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Abstract: Nanotechnology is a booming avenue in science and has a multitude of applications
in health, agriculture, and industry. It exploits materials’ size at nanoscale (1–100 nm) known as
nanoparticles (NPs). These nanoscale constituents are made via chemical, physical, and biological
methods; however, the biological approach offers multiple benefits over the other counterparts. This
method utilizes various biological resources for synthesis (microbes, plants, and others), which act
as a reducing and capping agent. Among these sources, microbes provide an excellent platform for
synthesis and have been recently exploited in the synthesis of various metallic NPs, in particular iron.
Owing to their biocompatible nature, superparamagnetic properties, small size efficient, permeability,
and absorption, they have become an integral part of biomedical research. This review focuses on
microbial synthesis of iron oxide nanoparticles using various species of bacteria, fungi, and yeast.
Possible applications and challenges that need to be addressed have also been discussed in the review;
in particular, their antimicrobial and anticancer potentials are discussed in detail along with possible
mechanisms. Moreover, some other possible biomedical applications are also highlighted. Although
iron oxide nanoparticles have revolutionized biomedical research, issues such as cytotoxicity and
biodegradability are still a major bottleneck in the commercialization of these nanoparticle-based
products. Addressing these issues should be the topmost priority so that the biomedical industry can
reap maximum benefit from iron oxide nanoparticle-based products.

Keywords: green synthesis; nanoparticles; iron oxide; antimicrobial; anticancer

1. Introduction

Nanotechnology has revolutionized every field of science and technology and has a
multitude of applications [1,2]. In the past, nanotechnology has seen exponential growth
with numerous practical applications in health, electronics, cosmetics, and agriculture [3].
In the biomedical field, it has been utilized in diagnostics and treatment of various dis-
orders [4]. The core building blocks of nanotechnology are nanoparticles (NPs). These
nanoscale entities range in size from 1–100 nm [5,6]. In contrast to their bulk counter-
parts, NPs possess unique physiochemical, electrical, magnetic, and thermal properties [7].
Among other metallic NPs, iron NPs (IONPs) have been used extensively in biomedical
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applications owing to their small size, superparamagnetic properties, and lower biocompat-
ibility. It has also been used in bioprocessing, targeted delivery, imaging, tissue engineering,
and disease management [8–10]. In particular, the antimicrobial, anti-larvicidal, and antiox-
idant therapies are the most notable ones [11].

IONPs are mostly produced via physical and chemical methods [12]. However, these
approaches are expensive, laborious, and are not safe for any biomedical purposes [12–14].
In order to find a viable approach, scientists used a more sophisticated method: green
synthesis. This method offers much better alternatives which are more efficient, cost
effective, ecofriendly, and safe. This technique utilizes biological resources such as microbial
cells, algae, fungi, and plants [15]. It not only reduces the salt, but also aids in improving
their stability and morphology, and reducing toxicity [13].

To date, various biological resources have been exploited in the fabrication of IONPs.
However, microbial synthesis of IONPs has proven to be an efficient approach compared
to others. Microorganisms can efficiently convert iron ions into IONPs using a variety of
secondary metabolites and enzymes [16]. The green derived IONPs are safer, ecofriendly,
and exhibit excellent biological potential [9]. Green derived IONPs have been used against
various disorders including cancer, microbial infections, and antioxidant therapies [17,18].
Moreover, they have also shown excellent catalytic and imaging potentials [9,19]. This
review focuses on microbial mediated IONPs using various species of bacteria, fungus, and
yeast. Moreover, their biomedical applications have been discussed in detail, especially
regarding cancer and antimicrobial therapies. Furthermore, possible directions and limita-
tions are also highlighted. This review will provide a cogent insight for the researchers in
nano-biotechnology.

2. Bacterial Mediated Synthesis

Bacterial mediated synthesis has emerged as a sustainable approach for the green
synthesis of variety of NPs due to its diversity, adaptability to extreme conditions, and
ecofriendly nature [20]. Bacteria have the ability to synthesize NPs both intracellularly
and extracellularly, depending upon the bacterial strain used [21]. Table 1 provides a list
of bacteria with the ability to produce IONPs using intracellular or extracellular mecha-
nisms. A number of researchers have utilized bacteria as nano-factories for IONP synthesis.
Magnetic IONPs were synthesized extra-cellularly using Bacillus cereus strain HMH1. As a
result, highly stable spherical shaped NPs with an average size of 29.3 nm were produced.
Bacterial secondary metabolites containing carboxyl groups with primary amines were
found to be responsible for IONPs biosynthesis. The formulated polysaccharide coated
IONPs mediated by Staphylococcus warneri have also been reported [22,23]. The resulting
NPs were spherical in shape with an average diameter of 34 nm. The synthesized NPs
exhibited high biocompatibility and could be an excellent tool for targeted therapies. Cy-
toplasmic extract of Lactobacillus casei have also been employed for the biosynthesis of
spherical IONPs with an average size of 15 nm. [22]. Extracellular biosynthesis of IONPs
was reported by Sundaram et al. (2012) using Bacillus subtilis extract [24]. The resulting
IONPs were spherical shaped with an average size of 60 to 80 nm. The functional groups
responsible for the reduction and capping of the said IONPs included Hydroxyl, alkyl,
and carboxylic groups that caused the reduction of bulk salt into Fe2O3 NPs. Rajeswaran
et al. (2020) used Streptomyces sp. (SRT12) for the synthesis of quasi-spherical IONPs with
an average size of 65.0 to 86.7 nm. The resulting NPs showed potent antioxidant and
bactericidal activity [17]. Proteus vulgaris (ATCC-29905) mediated IONPs also proved to be
excellent anticancer and antimicrobial agents [18].
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Table 1. Bacterial mediated Iron nanoparticles.

S.no Species Location of
Synthesis Characterization Functional Group

Involved in Reduction Shape Size (nm) Ref

1 Actinobacter sp. Extracellular TEM, XRD,
and FTIR Fe–O bond Crystal 50 [25]

2 Shewanella
oneidensis NR TEM, XRD,

and AFM NR
Pseudo-

hexagonal
shape

11, 30, 99 [11]

3 Magnetospirillum
gryphiswaldense Extracellular DLS, TEM,

SAXS, and FTIR NR Polydispersed 25–55 [26]

4 Magnetotactic
bacteria Intracellular TEM NR Spherical 25–50 [27]

5 Paenibacillus
polymyxa NR TEM, FTIR, and

UV-Vis
O–H, C–H, CO2NH3,
C=O, C=C, and N–H Spherical 26.65 [28]

6 Geobacter
sulfurreducens Extracellular PXRD and TEM NR NR 10–50 [29]

7 Klebsiella Oxytoca NR —- NR NR 2–5 [30]

8 Lactobacillus
Fermentum Intracellular XRD and TEM NR Spherical 10–15 [31]

9 Gluconacetobacter
xylinus Intracellular SEM NR NR 50 [16]

10 Proteus mirabilis NR
XRD, EDX, TEM,

UV-Vis, and
Zeta sizer

NR Spherical 1.44–1.92 [32]

11
Escherichia coli Extracellular

FESEM, EDX,
TEM, and

UV-Vis
NR Spherical 23 [33]

Pseudomonas
aeruginosa Extracellular

FESEM, EDX,
TEM, and

UV-Vis
NR Spherical 23 [33]

12 Desulfotomacculum
acetoxidans NR SEM-EDS

and XRD NR NR 21 [34]

13 Pseudomonas
stutzeri NR

XRD,
FTIRUV-Vis,

SEM, and TEM

O–H, C–H, Fe–O, C=C,
and N–H NR 10–20 [35]

14 Desulfovibrio NR TEM, XRD, and
FTIR NR NR 19 [34]

15

Bacillus subtilis Extracellular
FE-SEM, TEM,

XRD, FTIR, DLS,
and VSM

O–H, C–H, Fe–O, C=C,
and N–H Rhombohedral 37–97 [36]

Bacillus pasteurii NR
FE-SEM, TEM,

XRD, FTIR, DLS,
and VSM

O–H, C–H, Fe–O,
C=C, N–H Rhombohedral 37–97 [36]

Bacillus
licheniformis NR

FE-SEM, TEM,
XRD, FTIR, DLS,

and VSM

O–H, C–H, Fe–O, C=C,
and N–H Rhombohedral 37–97 [36]

16 Leptothrix
ochracea Extracellular SEM, EDX, and

XRD NR hollow tube 100 [37]

17 Caulobacter
crescentus NR FE-SEM, XRD,

AFM, and EDAX NR Spherical 50 [38]

18 Geobacterspecie NR
XRD, SEM-EDX,
TEM-EDX, and

ICP-AES
NR NR 50–60 [39]

19 Streptococcus suis NR EXAFS and XRD NR NR —- [40]

20 Magnetospirillum
gryphiswaldense Extracellular TEM NR NR —- [41]

21 Thiobacillus
thioparus NR SDS PAGE Gel NR NR —- [42]

22 Alcaligenes
faecalis Extracellular SEM, EDX,

and FTIR HO–NH3 NR [43]
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A number of researchers have conducted similar studies which have been summa-
rized in Table 1. Difference in synthesis factors (pH, temperature, and species difference)
significantly affects the characteristics (size and shape) of IONPs. If the synthesis route
is accurately sustained and elucidated, it will improve the synthesis yield, and better
morphologies and sizes will be obtained which could be scaled for commercial scale.

3. Fungus Mediated Synthesis

Similar to bacteria, myogenic synthesis has also gained a lot of attention due to its
biocompatibility, low toxicity, comparatively economic nature, effortless synthesis, and
eco-friendly protocols. Mycogenic synthesis of IONPs may be either extracellular or
intracellular (Table 2), depending upon the type of microbial species used [44]. Aspergillus
flavus has been used for the extracellular synthesis of spherical IONPs with an average
size of 28–33 nm. Different functional groups such as alkyl, carboxylic acid, hydroxyl,
and amide were responsible for the reduction and capping of Aspergillus flavus mediated
IONPs [45]. Baskar et al. (2017) synthesized IONPs ranging in size from 40–100 nm using
Aspergillus terreus. The resulting NPs showed remarkable anti-cancer potency, suggesting
that IONPs can be employed in the future as a potential anticancer drug [46]. Trichoderma
asperellum, Phialemoniopsis ocularis, and Fusarium incarnatum have also been reported for
the biogenic synthesis of IONPs [47]. Aspergillus niger has been reported for the synthesis
of magnetite IONPs. Synthesized NPs were characterized using XRD and SEM, which
revealed the production of spherical shaped IONPs with average size of 15 to 18 nm. The
biogenic IONPs showed excellent hyperthermia phenomena in cancer [44]. Adeleye et al.
(2020) reported the use of Rhizopus stolonifer for the synthesis of IONPs. The NPs were
stabilized by secondary metabolites containing a variety of functional groups such as thiol,
carboxylic acid, hydroxyl, and alkyl groups [48]. Endophytic fungi Penicillium oxalicum has
also been used for the synthesis of spherical IONPs with an ability to effectively catalyze
degradation of methylene blue dye [19]. A detailed account of myogenic IONPs, their
characterization, and potential applications has been provided in Table 2.

From previous studies, it has been shown that fungus could be an excellent candidate
for synthesis of IONPs as compared to other biological sources. It has better yield, more
complex proteins, and metabolites which can reduce and stabilize metal salts for longer
periods of time. However, more detailed studies are needed to decipher the synthesis
process in detail and reaction parameters should also be evaluated to achieve better yield
and stability.

In addition, yeast is among some of the valuable species for the mass production
of different kinds of nanoparticles. Saccharomyces cerevisiae and Cryptococcus humicola
have been reported for the synthesis of magneto-sensitive IONPs. For the synthesis, the
aforementioned species were incubated on laboratory temperature (22–25 ◦C) followed by
the addition of precursor salt. The resulting mixture was then observed under magnetic
field to check for the formulation of IONPs [49]. Candida bombicola has also been used for the
synthesis of sophorolipids-functionalized IONPs. The synthesized NPs were characterized
using TEM, FTIR, and XRD. The TEM results revealed crystalline IONPs with an average
size of 8.5 nm and 4.5 nm. FTIR results indicated the presence of a carboxylic functional
group [50]. Though very little has been revealed regarding the biosynthesis of IONPs from
yeast to date, considering their rich metabolomic and proteomic profile, further studies
should be directed to evaluate their potential and biosynthesis mechanism. Many other
studies have also been conducted on the biogenic IONPs, as shown in Table 2.
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Table 2. Fungus/yeast mediated iron nanoparticles.

S.no Species Location of
Synthesis Characterization Functional Group Shape Size (nm) Ref.

1 Alternaria alternata Extracellular SEM, TEM, and
EDX NR Cubic shape 3–9 [4]

2

Pochonia chlamydosporium
Both

Extracellular and
Intracellular

TEM and FTIR NR NR 20–40 [10]

Aspergillus fumigatus
Both

Extracellular
and Intracellular

TEM and FTR NR NR 20–40 [10]

3
Fusarium Oxysporum Extracellular TEM and FTIR NR Spherical 20–40 [44]

Actinomycetes specie Extracellular TEM and FTR NR Spherical 20–40 [44]

4 Aspergillus oryzae NR TEM and FTIR NR —- 10 and 24.6 [51]

5 Pochonia chlamydosporium Intracellular TEM and FTR NR Spherical 4–80 [10]

6 Pleurotus specie Intracellular TEM and FTIR OH, NH2, and COOH NR —- [52]

7
Fusarium oxysporum Extracellular TEM and FTR Amide I and II Cube 10–40 [53]

Verticillium specie Extracellular TEM and FTIR Amide I and II Cube 10–40 [53]

10 Aspergillus specie Extracellular
TEM, Atomic

Absorption Spec-
trophotometry

NR NR 50–20 [19]

11 Aspergillus japonicus Extracellular XRD, SEM, and
EDS NR Cubic 60–70 [54]

12 Neurospora crassa NR SEM, XRD, EDX,
and FTIR OH, C–H, and Fe–O Coralline

appearance, 50 [55]

13 Trichoderma specie UV-Vis and FTIR C–H, C=O, C≡N,
C=H, and OH NR —- [56]

Yeast

14 Cryptococcus humicola NR TEM and X-rays NR Spherical 8–9 [49]

15 Candida bombicola Extracellular TEM, FTIR,
and XRD COOH 8.5–4.5 [50]

4. Antimicrobial Potential of IONPs

Over the last few years, the emergence of microbial infections has increased dramat-
ically. The rise of multidrug-resistant bacteria (MDR) is further worsening the situation
and has become a global health challenge [6]. Recently, nanotechnology-based therapies
have been exploited in disease diagnostics and formulations of novel therapeutic drugs
against numerous diseases [3,57,58]. Among other NPs, green synthesized IONPs have
also been exploited against various pathogenic strains of bacteria [4]. Due to their biocom-
patibility, safety, and ecofriendly nature, these nanoscale materials have attracted great
interest as a novel antimicrobial agent and have been tested against a wide range of in-
fectious pathogens [5,7,59] (Table 3). The antimicrobial potential of these NPs have not
been clearly depicted; however, it is suggested that they kill microbes in the same way
as their chemical counters [8]. The added advantage in the case of biosynthesized NPs,
however, is the addition of capping agents. As most of the capping agents themselves
possess antimicrobial potency, the ultimate antimicrobial potential of resulting NPs can be
improved. Mostly, NPs kill microbial cells via diverse mechanisms including membrane
destruction, organelles damage, biomolecular distortion, and by interfering with nucleic
acid or protein biosynthesis in bacterial cells [3,9,57,58].

Bacterial cells are mostly killed via production of superoxide radicals (O2−), hydroxyl
radicals (−OH), hydrogen peroxide (H2O2), and singlet oxygen (O2), collectively known
as reactive oxygen species (ROS). ROS cause severe damage to nucleic acids and proteins
in the microbial cell [10]. NPs interact with membrane proteins (thiol groups) and cause
oxidative stress which results in protein denaturation and membrane impermeability. All
of this eventually leads to microbial death [5]. Besides membrane disruption, it can also
distort structural integrity and cellular architecture [8]. The antibacterial potential of
IONPs is elucidated in Figure 1. The biogenic IONPs have also shown great potential to
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kill both Gram-negative and Gram-positive bacteria, but due to the complex structure of
Gram-negative bacteria, it is more effective against Gram-positive bacterial strains [9,11].

These nanoantibiotics have a wide range of advantages over the traditional ones,
such as they are less susceptible to microbial resistance; they may be functionalized to
numerous preferred target sites; and the possibility of stimulating them with other sources
such as pH, heat, light, and magnetic field [6,59]. The biogenic NPs have also shown
remarkable antimicrobial potential against a wide range of microbial species and can
combat over the rising threat of MDR [59]. In particular, when used along with other
conjugates, they inhibited the biofilm formation and showed potent biocidal potential [14].
Despite the growing knowledge on antimicrobial activity against MDR and their strong
antimicrobial potential, more studies are required to address their toxicity and elucidate
their antimicrobial mechanism in in vivo models. Furthermore, in order to achieve optimal
antimicrobial activity, the synthesis process should be optimized to avoid the size and
morphological variability.

Table 3. Microbial species tested against various microbes mediated IONP.

S.no Species Inhibition Method Activity Against Ref.

1 Proteus vulgaris Disc
Diffusion method

Salmonella enterica,
Escherichia coli, Vibrio cholera, Salmonella typhi,

and Staphylococcus epidermidis
[18]

2 Streptomyces
(SRT12)

Disc
Diffusion method

Bacillus subtilis, Staphylococcus aureus,
Klebsiella pneumoniae, Shigella flexneri,

and Escherichia coli.
[17]

3 Proteus mirabilis Well-
diffusion method

E. coli, Salmonella typhi,
P. aeruginosa, Clostridium perfringens,

Aspergillus Brasiliensis, and Candida Albicans
[32]

4 Alternaria alternata Well-
diffusion method Bacillus subtilis [4]

5 Fusarium
oxysporum

Disc
diffusion method

Staphylococcusaureus, Klebsiella pneumoniae,
Proteus vulgaris, Pseudomonas aeruginosa, and

Escherichia coli
[24]

6 Aspergillus flavus Diffusion
agar technique

Staphylococcus aureus, Escherichia coli, Candida
albicans, and Aspergillus Fumigatus [45]

7 NPs-penicillin G
conjugates

Disc
Diffusion method Staphylococcus aureus [60]
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Figure 1. Antibacterial potential of iron nanoparticles (INPs). (1) Cell wall destruction via inter-
fering the normal homeostasis; (2) Cell membrane damage is caused by disorientation of the lipid
bilayer via ROS production; (3) Ion channel misconfiguration occurs when transporter proteins are
damaged; (4) Enzyme physiology is disrupted via inhibition of their catalytic domains; (5) Nucleic
acid is damaged leading to fragmentation of DNA and RNA; (6) Biomolecules disruption occurs, in
particular, in proteins and NPs; (7) Proteins denaturation via ROS; and (8) Organelles damage, in
particular, mesomes.

5. Anticancer Activity

Cancer is the second leading cause of deaths after cardiovascular diseases [6]. To date,
no proper treatment is available for cancer; however, the quest to find novel anticancer
agents is continuous [57]. Recently, nano-frontier has been exploited in various disease
management. Among other NPs, iron has been exploited the most in diagnostics, treatment,
or formulation of cancer drugs [58]. These therapeutic properties are attributed to their
strong stability, biocompatibility, and specificity against diverse cancer cells [8,31,59]. Addi-
tionally, harnessing their magnetic hyperthermia potential can be used to kill cancerous
cells selectively [11]. In the past, IONPs have been used in treatment of various cancers
such as breast cancer, glioblastoma cancer, liver cancer (Hepatoma H22 cells), leukemia
promyelocytic (HL60 cells), cellosaurus cell line (MOLT-4 cell), and prostate cancer [17].
In all treatments, IONPs exhibited strong cytotoxic potential against the aforementioned
cancer cell lines. Microbe-mediated IONPs escalate oxidative stress and kill the cells by im-
peding their cell division and distorting macromolecules framework which ultimately leads
to cell death via activating apoptosis [17,18,22,23,46]. The anticancer potential of IONPs is
depicted in Figure 2. When mixed with other anticancer drugs, it significantly accelerated
the antitumor potential [3]. Considering their anticancer potential, these nanoparticles can
be tested in in vivo models to determine their effectiveness; however, their toxicity must be
taken into account when it comes to humans.
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Figure 2. Anticancer potential of microbes mediated Nanoparticles. (1), (2), (5), and (6) Iron nanopar-
ticles interfere with organelles and enzymes functioning, particularly in mitochondria, endoplasmic
reticulum, and Golgi bodies via reactive oxygen species (ROS) production and induces apoptosis.
(3) Ion channel blockage leads to death of cancerous cells. (4) INPs kills cancerous cells by breaking
nucleic acids, particularly in DNA. (8) Membrane polarity is disturbed.

6. Other Potential Applications

Beside the antimicrobial and anticancer potential of IONPs, they have also been
exploited in drug delivery, antioxidant therapies, and catalysis [17,27]. For instance, they
have been used in the degradation of methyl violet, chlorinated pollutants, and methylene
blue dyes [35,48]. However, the current knowledge regarding their catalytic mechanism
is miniscule, which needs to be addressed in order to employ them as a catalytic agent
in remediation process. In agriculture practices, microbial mediated IONPs have been
used on a test basis and have shown promising results as compared to chemical peers [28].
With such tremendous potential, they are believed to have a promising future in farming
and could be used in the fabrication of novel fertilizers, bio-control agents, and advanced
sensing technologies. However, certain limitations (Cytotoxicity and Eutrophication) need
to be addressed before translating this technology into fields.

7. Conclusions

Considering the biocompatibility, safety, and minimal toxicity of green synthesized
IONPs, they have been exploited in diagnosis, management, and treatment of various
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diseases. The most notable application in the medical field is their antimicrobial potential,
which is attributed to their smaller size, large surface area, and biocidal potential. To
date, a clear picture of the antimicrobial mechanism of action has not been elucidated.
The antimicrobial mechanism of green synthesized IONPs is believed to be associated
with reactive oxygen species (ROS) production, which can interfere with normal cellular
metabolism and hemostasis across bacterial walls, shutting down organelles’ membranes
and destroying membranes and nuclear materials. Moreover, green synthesized IONPs
have also shown significant antimicrobial action against MDRs, which promises to provide
leverage against antimicrobial resistance in the near future. With the currently limited
literature, further studies are required to evaluate their in vivo efficacy and elucidate their
antimicrobial potential in detail. Green synthesized IONPs have also shown excellent
anti-cancer potential in many in vitro based studies. Green synthesized IONPs have a
unique ability to induce apoptosis in cancer cells selectively via destruction of membranes,
fragmenting the nuclear materials or hampering the enzyme and organelles functioning.
However, little has been explored regarding their anticancer potential which needs to be
studied in detail in both in vitro and in vivo experiments. Green synthesized IONPs have
also been used in diagnostics and treatment of other diseases, but very little is known.
Nevertheless, they are likely to have a dazzling future in the management of other incurable
diseases, including hypertension and diabetes. Beside their medical applications, green
synthesized IONPs have also been used in various agricultural practices and could be used
as alternative to bio fertilizers and bio-control agents. With such a multitude of applications
and promising results in various fields of science, the only hurdle in its commercialization
is its toxicity. For now, toxicity of NPs remains a major bottleneck in translating these
materials from lab to industry, which needs to be addressed further.
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