the ground

truth, i.e. all foreground pixels are equal to one, whereas all

background pixels are equal zero. Then the Dice coefficient

between the binarized segmentation result, h(ûu(:)), and the ground

truth, g(:), is defined as:

d(h(ûu(:)),g(:))~2
vh(ûu(:)),g(:)w

Eb(ûu(:))EzEg(:)E
ð21Þ

If h(ûu(:)) and g(:) are equal, the Dice coefficient is equal to one.

Note that the Dice coefficient is calculated between full images and

not for each nucleus independently.

Results and Discussion

As a first validation of the proposed method, a synthetic data set

is analyzed [30]. These synthetic images were proposed as a

common benchmark for nuclei segmentation and detection. The

synthetic images show the same intrinsic properties as real

microscopic images of cell nuclei: blurred nuclei, non uniform

intensity within in a nucleus, touching nuclei, non uniform

background, etc. In Fig. 4(a) an example of such a synthetic raw

image is shown. For these experiments, the parameters for eq. are

empirically chosen: b~5, c~1, with a disk diameter equal to 20

pixels. The expected intensities needed in eq. are 11 estimated

based on the result of a simple Otsu thresholding [31,32]. Fig. 4(b)

shows the detection result using an edge based detection method

[10]. The result of cellProfiler, which is a very popular example of

an intensity based method [11], is shown in Fig. 4(c), whereas

Fig. 4(d) depicts nuclei detection using the proposed method.

Figure 4. An example of cell nuclei detection using different
methods on a benchmark image. (A) the original raw micrograph,
(B)–(D) show the respective detection results superimposed on the
preprocessed images. (B) edgeProp, (C) cellProfiler, (D) the proposed
method. Correctly detected nuclei are shown with a green marker,
errors are marked with an arrow: false detections with a red marker and
cell nuclei which were not detected by the method are shown using a
yellow marker. While edgeProp is able to separate clusters of nuclei,
they are limited by the strength of the edges, resulting in several nuclei
which are not detected.
doi:10.1371/journal.pone.0054068.g004

Table 1. A comparison of different cell nuclei detection and
segmentation methods on the BBBC004v1 data set from the
Broad Bioimage Benchmark CollectionA comparison of
different cell nuclei detection and segmentation methods on
the BBBC004v1 data set from the Broad Bioimage Benchmark
Collection.

RMSE s P R F Dice

EdgeProp 1.75 1.78 0.9973 0.9968 0.9971 0.941

CellProfiler 3.79 2.16 0.9914 0.9810 0.9862 0.939

CellC 16.24 3.63 0.9445 0.9945 0.9689 0.929

Proposed 0.22 0.22 0.9998 1.0000 0.9999 0.981

doi:10.1371/journal.pone.0054068.t001

Figure 5. Example of cell nuclei detection using different
methods on an image of peripheral blood mononuclear cells.
(A) the original raw micrograph, (B)–(D) show the respective detection
results superimposed on the preprocessed images. (B) edgeProp, (C)
cellProfiler, (D) the proposed method. Correctly detected nuclei are
shown with a green marker, errors are marked with an arrow: false
detections with a red marker and cell nuclei which were not detected
by the method are shown using a yellow marker. While edgeProp is
able to separate clusters of nuclei, they are limited by the strength of
the edges, resulting in several nuclei which are not detected.
doi:10.1371/journal.pone.0054068.g005

Table 2. ground truth statistics of the different data sets.

data set 1 data set 2 dataset3

# nuclei 3178 3197 582

# clusters 1025 1861 436

doi:10.1371/journal.pone.0054068.t002
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Correctly detected nuclei are shown with a green marker, errors

are marked with an arrow: false detections with a red marker and

cell nuclei which were not detected by the method are shown using

a yellow marker. While edgeProp is able to separate clusters of

nuclei, the method is limited by the strength of the edges, resulting

in several nuclei which are not detected. CellProfiler, an intensity

based method, is able to detect all nuclei clusters, but is not always

able to separate them into individual nuclei. This can be seen by

the occurrence of a red marker, a false detection, in the vicinity of

multiple yellow markers, i.e. undetected nuclei. Clearly, the

proposed method is more robust for detecting clusters of nuclei,

while remaining able to detect all nuclei, even those with weak

edges.

To quantitatively validate the result, a data set of 20 images,

each containing 300 nuclei, is analyzed. The results are shown in

Table 1. The first row represents the results of an edge based

method [10], whereas the next two rows correspond with two

intensity based images [11,12]. The proposed method, presented

in the last row, shows the best results for cell detection metrics (first

5 columns) as well as for the Dice coefficient. Note that lacking

ground truth for individual nuclei, the Dice coefficient measures

the similarity of all segmented nuclei compared with the ground

truth for all nuclei instead of for individual nuclei. While state-of-

the-art methods perform reasonably for the nuclei count and

detection part, the Dice coefficient shows still room for improve-

ment. These good results are also due to the nature of this data-set,

which nicely models microscopic image degradations, but where

the objects are not hampered by biological clutter, such as dead

cells. A second validation is done using real microscopic images of

nuclei from peripheral blood mononuclear cells (PBMCs).

PBMC’s consist of a number of different cell types, each with

different nuclei morphologies: 75% lymphocytes (T cells, B cells,

NK cells), monocytes, macrophages (rarely), basophils, dendritic

cells, neutrophils (horse-shaped nucleus), eosinophils,…) Ground

truth for these images is generated by manually annotating the

data sets. In Fig. 5 an example of nuclei detection in such a real

microscopic image is shown. Fig. 5.a shows the ground truth

detection, i.e. the manual annotations. Fig. 5.b and Fig. 5.c

correspond to state-of-the-art detection methods [10,11]. Note

that both methods erroneously detect nuclei at places where there

is some smeared staining. When a nucleus ruptures it releases its

staining, which results in bright smears. CellProfiler does not only

suffer from false detections, but also merges touching nuclei. The

proposed method is more robust against dye smears, while still

being able to detect touching nuclei, as can be seen in Fig. 5.d.

Three different data sets were analyzed, each data set with a

different density of cell nuclei (Table 2). The first data set

contained approximately 30% of touching nuclei, the second data

set with almost 60% of the nuclei touching each other and finally a

dense data set with 75% of clustered nuclei. For these experiments,

the parameters for eq. are empirically chosen: b~1, c~ 1
25

, with a

diameter in the range of [7.04 mm–12.16 mm]. The expected

intensities needed in eq. are 11 estimated based on the result of a

simple Otsu thresholding [31,32]. State-of-the-art methods use the

same prior knowledge, i.e. the range of diameters of desirable

segments. The actual configuration files for CellC, EdgeProp and

CellProfiler can be downloaded at http://telin.ugent.be/jdvylder/

nuclei_dictionary/index.htm. The state-of-the-art methods signif-

icantly decrease in accuracy of the detections if the micrographs

are more densely packed with cell nuclei (Table 3). From the state-

of-the-art techniques the edge based approach is generally more

robust against touching nuclei, but still performs significantly less

than the proposed method. The method presented in this work not

only performs best for relatively sparse spaced nuclei, i.e. 30% of

touching nuclei, but also for densely clustered nuclei. The

fluorescent dye also remains more compact in dense clusters of

nuclei, since there is less free space to dissolve the dye.

In a third experiment we test the robustness against low

exposure times. The influence of the capturing time on the quality

of the image is illustrated by an example in Fig. 6. For visual

inspection by an expert, an exposure time of 200 ms is advisable.

This results in good contrast and low noise images. However for

automatic detection lower exposure times also give adequate

results, resulting in faster scanning times, lower influence of

phototoxicity and less risk on photobleaching [2]. The ideal

Table 3. Comparison of the detection results from different state-of-the-art methods for nuclei of peripheral blood mononuclear
cells.

data set 1 data set 2 data set 3

method P R F P R F P R F

EdgeProp 0.823 0.895 0.858 0.774 0.847 0.809 0.649 0.801 0.730

CellC 0.956 0.824 0.885 0.880 0.694 0.776 0.717 0.488 0.581

CellProfiler 0.855 0.953 0.902 0.794 0.887 0.838 0.500 0.605 0.547

Proposed 0.948 0.969 0.959 0.905 0.969 0.936 0.801 0.950 0.870

doi:10.1371/journal.pone.0054068.t003

Figure 6. An example of the influence of capturing time on a
microscopic image. These images are captured using respectively 5,
10, 20, 30, 40, 50, 75, 100, 200, 300, 400 and 500 ms.
doi:10.1371/journal.pone.0054068.g006
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exposure time depends on the required accuracy and on the

application, e.g. in vivo experiments will require lower scanning

times due to phototoxicity. State-of-the-art methods clearly lack

robustness against low exposure times (Table 4), while the

proposed method shows accurate detection results, even for low

exposure times. For an exposure time of 30 ms, 15% of the

200 ms used for human operators, the proposed method still

results in an F-measure of 0.861. All processing work was

performed in Matlab R20007b1 on an Intel i7 Q720 1.6 GHz

CPU processor with 4 GB memory. It took an average of 26.944 s

for the analysis of a single image from the BBBC004v1 data set

from the Broad Bioimage Benchmark Collection, i.e. for the

analysis of an image of 950|950 pixels. While this method is

computationally more demanding than state-of-the-art methods

(cellC, cellprofiler and edgeProp require respectively 4.33 s, 5.80 s

and 9.78 s)), the difference is not sufficient to warrant exclusion

from practical use. Furthermore the analysis of a data set can be

offloaded to a dedicated server. By applying such a pipeline

architecture, the bottleneck from the image processing work flow is

moved from the acquisition, using expensive microscopes, to the

analysis on an inexpensive computer.

All data used in these experiments is publicly available at

http://telin.ugent.be/jdvylder/nuclei_dictionary/index.htm.

Conclusion

This paper proposed a novel computer vision technique to

detect and segment cell nuclei in fluorescent microscopic images.

The method fits within the active contour framework and has a

convex energy function. The method uses prior knowledge about

the shape of cell nuclei, which is done by representing the

segmentation result using a dictionary. The proposed method was

tested both on a benchmark data set and on real microscopic data

sets of nuclei belonging to peripheral blood mononuclear cells,

showing generic value for the detection of nuclei with an

approximately circular shape. The method results in accurate

nuclei detection and outperforms state-of-the-art methods, both

for precision, recall, F-measure and Dice coefficient. The results

show that the method is highly robust against dense cell nuclei

clusters and can be used for noisy images captured using low

exposure times.
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