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Abstract
Background:Bipolar disorder (BD), a common kind of mood disorder with frequent recurrence, high rates of additional comorbid
conditions and poor compliance, has an unclear pathogenesis. The Gene Expression Omnibus (GEO) database is a gene expression
database created andmaintained by the National Center for Biotechnology Information. Researchers can download expression data
online for bioinformatics analysis, especially for cancer research. However, there is little research on the use of such bioinformatics
analysis methodologies for mental illness by downloading differential expression data from the GEO database.

Methods: Publicly available data were downloaded from the GEO database (GSE12649, GSE5388 and GSE5389), and
differentially expressed genes (DEGs) were extracted by using the online tool GEO2R. A Venn diagram was used to screen out
common DEGs between postmortem brain tissues and normal tissues. Functional annotation and pathway enrichment analysis of
DEGswere performed by usingGene ontology and Kyoto Encyclopedia of Genes andGenomes analyses, respectively. Furthermore,
a protein-protein interaction network was constructed to identify hub genes.

Results:A total of 289 DEGs were found, among which 5 of 10 hub genes [HSP90AA1, HSP90AB 1, UBE2N, UBE3A, and CUL1]
were identified as susceptibility genes whose expression was downregulated. Gene ontology and Kyoto Encyclopedia of Genes and
Genomes analyses showed that variations in these 5 hub genes were obviously enriched in protein folding, protein polyubiquitination,
apoptotic process, protein binding, the ubiquitin-mediated proteolysis pathway, and protein processing in the endoplasmic reticulum
pathway. These findings strongly suggested that HSP90AA1, UBE3A, and CUL 1, which had large areas under the curve in receiver
operator curves (P< .05), were potential diagnostic markers for BD.

Conclusion: Although there are 3 hub genes [HSP90AA1, UBE3A, and CUL 1] that are tightly correlated with the occurrence of
BD, mainly based on routine bioinformatics methods for cancer-related disease, the feasibility of applying this single GEO
bioinformatics approach for mental illness is questionable, given the significant differences betweenmental illness and cancer-related
diseases.

Abbreviations: ASDs = autism spectrum disorders, BD = bipolar disorder, BP = biological process, CC = cellular component,
DEGs = differentially expressed genes, GEO = gene expression omnibus, GO = Gene ontology, KEGG = Kyoto Encyclopedia of
Genes and Genomes, MF = molecular function, PPI = protein-protein interaction.
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1. Introduction
Bipolar disorder (BD) is a widely distributed mental disorder that
affects approximately 1% of the population worldwide.
Epidemiological studies have indicated that the prevalence of
BD during the human lifetime ranges from 2% to 4%, placing
heavy burdens on families and society.[1] As reported, BD affects
4.4% of the population in the USA,[2] and its prevalence in
European countries ranges from 0.1% to 6.0%.[3] Currently,
although the diagnosis of BD is mainly dependent on insights into
the characteristic clinical symptoms, including repeated and
alternating presentation of manic/mild manic and depressive
episodes with irregular forms of seizures, the cause of BD remains
mysterious. Unfortunately, BD patients who have not been
diagnosed and treated appropriately have serious adverse
consequences, such as a higher rate of suicide and an increased
number of additional psychiatric and physical comorbidities,[4]

making it the tenth most common disabling condition.[5] Many
hypotheses have been proposed to clarify the pathogenesis of BD.
It is well known and seems to be undeniable that an increasing
number of studies focused on affective disorders are becoming
involved in the domain of the environment and genes.[6–10] It was
revealed in a recent magnetic resonance imaging study that the
brain tissue structure of BD patients is widely affected,
particularly with reductions in gray matter volume,[11,12]

accompanied by enlargement of the brain ventricle[13,14]and
corpus callosum impairment.[15,16] Accumulating evidence
suggests that the occurrence of BD is implicated in various
disorders, such as inflammatory disorders,[17] dysfunction of
neuroplasticity,[18] oxidative stress, and mitochondrial dysfunc-
tion.[19] Therefore, for more accurate diagnosis, novel candidate
biomarkers of BD should be searched for and identified in these
interrelated biological processes (BP).[20] To date, it has been
widely accepted that brain-derived neurotrophic factor is the
most popular biomarker for BD due to its participation in the
maintenance of adult neuroplasticity and the regulation of
synaptic activity and neurotransmitter synthesis.[21–23] Explora-
tions of novel and sensitive diagnostic targets for BD in clinical
practice are both challenging and urgently needed, giving new
insight to improve therapeutic effects in the future.
In recent years, microarray technology has been widely utilized

in the investigation of general genetic abnormalities.[24,25] gene
expression omnibus (GEO)2R (http://www.ncbi.nlm.nih.gov/
geo/geo2r/) provides online datasets freely, and researchers can
obtain information on differentially expressed genes (DEGs) by
comparing disease samples with normal samples based on GEO
series.[26] Therefore, GEO2R can offer an ideal direction for
obtaining a comprehensive understanding of the underlying
pathogenesis of various diseases with the help of profiling gene
expression datasets. However, to date, few studies have focused
on the pathogenesis of mental disorders by using the bioinfor-
matics tool GEO2R to elucidate the genetic factors involved. In
the present study, we attempted to search for novel potential
biomarkers, taking them as potential BD diagnostic targets
dependent on the analysis from 3 main data banks. Importantly,
the integrated bioinformatics approaches we used in this study
greatly contributed to the search for and identification of 3
promising genes (UBE3A, CUL 1, and HSP90AA1), which are at
least related to the incidence of BD. Our results will undoubtedly
shed new light on superior diagnostic approaches and timely
therapies for BD, and they also provide some insight into whether
routine bioinformatics analysis using single GEO databases can
be applied for mental illness.
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2. Materials and methods

2.1. Data source

The gene expression datasets analyzed in this current study were
extracted from the GEO database. This study aimed to mine data
for bioinformatics analysis and did not involve original animal
and human clinical experiments, so ethical review was not
applicable. A total of 82 BD cases were retrieved from the
database. When the type of organism was limited to Homo
sapiens, 77 cases were obtained by further screening.
Following a careful review, the 3 gene expression profiles

included in this study (GSE12649, GSE5388 and GSE5389) were
selected due to the common platform, and their experimental
types were all expression profiling by microarray all based on the
GPL96 [HG-U133A] Affymetrix Human Genome U133A Array.
The array data from GSE12649 contained 102 samples, among
which 67 samples from the postmortem human prefrontal cortex
were used for the present study, including 33 BD samples and 34
healthy samples; the array data from GSE5388 contained 61
postmortem dorsolateral prefrontal cortex samples, including 30
BD samples and 31 healthy samples, and the array data from
GSE5389 contained 21 orbitofrontal cortex samples, including
10 BD samples and 11 healthy samples.
2.2. Data extraction for DEGs

The GEO2R analysis tool was employed online to exploit the
DEGs among all samples. There were significant differences in
gene expression levels between patients with mental illness and
those with other diseases (such as tumors). For example, if we
chose the screening criteria for DEGs of tumor diseases as jlog
fold change (log FC)j>1 or 2, even 0.2 to 0.9, there were only
approximately 10 DEGs that could be screened out for mental
diseases. To avoid missing more valuable DEGs, we artificially
defined P<0.05 and jlog FCj>0.1 as inclusion criteria for DEGs.
DEGs with log FC<0 were considered downregulated genes,
while DEGs with log FC>0 were considered upregulated genes.
The data from the 3 gene expression profiles (GSE12649,
GSE5388 and GSE5389) were statistically analyzed, volcano
maps of 3 datasets were drawn using the volcano plotting tool
(https://shengxin.ren), and the intersection of upregulated and
downregulated DEGs was identified using the Venn diagramweb
tool (http://bioinformatics.psb.ugent.be/webtools/Venn/).
2.3. Functional Gene ontology (GO) and pathway
enrichment analysis of DEGs

GO annotation and Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment analysis of theDEGswere performedby using
the online tool of the DAVID database (6.8) (https://david.ncifcrf.
gov/). The GO project covers 3 classical domains: BP, cellular
component (CC) and molecular function (MF). KEGG is a useful
database for investigating genomes, biological pathways, diseases,
chemicals and drugs. In this study, GO annotations and KEGG
enrichment pathways were both considered to have statistical
value if they met the cut-off criterion of P<0.05 and ≥5 genes.
2.4. Analysis of the protein-protein interaction (PPI)
network and hub proteins

The open-source software of the Search Tool for the Retrieval of
Interacting Genes/Proteins named STRING (https://string-db.

http://www.ncbi.nlm.nih.gov/geo/geo2r/
http://www.ncbi.nlm.nih.gov/geo/geo2r/
https://shengxin.ren/
http://bioinformatics.psb.ugent.be/webtools/Venn/
https://david.ncifcrf.gov/
https://david.ncifcrf.gov/
https://string-db.org/


Table 1

Statistical data for GSE12649, GSE5388, and GSE5389 derived from the GEO database.

Dataset ID BD Control Platform Sample type Gene counts (upregulation) Gene counts (downregulation)

GSE12649 33 34 GPL96 human prefrontal cortex (BA46) 618 1064
GSE5388 30 31 GPL96 dorsolateral prefrontal cortex 1263 1396
GSE5389 10 11 GPL96 orbitofrontal cortex 1947 1392

GEO = gene expression omnibus.
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org/) was utilized to construct the network of PPI information.
The previously determined DEGs were mapped to the STRING
database to assess potential PPI relationships. PPI pairs were
extracted with a combined score>0.4. The visualized network
of PPIs was generated via Cytoscape software (https://cyto
scape.org/), and the CytoHubba plugin downloaded from
Cytoscape was used to compute the connectivity degree of
individual protein nodes. Finally, in the current study, the top
10 genes were considered hub genes and crucial in the PPI
network.
2.5. Screening out more potential hub genes and mining
their expression patterns in the normal human brain

To study the potential signaling pathways of the 10 hub genes
and explore more potential hub genes, KEGG pathway
enrichment analysis was employed by using DAVID (6.8)
(P< .05). In addition, the online software BrainCloud (http://
braincloud.jhmi.edu/) constructed by Colantuoni et al[27] was
used to roughly elucidate the expression levels of these additional
potential genes in normal tissues, assessing the temporal
dynamics and genetic control of transcription of the human
prefrontal cortex throughout the lifetime. With this method, we
preliminarily compared the expression levels of potential genes in
BD patients with healthy individuals and identified the differ-
ences. In addition to providing a dynamic understanding of the
expression changes of these hub genes, the National Center for
Biotechnology Information (NCBI) database can provide
information on the static expression levels of these genes in
normal brain tissue for further investigation.
Figure 1. Identification of DEGs in brain samples between BD patients and healthy
Y-axis represents the P value (log-scaled). Each symbol represents a different ge
downregulated genes.
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2.6. Diagnostic value of 5 hub genes

The application of Prism(8.0) (https://www.graphpad.com/
scientific-software/prism/) was used to construct the receiver
operating characteristic curve, which could help determine the
diagnostic value of the hub genes for predicting BD. P<0.05 was
considered to indicate a statistically significant difference.
3. Results

3.1. Identification of DEGs

A total of 3 microarray datasets (GSE12649, GSE5388 and
GSE5389) were used in this study. Based on the criteria of P< .05
and jlogFCj>0.1, a total of 2659 DEGs were identified from
GSE5388, among which 1263 genes were upregulated and 1396
genes were downregulated. There were 3339 DEGs identified in
GSE5389, including 1947 upregulated genes and 1392 down-
regulated genes. A total of 1682 DEGs were identified in
GSE12649, among which 618 were upregulated and 1064 were
downregulated (see Table 1).
Volcano plot analysis was performed to visualize the DEGs of

the 3 datasets (GSE12649, GSE5388 and GSE5389) between the
BD samples and the healthy samples. In the volcano plot, the
DEGs between the BD and healthy samples were presented by all
nodes. The nodes were significant when conforming to the cut-off
criteria (P< .05 and fold-change>0.1 or<�0.1) and were
marked as green or red. The downregulated DEGs are presented
by the green nodes, and the upregulated DEGs are presented by
the red nodes. Volcano plots of GSE12649, GSE5388 and
GSE5389 are shown in Figure 1A, 1B and 1C. Subsequently, the
control individuals. The X-axis represents the fold change (log-scaled), and the
ne. The red symbols show the upregulated genes; green symbols show the

https://string-db.org/
https://cytoscape.org/
https://cytoscape.org/
http://braincloud.jhmi�.�edu/
http://braincloud.jhmi�.�edu/
https://www.graphpad.com/scientific-software/prism/
https://www.graphpad.com/scientific-software/prism/
http://www.md-journal.com


Figure 2. Venn diagram of DEGs from 3 GEO datasets. A. upregulated genes. B. downregulated genes. DEGs = differentially expressed genes, GEO = gene
expression omnibus.
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results of the intersection of these 3 DEG profiles were obtained
by Venn diagram analysis. There were 289 DEGs in these 3 sets,
as shown in Figure 2(A and B), among which 112 genes were
upregulated and 177 genes were downregulated.

3.2. GO analysis and KEGG pathway analysis of DEGs

According to the inclusion criteria of P< .05 and gene counts ≥5,
23 distinct GO terms and 3 significant KEGG pathways were
Figure 3. Significant GO terms (Biological process; Cellular component;Molecular
each GO term and their proportions. A. GO analysis of the upregulated DEGs. B. G
GO = Gene ontology.
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obtained to functionally classify the 289 DEGs. GO analysis
of the upregulated DEGs and downregulated DEGs consisted
of 3 items (BP, CC and MF), which are presented in Figure 3.
These genes may play an important role in the development
of BD.
Results of the GO analysis indicated that upregulated DEGs

associated with BPwere mainly enriched in negative regulation of
growth; cellular response to zinc ions; cellular response to
cadmium ions; peptidyl-tyrosine phosphorylation; negative
function) associated with DEGs. The chart shows the annotations enriched by
O analysis of the downregulated DEGs. DEGs = differentially expressed genes,



Table 2

KEGG pathway enrichment analysis of upregulated and downregulated DEGs.

Type Category Term Description Count P Value Genes

Upregulated DEGs KEGG pathway hsa04978 Mineral absorption 6 1.94E-05 MT2A, MT1E, MT1H, MT1X, MT1G, MT1F
Downregulated DEGs KEGG pathway hsa04120 Ubiquitin-mediated proteolysis 9 .00053 UBE2N, UBE2D3, CUL5, UBE2D2, UBE3A, RCHY1,

CDC27, CUL1, TRIP12
Downregulated DEGs KEGG pathway hsa04141 Protein processing in

endoplasmic reticulum
9 .00208 HSP90AB1, UBE2D3, HSP90AA1, UBE2D2, DNAJA1,

PDIA6, EDEM3, CUL1, SEC61G

DEGs = differentially expressed genes.
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regulation of transcription, DNA-templated; and positive
regulation of transcription, DNA-templated. Variations in
upregulated DEGs associated with CC were significantly
enriched in perinuclear region of cytoplasm, cell-cell junction,
cytoplasm, cytoskeleton, integral component of plasma mem-
brane, actin cytoskeleton, and plasma membrane. Upregulated
DEGs for MF were significantly enriched in receptor binding,
actin binding, protein binding, protein homodimerization
activity, metal ion binding, and zinc ion binding.
Likewise, the results of the GO analysis indicated that

downregulated DEGs linked with BP were mainly enriched in
signal transduction, apoptotic process, cell proliferation, protein
folding, protein polyubiquitination, cell-cell adhesion, viral
process, Fc-epsilon receptor signaling pathway, and positive
regulation of apoptotic process. Downregulated DEGs associated
with CC were significantly enriched in cytoplasm, cytosol,
extracellular exosome, nucleus, nucleoplasm, membrane, mito-
chondrion, Golgi apparatus, perinuclear region of cytoplasm,
and myelin sheath. For MF, downregulated DEGs were
significantly enriched in protein binding, poly(A) RNA binding,
Figure 4. Protein-protein interaction network constructed with the DEGs. Red no
genes.
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GTP binding, GTPase activity, protein homodimerization
activity, ubiquitin protein transferase activity, ubiquitin protein
ligase binding, nucleotide binding, RNA binding, and cadherin
binding involved in cell-cell adhesion.
In addition, the results of KEGG pathway analysis of the

upregulated and downregulated DEGs are shown in Table 2. The
upregulated DEGs were mainly enriched in pathways in mineral
absorption, and the downregulated DEGs were mainly enriched
in pathways in ubiquitin-mediated proteolysis and protein
processing in the endoplasmic reticulum.
3.3. PPI network construction and identification of hub
genes

Based on the online STRING and Cytoscape software (3.7.1), the
PPI network was constructed, and hub genes were selected. The
PPI network information involves 275 nodes and 728 edges, as
presented in Figure 4. The top 10 genes evaluated by the degree of
connectivity in the PPI network were identified, as presented in
Figure 5. Detailed gene descriptions and connectivity degrees of
des represent upregulated genes, and green nodes represent downregulated

http://www.md-journal.com


Figure 5. PPI network constructed with 10 hub genes and other DEGs. The darker a hub gene’s color is, the heavier its weight across the network. DEGs =
differentially expressed genes, PPI = protein-protein interaction.
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the 10 hub genes are presented in Table 3. All of these hub genes
were downregulated in BD samples.

3.4. Selection of more potential hub genes

To further elucidate more valuable hub genes from the initial 10
hub genes, KEGG pathway enrichment analysis was performed
again (P< .05). The results showed that 3 genes (HSP90AA1,
HSP90AB1, and CUL1) were enriched in the protein processing
pathway in the endoplasmic reticulum, and 3 genes (UBE2N,
UBE3A, and CUL1) were enriched in the ubiquitin-mediated
proteolysis pathway (Table 4).
Table 3

Gene description and connectivity degree of 10 hub genes.

Gene symbol Gene description

HSP90AA1 Heat shock protein 90 alpha family class A mem
CCT2 Chaperonin containing TCP1 subunit 2
UBE2N Ubiquitin-conjugating enzyme E2 N
RANBP2 RAN-binding protein 2
RAN RAN, member of the RAS oncogene family
CUL1 Cullin 1
DHX15 DEAH-box helicase 15
PSMA1 Proteasome subunit alpha 1
HSP90AB1 Heat shock protein 90 alpha family class B mem
UBE3A Ubiquitin protein ligase E3A

6

3.5. Exploration of the temporal expression levels of 5 hub
genes in brain tissue from normal humans

The online software BrainCloud was utilized to obtain the
expression levels of these 5 hub genes in the brain tissues of
normal humanswhose age ranged from1 to 80 years old (Fig. 6)
compared with those of BD patients. The expression level of
HSP90AA1 showed a rapid decline in the period from 1 to 20
years old, regardless of whether the individual was male or
female, and began to maintain a steady state after 20 years of
age in males and females. The expression level of UBE3A
gradually increased from 1 to 20 years of age in male
Degree Type

ber 1 40 Downregulation
27 Downregulation
26 Downregulation
20 Downregulation
20 Downregulation
20 Downregulation
20 Downregulation
19 Downregulation

ber 1 19 Downregulation
19 Downregulation



Table 4

Reanalysis of 10 hub genes via KEGG pathway enrichment.

Category Term Description Count P Value Genes

KEGG pathway hsa04120 Ubiquitin-mediated proteolysis 3 .010191483 UBE2N, UBE3A, CUL1
KEGG pathway hsa04141 Protein processing in endoplasmic reticulum 3 .015242141 HSP90AB1, HSP90AA1, CUL1

You et al. Medicine (2020) 99:35 www.md-journal.com
individuals, while its expression in females showed the
opposite pattern. After the age of 20 years, the expression
level of UBE3A in males increased steadily, while women
maintained a steady trend. From 1 to 80 years old, the
expression level of HSP90AB1 showed a steady decline in both
Figure 6. Expression of 5 genes (HSP90AA1, HSP90AB1, UBE2N, UBE3A, and C
used for plotting from BrainCloud. Red represents male, and green represents fem
years old. The green trend line shows the gene expression of females from 1 to

7

males and females. From 1 to 80 years of age, the expression
level of UBE2N maintained a stable trend in both males and
females. From 1 to 80 years of age, the expression level of CUL1
in males showed a steady upward trend, while the opposite
trend was observed in females.
UL1) in the normal prefrontal cortex of males and females. Expression data were
ale. The red trend line shows the gene expression of normal males from 1 to 80
80 years old.

http://www.md-journal.com


Figure 7. The expression levels of 5 hub genes in the same 3 normal brain
samples (PMID: 24309898). CUL1: Cullin 1; HSP90AA1: Heat shock protein
90 alpha family class A member 1; HSP90AB1: Heat shock protein 90 alpha
family class Bmember 1; UBE2N: Ubiquitin-conjugating enzyme E2N; UBE3A:
Ubiquitin protein ligase E3A; RPKM: Reads Per Kilobase Million.
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3.6. Mining the expression levels of 5 hub genes in normal
brain tissue based on the NCBI database

The NCBI database was used to mine the expression levels of 5
hub genes in normal brain tissue (https://www.ncbi.nlm.nih.gov/
gene/). RNA-seq (quantitative transcriptomics analysis) was
performed to detect the expression levels of HSP90AA1,
HSP90AB1, CUL1, UBE2N, and UBE3A in 27 different tissues
from 95 human individuals.[28] The expression level of
HSP90AA1 ranked first among 27 tissues in 3 normal brain
samples, with a mean Reads Per Kilobase Million (RPKM) of
360.601±96.334; HSP90AB1 ranked second, with a mean
RPKM of 324.029±54.479; CUL1 ranked seventh with a mean
RPKM of 14.51±1.734; UBE2N ranked second with a mean
RPKM of 12.165±1.724; and UBE3A ranked third with a mean
RPKM of 12.959±1.031. Figure 8 displays the expression levels
of 5 hub genes in the same 3 normal brain samples. As shown in
Figure 7, HSP90AA1 was the most significantly expressed in
healthy brain tissues among the 5 genes. However, according to
the expression level of a single gene in 27 different types of tissues,
these 5 genes were highly expressed in brain tissues compared to
other tissues.

3.7. Diagnostic evaluation of HSP90AA1, HSP90AB1,
CUL1, UBE2N, and UBE3A

Expression levels in BD samples were evaluated using ROC
curves in order to illustrate the diagnostic value of the 5 hub genes
(HSP90AA1, HSP90AB1, CUL1, UBE2N, and UBE3A). As
displayed in Figure 8, the area under the curve (AUC) values for
CUL1, HSP90AA1, HSP90AB1, UBE2N and UBE3A in BD
patients and healthy controls determined for the GSE5388
dataset were 0.69 [95% confidence interval (CI), 0.5489–0.8210;
P= .0131], 0.68 [95% CI, 0.542–0.818; P= .0160], .6129 [95%
CI, 0.4698–0.7560; P= .1298], 0.6667 [95% CI, 0.5296–
0.8038; P= .0253], and 0.7022 [95% CI, 0.5722–0.8321;
P= .0067], respectively.
As presented in Figure 9, the AUC values for CUL1,

HSP90AA1, HSP90AB1, UBE2N and UBE3A in BD patients
and healthy controls determined for the GSE5389 dataset were
0.7818 [95% CI, 0.5641–0.9995; P= .0290], 0.9091 [95% CI,
8

0.7384–1.0000; P= .0015], 0.6545 [95% CI, 0.4137–0.8954;
P= .2313], 0.6909 [95% CI, 0.4467–0.9351; P= .1392], and
0.8818 [95% CI, 0.7067–1.000; P= .0031], respectively.
As indicated in Figure 9, the AUC values for CUL1,

HSP90AA1, HSP90AB1, UBE2N, and UBE3A in BD patients
and healthy controls determined for the GSE12649 dataset were
0.6885 [95% CI, 0.5622–0.8148; P= .0080], 0.6729 [95% CI,
0.5426–0.8032; P= .0150], 0.5615 [95% CI, 0.4218–0.7012;
P= .3868], 0.6052 [95% CI, 0.4689–0.7415; P= .1389], and
0.7103 [95% CI, 0.5873–0.8333; P= .0031], respectively.
Combined with the results above, UBE3A, HSP90AA1, and
CUL1 may be diagnostic genes for BD based on the inclusion
criterion of P< .05 and AUC: 0.60–1.00.
As indicated in Figure 10, the AUC values for CUL1,

HSP90AA1, HSP90AB1, UBE2N and UBE3A in BD patients
and healthy controls determined for the GSE12649 dataset were
0.6885 [95% CI, 0.5622–0.8148; P= .0080], 0.6729 [95% CI,
0.5426–0.8032; P= .0150], 0.5615 [95% CI, 0.4218–0.7012;
P= .3868], 0.6052 [95% CI, 0.4689–0.7415; P= .1389], and
0.7103 [95% CI, 0.5873–0.8333; P= .0031], respectively.
Combined with the results above, UBE3A, HSP90AA1, and
CUL1 may be diagnostic molecular markers for BD based on the
inclusion criteria of P< .05 and AUC: 0.60–1.00.

4. Discussion

BD is the leading cause of disability worldwide, with unsatisfac-
tory treatment and an unclear biological basis.[29] To date, drug
therapy is still widely accepted as the most rapidly efficacious
method to treat affective episodes and their most disturbing
symptoms (agitation in mania), contributing to substantial
reductions in the length of hospital stay and the rehospitalization
rate.[30] However, the initial misdiagnosis of BD, mainly
attributed to the presence of symptoms and the overlap of
clinical features with other mental disorders, has been a great
obstacle to effective and timely therapy.[31] Therefore, there is an
urgent need to identify new diagnostic biomarkers and seek
sensitive drugs to target signaling pathways for BD to develop
effective and robust therapeutic strategies.
Currently, bioinformatics prediction and computer technology

have some beneficial applications for all aspects of biomedical
analysis.[32] However, there are few systematic bioinformatics
analyses for mental diseases because the gene expression profiles
associated with psychosis, which may be significantly different
from those associated with other diseases, have not yet been
distinguished. In the present study, ChIP analysis was first used to
screen out DEGs in BD brain tissues, providing a novel strategy to
exploit potential genes to provide insight into the pathogenesis of
BD. The results showed that 289 common DEGs were identified
from 3 array sets, among which 112 were upregulated and 177
were downregulated. By integrated bioanalysis, 3 promising
genes, UBE3A, HSP90AA1, and CUL1, were identified, and all
exhibited downregulated expression. This strongly suggests that
the ubiquitin-mediated proteolysis pathway and protein process-
ing in the endoplasmic reticulum pathway are of great
importance and may be related to the incidence of BD.
UBE3A, also known as ubiquitin protein ligase E3A, functions

to conjugate ubiquitin groups to a unique set of proteins[33,34]

and is responsible for the degradation of multiple proteins.[35]

Previous studies strongly indicated that mutation of the UBE3A
catalytic domain is sufficient to induce the development of
Angelman syndrome, a severe neurological disorder character-

https://www.ncbi.nlm.nih.gov/gene/
https://www.ncbi.nlm.nih.gov/gene/


Figure 8. Diagnostic evaluation of 5 hub genes from the GSE5389 dataset. ROC curves and AUC values for the 5 hub genes (HSP90AA1, HSP90AB1, CUL1,
UBE2N, and UBE3A). ROC: receiver operating characteristic; AUC: area under the ROC curve; CI, confidence interval; CUL1: Cullin 1; HSP90AA1: Heat shock
protein 90 alpha family class Amember 1; HSP90AB1: Heat shock protein 90 alpha family class Bmember 1; UBE2N: Ubiquitin-conjugating enzyme E2N; UBE3A:
Ubiquitin protein ligase E3A.
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ized by mental retardation, absent speech, ataxia, seizures, and
hyperactivity.[36–38] A study[39] revealed that maternal UBE3A
deficiency in mice resulted in neuronal dysplasia and fewer
branched apical dendrites. A report also indicated that mouse
models with maternal deletions of UBE3A showed many
Angelman-like phenotypes, including learning and memory
deficits, motor phenotypes and seizures.[40] Some of these related
phenotypes of Angelman syndrome could be seen in other
neurodevelopmental disorders,[41] such as autism spectrum
disorders (ASDs). Moreover, duplication of chromosomal
9

regions containing UBE3A is linked with ASDs.[42] Coinciden-
tally, the most prominent comorbidities of ASDs are BD, seizures,
and migraine.[43] Potent evidence supports the idea that these
superficially distinct diseases share common genetic changes and
pathways with 1 another.[44]

In this study, UBE3A maintained a high expression level from
birth, but UBE3A in patients with BD patients was substantially
downregulated relative to the healthy controls, contrary to the
expression in the normal human prefrontal cortex from the
BrainCloud data (Fig. 7). Similarly, according to data from the
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NCBI database, UBE3A presents a trend of high expression in
normal brain tissue, but not the testis or thyroid, compared with
other tissues. In our study, the expression of UBE3A in the brain
tissues of BD patients was downregulated. Therefore, it can be
inferred that UBE3A probably plays a key synergistic role in the
pathogenesis of BD. In addition, UBE3A exhibited a large AUC in
the 3 array datasets (GSE5388, AUC: 0.7022; GSE5389, AUC:
0.8818; and GSE12649, AUC: 0.7103). Thus, UBE3A may serve
as a potential biomarker for the diagnosis of BD with the help of
integrated bioinformatics technology.
Cullin protein is amolecular scaffold that plays a pivotal role in

ubiquitin-mediated posttranslational modification of cellular
proteins. CUL1, as 1 of eight members of the mammalian cullin
10
protein family, can assemble the multisubunit Cullin-Ring (a truly
interesting new gene) E3 ubiquitin ligase complex.[45] Experiments
in mice have confirmed that CUL1 plays an indispensable role in
the cell cycle and embryogenesis.[46,47] Previous research[48] on C.
elegans indicated that CUL1 is involved in germline apoptosis.
Studies withmodel organisms such asDrosophila have shown that
CUL1 participates in the cell cycle[49] and eye development.[50] In
addition to these processes, CUL1 plays important roles in signal
transduction, cell cycle progression, and ubiquitin dependence,[51]

serving as a skeleton of the Skp1-CUL1/Rbx1-F-box protein
ubiquitin E3 ligase complex.[45]

In summary, since UBE3A is anticipated to be involved in the
pathogenesis of BD, we also propose that CUL1 may be



Figure 10. Diagnostic evaluation of 5 hub genes from the GSE12649 dataset. ROC curves and AUC values for the 5 hub genes (HSP90AA1, HSP90AB1, CUL1,
UBE2N, and UBE3A). ROC: receiver operating characteristic; AUC: area under the ROC curve; CI, confidence interval; CUL1: Cullin 1; HSP90AA1: Heat shock
protein 90 alpha family class Amember 1; HSP90AB1: Heat shock protein 90 alpha family class Bmember 1; UBE2N: Ubiquitin-conjugating enzyme E2N; UBE3A:
Ubiquitin protein ligase E3A.
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considered to play an indirect but key role in the mechanism of
BD. The expression of CUL1 maintained a relatively high
expression level after birth in normal brain tissue, as shown by
data from the BrainCloud and NCBI databases. In addition, this
gene is downregulated in BD patients. In combination with the
information from 3 array sets (GSE5388, AUC: 0.69; GSE5389,
AUC: 0.7818; and GSE12649, AUC: 0.6885), it is clear that
CUL1 provides a novel direction for the diagnosis of BD.
HSP90AA1, known as heat shock protein 90 alpha family class

A member 1, is encoded on the complementary strand of
chromosome 14q32.33 and spans over 59 kbp. Several
pseudogenes of HSP90AA1 exist throughout the human genome,
located on chromosomes 3, 4, 11, and 14.[52,53] In the last 20
11
years, the overexpression of HSP90AA1 has emerged as an
intriguing hallmark of cancers and is thought to have important
regulatory roles in invasion and migration through extensive
interactions with other family members.[54–56] A previous
study[57] has shown that HSP90AA1 is highly expressed in
hepatocellular carcinoma in patients with depression. One study
identified HSP90AA1 as 1 of several hub genes (CAMK2A,
HSP90AA1 and PLCG1) among 184 risk genes via genome-wide
association studies and exome sequencing studies, but it was not
implicated as a drug target.[58] A study using RNA-Seq and qPCR
in 2 postmortem cohorts of 34 BD patients and 55 controls
illustrated that HSP90AA1 was upregulated without diagnostic
differences.[59]
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Few studies have been performed to investigate HSP90AA1
among mental illnesses, and the expression level of HSP90AA1
was lower in the present 3 array sets, contrary to the results of
previous studies. It is thought that posttranslational modifica-
tions (phosphorylation, acetylation, S-nitrosylation, oxidation,
methylation, sumoylation and ubiquitination) have a great
impact on Hsp90 function and regulation.[60] Therefore, we
speculated that the variation in HSP90AA1 is mainly dependent
on different types of diseases and impacts posttranslational
modifications. In our study, not only datasets (GSE5388, AUC:
0.68; GSE5389, AUC: 0.9091; and GSE12649, AUC: 0.6729)
but also BrainCloud (see Fig. 7) and NCBI databases (shown in
Fig. 8) revealed that HSP90AA1 has a large AUC in the 3 arrays
and a high expression level in normal brain tissues. Based on these
findings, it has been strongly suggested that the downregulated
expression of HSP90AA1 may be involved in the pathogenesis of
BD.
However, this study has some obvious deficiencies. First,

objectively speaking, our bioinformatics research on BD based on
the GEO database was conducted in strict accordance with the
routine bioinformatics strategy for tumors or cancer. In terms of
methodology, the research idea is relatively clear. However,
cancer and mental illness are 2 different diseases, and statistically
speaking, if DEGs were selected in strict accordance with the
inclusion criteria for tumors, the extraction of DEGs from this
study could not be further analyzed. The log fold change value is
almost always limited to 1 in the extensive literature on
bioinformatics analysis of tumors, indicating a more statistically
significant and convincing limit, which is generally accepted by
the research community. In our study, we tried to download the
expression data for a variety of mental diseases (such as
schizophrenia, depression, and BD) in the same or different chip
platforms of the GEO database. When the log fold change value
was artificially assigned a range of 0.2 to 1, there were only a
small number of DEGs. However, it is interesting to note that we
can obtain the titer of similar tumor inclusion criteria for the next
GO and KEGG analysis when the log fold change value is
artificially set as 0.1. This is perhaps the greatest statistical flaw in
our study; of course, this may be the reason why few studies have
performed bioinformatics analysis on mental illness data from a
single GEO database. Second, although we identified 3
differentially expressed susceptibility genes, further validation
was not performed.
5. Conclusion

Although 3 hub genes [HSP90AA1, UBE3A, and CUL 1] that are
tightly correlated with BD occurrence were first found here,
mainly based on routine bioinformatics methods for cancer-
related disease, the feasibility of applying this single GEO
bioinformatics approach for mental illness is questionable, given
the significant differences between mental illness and cancer-
related disease.
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